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Abstract
Consider a complete directed graph in which each arc has a given length. There is a set
of jobs, each job i located at some node of the graph, with an associated processing time
hi, and whose execution has to start within a prespecified time window [ri, di]. We have
a single server that can move on the arcs of the graph, at unit speed, and who has to
execute all of the jobs within their respective time windows. We consider the following
two problems: (a) Minimize the time by which all jobs are executed (Traveling Salesman
Problem); (b) Minimize the sum of the waiting times of the jobs (Traveling Repairman
Problem). We focus on the following two special cases: (a) The jobs are located on a line;
(b) The number of nodes of the graph is bounded by some integer constant B. Furthermore,
we consider in detail the special cases where: (a) All of the processing times are 0; (b) All of
the release times ri are 0; (c) All of the deadlines di are infinite. For many of the resulting
problem combinations, we settle their complexity either by establishing NP-completeness,
or by presenting polynomial (or pseudopolynomial) time algorithms. Finally, we derive
algorithms for the case where, for any time t, the number of jobs that can be executed at
that time is bounded.
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I. INTRODUCTION

As is well-known, the traveling salesman problem (TSP) is NP-complete even if we
are restricted to grid-graphs [LLRS85]. Furthermore, introducing time constraints into

the problem (such as time windows) can only make it harder [S85]. For this reason, time-
constrained variants of the TSP have been primarily studied from a pragmatic point of

view, for the purpose of designing branch and bound algorithms with practically acceptable

running time; see the surveys [SD88] and [DLSS88]. On the other hand, there is some
hope of obtaining polynomial time algorithms for time-constrained variations of the TSP

when we restrict to special cases. In the first special case that we consider, the jobs 3

to be executed are placed on a straight-line segment. A few problems of this type have

been studied in [PSMK90], where one particular variation was shown to be polynomially
solvable; some other variations, however, were left open and we study them in Sections 2-3.

In practice, the straight-line problem can arise in the case of a server visiting customers

located along a highway, or in the case of a ship visiting ports along a coastline.

In a variant of the TSP, instead of minimizing the total time it takes to execute all

jobs, one tries to minimize the sum of their waiting times. This is known as the traveling

repairman problem (TRP) and has been studied in [ACPPP86]. While this problem is

also NP-complete in general, it was shown in [ACPPP86] that some progress is possible
for the straight-line case. We discuss this problem further in Section 4. Note that the

TRP captures the waiting costs of a service system from the customers' point of view. As

such, it can be used to model numerous types of service systems. Also, the cost function

used in the TRP is the same as flowtime (also known as sum of completion times), which

is a most commonly employed performance measure in scheduling theory.

In another approach for obtaining potentially tractable problems, we assume that

the number of nodes of the underlying graph is bounded by an integer B, and study the

complexity of the problem as the number of jobs is increased (Sections 5-7).

The problems we study have two distinct elements: a) we have to find a path to be
followed by the server so that all job locations are visited and we are thus dealing with a

generalization of the classical TSP problem; b) we also have to decide the order in which

the jobs are to be executed at each location (thus generalizing classical sequencing and
scheduling problems). When we impose a bound B on the number of distinct locations,
the problem of designing a path becomes easier and the sequencing aspects are more

predominant. In fact, in the limiting case where B = 1, we are faced with a pure scheduling

3. We use the term "jobs" synonymously with the term "cities" that is often used in

describing the TSP.

2



problem.

We note that problems with a bound B on the number of locations arise naturally
in the context of manufacturing systems. For example, suppose that we have a single

machine and that each node of the graph corresponds to a different job-type (or batch).
We can then interpret the length of an arc as the "setup" time spent by the machine

before it can start processing jobs of a different type. In this context, it is natural to

assume that the number of job-types is bounded by a small constant B, while allowing

for a large number of jobs to be executed over a long time horizon. Scheduling problems

incorporating setup times when switching between job-types have been studied in [BD78],

[MP89]. The context for [BD78] was provided by a computer system that can run several
different programs; setup times here correspond to the time needed to load appropriate

programs or compilers into the main memory.

In the last variation that we consider, in Section 8, we assume an upper bound on

the number of jobs whose time window allows them to be executed at any given time.

Note that if the time windows of different jobs are not large, and if these time windows are

spread fairly uniformly in time, then such an assumption is likely to hold with a reasonably

small bound. For this reason, this variant tends to be fairly common in practice.

Problem Definition and Notation

Let Z0 be the set of nonnegative integers. Consider a complete directed graph G.

To each arc (i,j), we associate a length c(i,j) E Z0 . We assume that the arc lengths

satisfy the triangle inequality and we use the convention c(i,i) = 0 for all i. There are

n jobs J 1,..., Jn, with job Ji located at a node xi of G. To each job Ji, we associate a

time-interval [ri, di], with ri E Z0 and di E Z0 U {oo}. We refer to ri as a release time and
to di as a deadline. The interval [ri, di] is called a window and di - ri is its width.

Each job has an associated processing time hi E ZO. We have a single server that

starts at time 0 at a certain node x* of G. The server can move on the arcs of the graph

at unit speed or stay in place. It must start the execution of each job Ji during the time

interval [ri, di]. Furthermore, if the execution of job Ji starts at time ti, then the server

cannot leave node xi or start the execution of another job before time ti + hi.

Formally, an instance of the problem consists of G, x*, the job locations x 1,..., xn, the

lengths c(i,j), and the nonnegative integers ri, di, hi, i = 1,... , n. A feasible solution (also

called a feasible schedule) for such an instance is a permutation ?r of {1,... , n}, indicating

that the jobs are executed in the order Jr(1),..., J.(n), and a set of nonnegative integer
times ti, i = 1, . . . ,n, indicating the time that the execution of each job Ji is started.

Furthermore, we have the following feasibility constraints:
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(a) ti E [ri,di], for all i;

(b) c(x*, xff()) )< t(l);

(c) t (i) + h. (i) + c(x(i) ,X (i+ 1) )< t, (i,+ 1), for i - 1,. .. ,n-1.
We are interested in the following two problems:

TSPTW: Find a feasible solution for which max, (ti + hi) is minimized.
TRPTW: Find a feasible solution that minimizes the total waiting time En= ti or,
equivalently, E, 1 (t, - ri).

Summary of Results

In the first special case we consider, the job locations xi are integers and c(xi,x,) =

Ixi - x 1. We refer to the resulting problems as Line-TSPTW and Line-TRPTW. Results
for these two problems are presented in Sections 2-4. They are summarized in Tables 1

and 2, together with earlier available results and references. Here, questionmarks indicate

that there are still some open problems. For example, it is not known whether Line-

TSPTW with release times only and general processing times is strongly NP-complete or

pseudopolynomial.

Zero Processing Times General Processing Times

No relse times Trivial Trivial
or ealines

Release times O(n 2 ) NP-complete (Theorem 3)
only [PSMK90] ?

Deadlines only O0(n2 ) ?
(Theorem 1)

General time Strongly NP-complete Strongly NP-complete
windows (Theorem 2) [GJ77]

Table 1
The complexity of special cases of Line-TSPTW. Here, n is the number of jobs.

In the next special case that we consider, we impose a bound B on the number of

nodes of the graph and study the complexity as a function of the other problem parameters.

We refer to the resulting problems as B-TSPTW and B-TRPTW. It turns out that if the

processing times are zero for all jobs, then B-TSPTW and B-TRPTW can be solved by

polynomial time algorithms, fairly similar to the algorithms of [MP89]. (Of course, the
running time of these algorithms is exponential in B.) If we allow for different processing
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Zero Processing Times General Processing Times

No release times O(n2 )
or deadlines [ACPPP86]

Release times Strongly NP-complete
only [LRB77]

Deadlines only NP-complete [ACPPP86] NP-complete [ACPPP86]
Pseudopolynomial ?

General time Strongly NP-complete Strongly NP-complete
windows (by Theorem 2) [GJ77]

Table 2
The complexity of special cases of Line-TRPTW. Here, n is the number of jobs.

times, the picture is more varied, as seen in Table 3. These results are proved in Sections

5-7.

_________ _ ~B-TSPTW B-TRPTW

No release times O(B 2 B + n) O(B 2 nB )
or deadlines [HK62] (Theorem 7)

Release times O(B2 nB Strongly NP-complete
only (Theorem 6) even if B = 1 [LRB77]

Deadlines only O(B2 nB )
[MP89]

General time Strongly NP-complete Strongly NP-complete
windows even if B = 1 [GJ77] even if B = 1 [GJ77]

Table 3

The complexity of TSPTW and TRPTW when the number of nodes is bounded by B.

General processing times are allowed. The number of jobs is n.

Finally, in Section 8, we consider another special case which seems to arise often in

practice. In particular, we assume that there exists an integer D such that the number of

jobs Ji for which t E [re, di] is bounded by D for all t. We refer to the resulting problems

as TSPTW(D) and TRPTW(D). We establish that the natural dynamic programming
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algorithm has complexity O(nD2 2D) for TSPTW(D) and O(TD 22D) for TRPTW(D),
where T is an upper bound on the duration of an optimal schedule. This agrees with
experimental results reported in [DDS86] for some related problems. We finally show that
TRPTW(D) is NP-complete even if D = 2 and, therefore, it is very unlikely that our
pseudopolynomial time algorithm can be made polynomial.

II. THE LINE-TSPTW WITH ZERO PROCESSING TIMES

Throughout this and the next two sections, we focus on problems defined on the line.
In particular, each job location xi is an integer. Furthermore, in this section, we assume
that the processing time hi of each job is equal to 0. The problem is clearly trivial if ri = 0
and di = oo for all i. It was shown in [PSMK901 that the problem can be solved in O(n2 )
time (via dynamic programming) for the special case where di = oo for all i, that is, when
we only have release times. We now show that the same complexity is obtained for the
special case where ri = 0 but the deadlines are arbitrary.
Theorem 1: The special case of Line-TSPTW in which hi = ri = 0 for all i, can be

solved in O(n2 ) time.

Proof: Since the processing and release times are zero, it follows that each job is im-
mediately executed the first time that the server visits its location. In particular, if the
server has visited locations a and b, with a < b, then all jobs whose location belongs to

the interval [a, b] have been executed.
Let us assume that the job locations have been ordered so that xl < x2 < ... < x,.

Let i* be such that x* = xi.. (The existence of such an i* can be assumed without any loss
of generality; for example, we can always insert an inconsequential job at location x*.) We
assume that Ixi - x*I < di for all i; otherwise, the problem is infeasible. Let us fix some
i,j with 1 < i < i* < j < n. Consider all schedules in which the server visits location xi

for the first time at time t and has executed all jobs in the interval [xi,xj] within their
respective deadlines. Let V- (i,j) be the smallest value of t for which this is possible, and
let V- (i,j) = oo if no such schedule exists. We define V + (i,j) similarly, except that we
require that the server visits location xj (instead of xi) for the first time at time t. We
then have the following recursion:

V + (i* ,j) = x - x*, j > i*

V- (i,i*) = x*- Xi, i < i*,

U+ (i,j) = min IV+ (i,j - 1) + xj - xjx, V- (ij - 1) + Xi - X]i i < i* < j,

V + (i,j)= { U+ (i,j), if U + (i,j) dj, i < i* < j,
oo, otherwise,

6



V- (ij) = { U- (i,j), if U- (i,j) < di, i < i* < j.
oo, otherwise,

Using this recursion, we can compute V + (1, n) and V- (1, n) in 0(n 2 ) time. The minimum
of these two numbers is the cost of an optimal solution, with a value of infinity indicating
an infeasible instance. An optimal solution can be easily found by backtracking. Q.E.D.

Thus, Line-TSPTW, with zero processing times, is polynomial when we have only
release times or only deadlines. Interestingly enough, the problem becomes difficult, when
both release times and deadlines are present, as we next show. This settles an open problem

posed in [PSMK90] and [SD88].

In our NP-completeness proof, we use the well-known NP-completeness of the sat-

isfiability problem 3SAT defined as follows. We are given n Boolean variables v 1, ... , Vn

and m clauses Cl,..., Cm in these variables, with three literals per clause4 . The problem
consists of deciding whether there exists a truth assignment to the variables such that all

clauses are satisfied.

We will also need a modified version of 3SAT, which we call MSAT. Here different
clauses correspond to different time stages, and the variables are allowed to change truth

values from one stage to another; however, the only change allowed is from T (true) to

F (false). Furthermore, when the truth value of a variable changes, we allow it to be

undefined for (at most) one stage in between.

Formally, an instance of MSAT is defined as follows. We have nK variables v (k),
i = 1,...,n, k = 1,...,K, and K clauses D 1,...,DK, with three literals per clause.

Furthermore, for each k, only the variables vi(k), i = 1,... ,n, or their negations, can
appear in clause Dk. An extended assignment is one whereby each variable vi (k) is assigned
a truth value in the set {T, F, *}. The problem consists of deciding whether there exists
an extended assignment that satisfies the following constraints:

(a) If k < K and v (k) $ T, then vi (k + 1)= F.
(b) For every k, either there exists some i for which vi (k) = *, or the truth assignment is

such that the clause Dk is satisfied.

Notice that, by definition, an "undefined" variable vi (k) = * can take care of clause

Dk even if the variable vi (k) does not appear in Dk. Furthermore, notice that there is no
point in letting vi (1) = F, for any i. The reason is that letting vi (1) = * is at least as good

4. We only consider instances in which a variable can appear in a clause at most once,

either unnegated or negated.
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as vi (1) = F, for the purpose of satisfying clause D 1 , and imposes the same constraint

vi (2) = F. We thus add to the definition of MSAT the requirement vi (1) # F for every i.

For the same reason, we also require that vi (K) :$ T for every i.

Lemma 1: MSAT is NP-complete.

Proof: We will reduce 3SAT to MSAT. Given an instance (vl ,...,vn, Cl,...,Cm) of

3SAT, let K = m(n + 1). The clauses in the instance of MSAT are essentially the same as

C, ... , Cm, but repeated n + 1 times. Formally, if k = i + ml, where i = 1,.. ., m, and

t = 0,..., n, and if Ck = (a OR b OR c), then Dk = (a(k) OR b(k) OR c(k)). Here each

one of a, b, c is one of the variables vi or Vj, j = 1,..., n.

Suppose that we have a YES instance of 3SAT and let us fix a satisfying assignment.

We then define an extended assignment for the instance of MSAT by letting vi (k) = vi for

all i, k. (Keeping in line with the discussion preceding the lemma, we need the following

exceptions: if v, = F, let vi (1) = *; also, if vi = T, let vi (K) = *.) Clearly, this has all the

desired properties and we have a YES instance of MSAT.

Conversely, suppose that we have a YES instance of MSAT, and let us fix an extended

assignment to the variables vi (k) with the desired properties. We split the set {1,..., K}

into (n + 1) segments, each segment consisting of m consecutive integers. Property (a)

in the definition of MSAT easily implies that, for any fixed i and for each segment, the

value of vi (k) is fixed to either T or F, with the possible exception of one segment. [The

latter would be a segment on which vi (k) changes from T or * to F.] By throwing away

n segments (one segment for each i), we are left with a segment on which the value of

vi (k) stays constant for all i. We then assign to vi the value of vi (k) on that segment, for

all i. Since each clause Dk is satisfied, and since each clause Ck is "represented" in each

segment, it follows that the assignment to the vi 's satisfies all of the clauses in the instance

of 3SAT. Q.E.D.

We now move to the proof of our main result. In this proof, we find it convenient

to visualize an instance of the problem in terms of a two-dimensional diagram (see, e.g.,

Fig. 1), where the horizontal axis corresponds to time and the vertical axis corresponds

to location in space. The time window associated to each job is represented by a hori-

zontal segment connecting points (ri,xi) and (di,xi). The path traversed by the server

corresponds to a trajectory whose slope belongs to {-1,0,1}.

Theorem 2: Testing an instance of Line-TSPTW for feasibility is strongly NP-complete,

even in the special case where the processing times hi are zero.

Proof: The problem is clearly in NP. We will reduce MSAT to Line-TSPTW. Let there

be given an instance of MSAT with variables vi (k), i = 1,... ,n, k = 1,..., K, and clauses
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D 1 ,..., DK . We will construct an equivalent instance of Line-TSPTW. For easier visual-

ization, we will actually construct the two-dimensional representation [in (x,t)-space] of

the latter instance.

We first construct a convenient "gadget" Gi (k) associated to each variable v, (k). Sup-

pose that k is even and that neither vi (k) nor its negation appears in the clause Dk. Then,

the gadget Gi(k) is as shown in Fig. l(a). It consists of 4 jobs Vi (k),Vi(k), Ji (k), J (k).

The windows for jobs Ji (k) and J' (k) have width 1. There is a release time for job Vi (k)

and a deadline for job Vi (k). For now, we leave the deadline of Vi (k) and the release time

of Vi (k) unspecified. They will be determined later when we connect the gadgets together.

x\ \ / / \ \ // aV.~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~V (( gV;(k:.Vk) ,' Z ,T;(~k// x, x; ())/E7~~~~~~~~~~~~( /Ex,

x ~x / \ \ / / x /":/~~~~~~ '~. 

v: (L) ')

Figure 1. The gadget" Gi(k) when k is even. Figures 1(a), l(b), and 1(c), correspond
to the cases where vi (k) does not appear in Dk, or appears in Dk unnegated, or appears in

Dk negated, respectively. Brackets are used to indicate release times and deadlines. The

dashed lines have slope 1 or -1 and are shown only to indicate the relative positioning of

the jobs and some paths that the server could possibly follow.

Note that between the execution of jobs Ji (k) and J' (k), the server has enough time

to execute job Vi (k) (by moving northeast and then southeast) or job Vi (k) (by moving

southeast and then northeast), but not both. We interpret the server's choice as an (ex-

tended) truth assignment to v, (k): executing Vi (k) or Vi(k) corresponds to vi(k) = T or
vi (k) = F, respectively; executing neither corresponds to vs (k) = *. We say that the delay

in executing Ji (k) [or J' (k)] is 0 or 1 depending on whether Ji (k) [or Ji' (k)] is executed

at the beginning or the end of its time window. We say that there is a delay reduction at

gadget Gi (k) if the delay of Ji (k) is 1 and the delay of J' (k) is 0. It is clear from Fig. 1(a)

that a delay reduction is possible only if vi (k) = *.



Suppose now that vi (k) appears unnegated in clause Dk. Then, the corresponding

gadget Gi (k) is as shown in Fig. l(b). The main difference from the previous case [cf.

Fig. l(a)] is that a delay reduction is possible not only if vi (k) = * but also if vi (k) = T.

Finally, if vi (k) appears negated in Dk, Gi (k) is constructed in a symmetrical fashion [see

Fig. l(c)]. In this case, a delay reduction is possible if vi (k) = * or vi (k) = F.

So far, we have discussed the case where k is even. If k is odd, the gadgets Gi (k) are

constructed by taking the gadgets of Fig. 1 and turning them upside down.

The construction of the instance of Line-TSPTW is completed by indicating how to

connect together the gadgets GC (k). This is done as follows (see Fig. 2 for an illustration):

Qi ~~~As

/ /\ / \
, V) %(3) /

;/ Ottco ) Vita, \ V 2 z _ 24 I( ) V3(')) 

I~~~~~~~

/ \ /\I~~~~~~~~~~~~~~V VI(\~~~~~~~~~~~~~~~ I

o Cu 
Figure 2. Connecting the gadgets Gi (k) to form an instance of Line-TSPTW. In this

figure, K = 4 and n = 3. dashed lines have slope 1 or -1 and are shown only to indicate

the relative positioning of the jobs.

(a) We have certain jobs Qo , Q 1, ... , QK, with zero window width, which force the server

to visit certain points in the (x, t) diagram.

(b) If k is even and k : K, Qk and Qk +1 are located so that the server has to visit J1 (k + 1)

with unit delay and J, (k + 1) with zero delay.

(c) If k is odd and k : K, Qk and Qk + 1 are located so that the server has to visit Jn. (k + 1)

with unit delay and J1 (k + 1) with zero delay.

10



(d) If the server executes Ji+ (k) [respectively, Ji_ 1 (k)] right after Ji'(k), the delay of

Ji+ 1 (k) [respectively, Ji - (k)] is equal to the delay of J' (k).

(e) We identify job Vi (k) with job Vi (k+ 1), k = 1,... ., K-1. The release time (respectively,

the deadline) of that job is determined by the structure of the gadget Gi (k) [respectively,

Gi (k + 1)].

(f) The jobs Vi (1) and Vi(K), i = 1,..., n, are removed from the gadgets in which they
should have appeared.

It is not hard to see that the gadgets can indeed be connected as described above.

Furthermore, this can be done with the largest integer in the instance of Line-TSPTW

being bounded by a polynomial function of n and K.

As a consequence of conditions (b), (c), and (d), the constructed instance has the

following key property. For the server to execute all of the jobs Ji (k) and Ji (k), i = 1,..., n,

as well as the jobs Qk- and Qk, within their respective deadlines, it is necessary and
sufficient that there be a delay reduction between the execution of Qk-1 and Qk. This

happens if and only if either:

a) vi (k) = * for some i, in which case a delay reduction occurs by skipping both jobs Vi (k)
and V 1(k); or,

b) The clause Dk becomes true. For example, if vi (k) appears unnegated in Dk, setting

vi (k) = T, that is, executing Vi (k), causes a delay reduction [see Fig. l(b)].

We conclude that the requirement of executing the jobs Ji (k),Ji'(k) i = 1,...,n, and
Qk-1, Qk within their respective time windows is equivalent to satisfying clause Dk, in
the sense required for the problem MSAT.

We now prove the equivalence of the constructed instance to the original instance of

MSAT. Suppose that we have a YES instance of MSAT and consider a satisfying extended

truth assignment. We construct a feasible schedule for Line-TSPTW. In this schedule,

the jobs Qo, Q1,. . ., QK are executed in sequence. In between Qk -1 and Qk, we execute
J1 (k), Jl (k),..., J, (k), Jn (k), if k is odd. (If k is even, the same jobs are executed but in
a different order.) We execute job Vi (1), between Ji (1) and Ji'(1), if and only if v (1) = T.

For 1 < k < K, we execute job Vi (k) [respectively, job Vi (k)] between Ji (k) and J '(k), if

and only if vi (k) = T [respectively, vi (k) = F]. Finally, we execute job Vi (K), between
Ji(K) and J'(K), if and only if vi(K) = F. For k = 1,...,K-1, if job Vi(k) is not

executed between Ji (k) and J1'(k), then vi (k) : T, which implies that vi (k + 1) = F, and
job Vi (k + 1) is executed between Ji (k + 1) and J'(k + 1). Since V (k) and Vi (k + 1) are

the same job, all jobs of the type Vi (k) are executed within their deadlines. Furthermore,

for each k, since clause Dk of MSAT is satisfied, there is a delay reduction in the path

from Qk- 1 to Qk, and job Qk can be executed at the required time.
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Conversely, given a feasible solution of Line-TSPTW, we construct an extended truth

assignment, by reversing the argument in the preceding paragraph. In particular, if no job

Vi (k) or Vi (k) is executed between Ji (k) and Ji'(k), we set vi (k) = *. Each clause Dk is

satisfied since Qk is executed in time. Furthermore, suppose that k < K and vi(k) - T.

Then Vi (k) is not executed between J, (k) and J' (k). Thus, V, (k + 1) is executed between

Ji (k + 1) and Ji'(k + 1), which implies that vi (k + 1) = F, as desired.

Finally, since all of the data in the constructed instance are bounded by a polynomial

in n and K, we have established strong NP-completeness of Line-TSPTW. Q.E.D.

III. LINE-TSPTW WITH GENERAL PROCESSING TIMES

The special case in which ri = 0 and di = oo for each i, is trivial. If there are both

release times and deadlines, the problem is strongly NP-complete even if all jobs were

at the same location [GJ77] (see also [GJ79], p. 236); note that this is a pure scheduling

problem. If we only have deadlines (ri = 0), the problem is open. Finally, if we only have

release times, our next result shows that the problem is NP-complete. However, we have

not been able to establish strong NP-completeness or the existence of a pseudopolynomial

algorithm.

Theorem 3: The special case of Line-TSPTW in which di = oo for all i, is NP-complete.

Proof: We use the NP-completeness of the PARTITION problem defined as follows. An

instance is described by m positive integers z 1 ,..., Zm. Let K = zi. The problem is

to determine whether there exists a set S C {1,2, ... ,m} such that Ei-es zi = K/2.

Given an instance (z 1 ,... , Zm ) of PARTITION, we will construct an instance of Line-

TSPTW. The server starts at x* = 0. There are m jobs J 1 ,..., Jm,,. Each job Ji is at

location xi = iH, has a release time ri = (2i- 1)H and a processing time equal to H,

where H = 2K + 1. There is also a job Jm + at location (m + 1)H with zero processing

time and release time rm+i equal to (2m + 1)H + 3K/2. There is also a job Jm+ 2 , at

location 0, with zero processing time and with release time rm+ 2 = rm+ 1 + K/2 + (m +
1)H = (3m + 2)H + 2K. We finally introduce m jobs J ... J. Job J' is at location

xi = xi- zi = iH - zi, has a processing time equal to zi, and a release time r' equal to

ri + H = 2iH. The question is whether there exists a feasible schedule for the server in

which the execution of all jobs has been completed by time rm + 2.

Suppose that we have a YES instance of PARTITION and let S c {1,... ,m} be

such that ZiEs zi = K/2. Consider the following schedule. The server executes jobs
Ji,, Jm +2 in this order. Furthermore, for each i E S, the server executes J' between

Ji and Ji+ . To execute Ji', i E S, the server travels zi units backwards, spends zi time

units for processing, and then retraces the zi units that were traveled backwards. Thus,
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executing each J,', i E S, causes a delay of 3zi time units. Therefore, the server will reach

job Jm+i at time (2m + 1)H + 3-EiEs Zi = (2m + 1)H + 3K/2 = rm+1. Thus, Jm+i

can be executed immediately. Then, on the way back (from Jm +l1 to Jm+2), the server

pauses to execute the jobs Ji for i ~ S. Hence, it will reach and execute job J4+ 2 at time

rm+i + (m + 1)H + Ei4, zi = rm+i + (m + 1)H + K/2 = rm+ 2 , and we have a YES
instance of Line-TSPTW.

For the other direction, suppose that we have a YES instance of Line-TSPTW, and

let us consider a schedule that reaches Jm +2 at time rm + 2 . We will show that this schedule

must be of the form considered in the preceding paragraph. First, it is clear that Jm + 2 is

the last job to be executed. Let S be the set of all i such that job J' is executed before

Jm + 1. The server leaves job Jm +1 no earlier than time rm+ 1, reaches J, + 2 no later than

time rm+2 = rm + 1 + (m + 1)H + K/2, and has to travel a distance of (m + 1)H in between.

Thus, there are only K/2 time units available for processing on the way from Jm + 1 to

Jm + 2 . Since H = 2K + 1 > K/2, it follows that all of the jobs J 1,. Jm have been

executed before Jm + 1. Furthermore,

E zi < K/2. (1)
ins

During the schedule, a distance of at least 2(m + 1)H has to be traveled (from 0 to

job Jm + 1 and back), and a total of K + mH time units have to be spent for processing.

Since rm+ 2 = (3m + 2)H + 2K, it follows that there is a margin of only K time units that

can be "wasted" by following a trajectory other than a straight line. If i < j and job Ji

were to be executed after job Jj, the server would have to travel at least 2H units more

than the minimum required. Since 2H > K, this is more than the available margin and

we conclude that the schedule executes J 1, . . . , Jm + 1 in their natural order.

Suppose now that the schedule executes job Ji' before job Ji. Then, the execution

of job Ji starts later than time r' = 2iH. From that point on, the server must travel to

Jm +i and back to 0 [this needs (m + 1 -i)H + (m + 1)H units of travel time], and spend

(m + 1-i)H time units for processing jobs Ji,..., Jm,. Thus, the server reaches Jm + 2 later

than time (2i + + 1-i + + 1 + m + 1-i)H= (3m +3)H> (3m + 2)H + 2K =rm + 2,

contradicting the assumption that J,' was executed before Ji.

Due to the preceding arguments, the set S determines completely the order in which

the jobs are executed. In particular, the server "wastes" a total of 2 EiE S zi time units

for excess travel time, in order to execute each job J, i E S, after the corresponding

job J.. On the other hand, the available margin for excess traveling is exactly K. Thus,

E-ES Zi < K/2. This, together with Eq. (1), shows that >iEs z1 = K/2 and we have a

YES instance of PARTITION. Q.E.D.
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IV. THE LINE-TRPTW

Our only new result for the Line-TRPTW is a corollary of Theorem 2. We note

that the problem of testing an instance of Line-TRPTW for feasibility is identical to the

problem of testing an instance of Line-TSPTW for feasibility. Thus, Theorem 2 implies

that feasibility of Line-TRPTW is strongly NP-complete, even in the absence of processing

times.

Let us also note that Line-TRPTW with deadlines only and general processing times

is NP-complete but is not known whether it is pseudopolynomial or strongly NP-complete.

V. BOUNDED NUMBER OF LOCATIONS AND ZERO PROCESSING

TIMES

We now return to the more general problem in which the job locations correspond

to the nodes of a complete directed graph G. We consider the problems B-TSPTW and

B-TRPTW which are the special cases of TSPTW and TRPTW in which the number

of nodes of G is at most B. The problems considered in this and the next two sections

resemble and have a partial overlap with those considered in [MP89]. The main principle

behind our positive (polynomial time) results has been introduced in [MP89] and is the

following: if for each location we can determine ahead of time the order in which the jobs

are to be executed, then dynamic programming leads to a polynomial time algorithm. Our

results and complexity estimates are fairly similar to those in [MP89]. A difference is that

[MP89] assumes the release times to be zero.

Our first result provides a polynomial time algorithm for the B-TSPTW.

Theorem 4: If the processing times are zero, then B-TSPTW can be solved in time

O(B 2 nB B).

Proof: We will use an algorithm of the dynamic programming type. Let us sort the jobs

at a node i in order of increasing release times, and let Jik be the kth such job. Let rik

and dik be the release time and deadline of Jik, respectively. Let Ki be the number of
jobs at node i. Since processing times are zero, we can assume that a job is executed the

first time subsequent to its release time that the server visits its location. In particular,

for each location, jobs are executed in order of increasing release times.

We will say that the server is in state s = (i, n , n 2 ,. . .,nB) if the following hold:

(a) The server is currently executing the nith job at node i.

(b) For each node j, the server has executed exactly the first n i jobs at that node, and

each such job has been executed by its respective deadline.

Note that we have O(BnB ) states. For each state s, let V(s) be the earliest time at

which the server could reach state s, with V(s) = oo if it is impossible for the server to
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reach state s. We have V(x*,O,...,O) = 0 and V(i,0,... ,0) = c(x*,i) for every i : x*.
Furthermore, V (i, n 1,..., nB) is equal to

U(i, ni, .. ., nB) = max rin, min [V(j, ni x,...ni,,ni- ni+ 1, n+,..., nB) + c(j,i)]}

if U(i,nl,...,nB) < di,,,, and V(i,ni,...,nB) =ooifU(i, n,...,nB) > di,,,.
The optimal cost of the B-TSPTW problem is given by min, V(i, K 1,... , KB) and

an optimal feasible solution can be found by bactracking. Since only O(B) arithmetic
operations are needed in order to evaluate each V(a), the complexity estimate follows.
Q.E.D.

In the complexity estimate of Theorem 4, we have ignored an O(nlogn) term cor-
responding to the preprocessing required in order to sort the jobs at each location. This
term is small compared to O(B2 nB), as long as B > 1. This comment also applies to all
other complexity estimates in Sections 5-7.

For the B-TRPTW problem, the situation is slightly more complex. Here, a dynamic
programming algorithm has to keep track of both time and waiting time, which leads to
a pseudopolynomial time algorithm. We show that a polynomial time algorithm is in fact
possible, if some extra care is exercised. The argument is again similar to that in [MP89].

Let T be any easily computable upper bound on the duration of an optimal schedule.
For example, T could be the value of the largest deadline. Alternatively, if the deadlines
are infinite, T could be taken as the largest release time plus a bound on the duration of

any tour that visits all nodes of the graph.
Theorem 5: If the processing times are zero, then B-TRPTW can be solved in time
O(B2 nB T), where T is any upper bound on the duration of an optimal schedule and n is
the number of jobs. Alternatively, it can be solved in time 0 (B 2 nB ++1).

Proof: We order the jobs at each node and define s = (i, n 1 ,...,nB) as in the proof of

Theorem 4. We say that the server is at state (t, s) if at time t the server is at location
i and has executed exactly the first n i jobs at node j without violating their deadlines;
furthermore, the nith job at node i is executed at time t. Let W(t, s) be the minimum
possible sum of the already incurred waiting times if the server is at state (t, s); we let
W(t, s) = oo if this is not feasible. The problem of computing W(t, s) for all t and s,
is a standard dynamic programming problem. We have O(TBnB) possible states and
from each state there are O(B) possible next states. The cost of a transition from a
state (t,j,nl,...,nB) to a state (t',i,ni,...,ni_1,ni + 1,n i + ,...,nB) is given by (n-

EBl nk)(t' - t). The dynamic programming algorithm solves such a problem in time
O(B 2n T); this proves the first part of the result.
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Suppose that the server is at state (tj,n,... , nB) and that its next state is

(t', i, ni,..., n_ 1 , n, + 1, ni+ 1,..., nB). We claim that if the server is following an op-

timal schedule, then t' must be equal to r = max{ri,n,+ , t + c(j, i)}. Indeed, the problem

constraints yield t' > r. Also, if t' > r, then the server could execute the (ni + 1)st job

at location i at time r, and wait at that location until time t'. The net effect would be

a reduction of the waiting time, thus contradicting optimality. We can therefore impose

the additional constraint that the only allowed transitions are of the form (t, s) --+ (t', s')

where t' = max{ri,.,+1 ,t + c(j,i)} for some i,j. We will show shortly that this limits the

number of reachable states.

Let e be the length of a path in the graph G, with at most n arcs. Let L be the set of

all such e. (We allow paths with repeated nodes. We also include the empty path, so that
0 E L.) Let T = {t + r It E L and r E {0, rl,..., rn }}. Given that the schedule starts at
time 0, and given the nature of the allowed transitions (cf. the preceding paragraph), an

easy inductive argument shows that any sequence of transitions leads us to a state of the

form (t, s) with t E T. So, the dynamic programming recursion only needs to be carried

out over such states.

Note that each element of L is of the form l(i j) aoc(i,j), where each a i is an
integer bounded by n. Since there are only B(B - 1) values of (i,j) to be considered, we
conclude that L has 0 (nB (B - 1) ) elements. It follows that T has O (nB2 B +1) elements.
Accordingly, the number of states (t,s) to be considered by the dynamic programming

algorithm is O(BnB n B2
- B + 1), leading to a total complexity of O(B 2 nB' + 1). Q.E.D.

VI. THE TSPTW WITH A BOUNDED NUMBER OF LOCATIONS

We now study the B-TSPTW problem for the general case where processing times

are arbitrary.

In the special case where there are neither release times nor deadlines, the prob-

lem is equivalent to the standard Traveling Salesman Problem and can be solved in time

O(B 2 2
B + n) [HK62]. (The additive factor of n in the complexity estimate is due to the

need to compute the sum of the processing times.)

Next, we consider the case where we only have release times.

Theorem 6: The special case of B-TSPTW in which we only have release times (all

deadlines are infinite) can be solved in time O(B 2 nB).

Proof: A simple interchange argument shows that, for each location, the jobs at that

location can be executed in order of increasing release times. Once we sort the jobs in

order of increasing release times, the argument is identical to the proof of Theorem 4. The

state s = (i, n1 , .. , n., ) indicates the server's location and the number of jobs that have
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already been executed at each location. A similar dynamic programming algorithm applies,

provided that we properly incorporate the processing times in the dynamic programming

equation. Q.E.D.

For the case where we only have deadlines, the problem can be solved in time O(B 2 nB )

by a simple modification of Theorem 3 of [MP89]. The reason is that the jobs in each

location can be executed in order of increasing value of di + hi. (This was first proved in

[S56] for the case B = 1.) Finally, if we have both release times and deadlines, the problem

is strongly NP-complete even for B = 1, as remarked in the beginning of Section 3 [GJ77].

VII. THE TRPTW WITH A BOUNDED NUMBER OF LOCATIONS

Testing for feasibility in the case where we have both release times and deadlines is

equally hard as for the B-TSPTW and is therefore strongly NP-complete, even if B = 1.

For the case where we only have deadlines, the problem is open for B > 2; it is polynomially

solvable if B = 1 [S56]. In the case where we only have release times, the problem is strongly

NP-complete, even for B = 1 [LRB77], as remarked at the end of Section 4. The last case

to be considered is the subject of our next theorem.

Theorem 7: The special case of B-TRPTW in which there are neither release times nor

deadlines can be solved in time O(B 2 nB).

Proof: A simple interchange argument shows that, for each location, the jobs at that

location should be executed in order of increasing processing times. We can then say that

the server is at state s = (i, n 1,..., nB) if it is at location i and has already executed, for

each location j, the ny shortest" jobs located at j. Let W(s) be the least possible total

waiting time that has to be incurred before the server can get to state s. There is a total of

O(BnB ) states. From each state s, the server can move to B other states and the dynamic
programming recursion for computing each W(s) needs O(B) operations. Q.E.D.

VIII. BOUNDED NUMBER OF ACTIVE JOBS

We say that a job i is active at time t if t E [ri, di]. Let A(t) be the set of all active
jobs at time t. In this section, we restrict to instances in which the cardinality of A(t)

is bounded by D for all t, where D is some integer constant. We refer to the resulting

problems as TSPTW(D) and TRPTW(D).

Theorem 8: TSPTW(D) can be solved in time O(nD 2 2D).

Proof: For any S C {1, . ..,n} and i E {1,.. .,n}, we say that the server is at state (i, S)

at time t if:

a) We have i E S and the execution of job Ji starts at time t.

b) For each j E S, the execution of job Jj was started at some time tj satisfying tj < t
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and tj < dj.
c) For each j ~ S, we have di > t and the execution of job Jj has not yet started.

We say that (i, S) is reachable if it is feasible for the server to get to that state at some

time t; let F(i, S) be the minimum possible such time. If (i, S) is not reachable, let

F(i, S) = oo. Thus, the optimal cost for our problem is equal to mini F(i, {1,... , n}).

Furthermore, F(i, {i}) is easily computed for each i.

Suppose that (i, S) is reachable and let S' = S U {j}. Then, state (j,S') can be

reached via (i, S), at time F(i, S) + hi + c(i,j), provided that no deadlines are violated,

that is, if F(i, S) + hi + c(i,j) < minkc s dk. If the latter condition holds, we associate

to state (j, S') a label with the value of F(i, S) + hi + c(i,j); we say that a label has

been propagated from (i, S) to (j,S') and that (j, S') can be reached from (i, S). The

value of F(j, S') is given by max{rj, U(j, S)}, where U(j, S) is the minimum of all labels

associated with (j, S). We have F(j, S') = oo if there are no labels associated with (j, S).

The above discussion defines an algorithm based on label propagation. (It is just a

particular implementation of forward dynamic programming.) The key property is that

we do not have to do any work for any state (i, S) that does not have any associated labels.

Thus, the complexity of the algorithm is proportional to the number of reachable states,

times a bound on the number of labels propagated from any given state.

We first bound the number of reachable states. Suppose that (i, S) is reachable. Let

t = F(i, S). Let Q = {j I dj < t} and R = {jIl r > t}. Then, Q c S and SnR = 0. Thus,

S = Q U S', where S' c A(t). Note that if A(t) is known, then Q is uniquely determined.

(In particular, Q = {jl dj < minkEA(,) dk }.) It follows that S is uniquely determined by

specifying A(t) and then specifying a subset S' of A(t). We observe that, as t varies, the

set A(t) only changes O(n) times. Thus, there are O(n) choices for A(t) and, having fixed

A(t), there are 0( 2D) choices for S'. We conclude that there are O(D2D ) choices for S

and the total number of reachable states is O(nD2D).

Suppose that state (i, S) is reachable and suppose that states (i, SU{i1 }),. . ., (ia, SU

{im }) can all be reached from (i, S). Thus, we can reach state (ik, S U {ik }) immediately

after state (i, S), without violating any deadlines, which implies that di, > rik, for k, / =

1,... ., m. Thus, maxk,, ri,, < min, dik and there is a time at which all jobs i i,..., im are

active. It follows that m < D and at most D labels are propagated from each state. Using

this, the desired complexity estimate follows. Q.E.D.

In the proof of Theorem 8, we have implicitly assumed that given a state (i, S), we can

determine the O(D) states that can be reached immediately after (i, S), in O(D) time. This

can be easily achieved provided that some preprocessing is performed on the problem data.

18



For example, the O(n) possible choices of A(t) should be determined during a preprocessing

phase. The complexity of this phase depends on the data structures employed and the

representation of the input. If the jobs are available sorted according to their deadlines,

preprocessing could take only O(n) time. We omit the details but note that the preceding

comments apply to our next result as well.

Theorem 9: TRPTW(D) can be solved in time O(TD22D), where T is an upper bound

on the time horizon of the problem.

Proof: Let the state (i, S) have the same meaning as in the proof of Theorem 8. For

any state (i,S), and time t, let W(i,S,t) be the minimum possible total waiting time

accumulated, subject to the constraint that the server is at state (i, S) at time t. Let

W(i, S,t) = oo if (i,S) is unreachable. We compute W(i,S,t) by propagating labels with
the values of W(i, S, t) (forward dynamic programming). As argued in the previous proof,

there are 0 (D2D ) choices for (i, S). There are also T choices for t. Finally, from any (i, S)
we can reach directly only O(D) other states; thus, whenever W(i,S,t) < oo, O(D) labels

are propagated, leading to the desired complexity estimate. Q.E.D.

The algorithms developed in this section are quite similar to the algorithms in [DDS86]

and [DPS83], as far as the use of forward dynamic programming and label propagation

is concerned (though the problems considered in these references are different). While

no complexity estimates were provided in these references, the experimental results they

have reported are qualitatively consistent with Theorems 8 and 9. In particular, [DDS86]

reports that "solution times increase linearly with problem size". Indeed, this is what is

predicted from Theorems 8 and 9 if we assume that T is proportional to n and that D is

held constant.

As in [DDS86] and [DPS83J, the practical performance of the algorithms can be

speeded up substantially by introducing certain additional tests that quickly identify un-

reachable states and save the effort of trying to propagate labels to them.

Note that the algorithm of Theorem 9 is pseudopolynomial. The following result

shows that there is little hope for improvement.

Theorem 10: TRPTW(D) is NP-complete even in the special case where D = 2 and the

processing times are zero.

Proof: We start from the 0-1 KNAPSACK problem which is known to be NP-complete.

An instance of this problem consists of nonnegative integers z, ... .. , Zn, r1 ,... ,rn and K.

The problem consists of finding a set S c {1,..., n} that maximizes EiEs zi subject to

the constraint EiEs ri < K. We will now construct an equivalent instance of TRPTW(2),
with zero processing times.



Consider a directed graph with nodes u,. . , un+ 1, v1 ,..., vn, wl,..., w,, connected

as shown in Fig. 3. The label next to each arc denotes its length. Here Ai = (2nK + 1)zi

and Q = max{K, max, ri } + 1. Note that the triangle inequality is satisfied. We can turn

this graph into a complete one by letting c(i,j) be the length of a shortest path from node

i to node j. [Let c(i,j) be a very large number, if no such path exists.] There is a job

Wi at node wi and a job Vi at node vi, for each i. The jobs wi and vi have a common

release time ri = 2(i - 1)Q + A=. Aj and a common deadline di = ri + Q + Ai + K.

Since Q > K, it is easily checked that di < ri+,. Finally, there is a job U 4,+ 1 at node

un+ 1 whose release time rn + 1 and deadline dn + are both equal to 2nQ + K + jn 1 A4.
Again, it is easily checked that rn+ 1 > dn,. Therefore, we can only have two active jobs at

a time, as required for an instance of TRPTW(2).

Figure 3. A section of the graph constructed in the proof of Theorem 10.

It is clear that in order for the server to get from node us to node ui+I, it has two

options:

a) Go to wi, then to vi, then to ui+ 1. This takes time Ai + 2Q; we call this the fast path.

b) Go to vi, then to wi, then to ui+ 1. This takes time Ai + 2Q + ri; we call this the slow

path.

For any schedule, let S C {1, . . ., n} be the set of all i such that the server takes the slow

path from ui to ui+ . Note that the deadline for job U,+ 1 imposes the constraint

Eri < K. (2)
iES

Note that ri (i # n + 1) is the shortest path length from ul to ui and therefore does

not impose any constraint on the schedule. Furthermore, the constraint of Eq. (2) implies

that the server is not allowed to get to node ui any later than time ri + K. It follows

that the release time and deadline constraints are inconsequential and will be ignored in
subsequent discussion.
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Given a schedule, let

D= rj. (3)
jES, j<i

Then, the server reaches node ui at time ri + Di. If it takes the slow path to ui+ 1 , then the

sum of the waiting time suffered by Vi and Wi is equal to 2(ri + Di) + Q + Ai. If it takes

the fast path, this sum is equal to 2(ri + DO) + Q + 2Ai. By comparing the two expressions,
Fn we see that our instance of TRPTW(2) is equivalent to minimizing 2 i,=1 Di- iEs Ai

with respect to S, subject to the contraints (2) and (3). Given that each Ai is a multiple

of 2nK+ 1, whereas 2 En 1 Di has to be bounded by 2nK [cf. Eqs. (2)-(3)], an equivalent
problem is to maximize EiEs Ai subject to Eq. (1). Given that each Ai is proportional to

zi, this is equivalent to the original instance of the 0-1 KNAPSACK problem. Q.E.D.

IX. CONCLUSION

We have studied the complexity of several variants and special cases of the Traveling

Salesman and Repairman problems, in the presence of time windows and processing times.

While our study has settled the complexity of many of these variants, there is still a number

of open problems. In particular, we have not determined the complexity of those problems

in Tables 1-3 that have a question mark.

In another interesting variant, we could have assumed that the width of the time

windows is bounded by an integer W. If we assume that each job has at least unit processing

time, it is easily seen that either the problem is infeasible or the number of active jobs

is bounded by 2W. Therefore, by the results of Section 8, this special case of TSPTW

(respectively, TRPTW) can be solved in polynomial (respectively, pseudopolynomial) time.
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