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Abstract

This paper shows that the large signal behavior of
a popular family of high power factor ac to dc power
conditioners can be analyzed via linear models, by us-
ing squared output voltage as the state variable. The
state equation for a general (constant power plus resis-
tive) load is obtained by a simple dynamic power balance.
Time invariant or periodically varying controllers, acting
at the time scales of the line or switching periods respec-
tively, can then be designed from the resulting averaged
or sampled data models. Simulations and experiments
corroborate the results.

1. Introduction

Recently, there has been much work on designing con-
trol schemes for high power factor ac to dc converters.
Schlecht {1]-[3] discusses various topologies and control
schemes for such converters. Subsequent work has largely
focused on the scheme shown in Fig.1, using a boost
converter whose input voltage v;,(t) is the rectified ac
waveform. The inner current loop specifies the switching
sequence for the transistor to regulate the input current
1;a(t) around a reference i.nq4(t) that is proportional to
the input voltage. The outer voltage loop varies the pro-
portionality constant k from cycle to cycle, to regulate
the output voltage v,(t) about the desired level, V.

Several recent papers discuss different approaches to
designing the inner and outer loops. Henze and Mo-
han (4] use a hysteretic current control loop, and imple-
ment the voltage control loop digitally, using a simple
PI (proportional-integral) controller, but some modeling
aspects are left unclear. Williams {5] designs a controller
using the small signal ‘transfer function’ between com-
manded input current and output voltage. While his
analysis contains insight into the operation of the circuit,
it is mathematically incorrect since it is based on Laplace
transform operations on equations with time varying co-
efficients, even though the conditions for quasistatic ana!-
ysis do not hold. A correct small signal averaged model
and associated control design are provided by Ridley [6].

The present paper develops large signal linear models
for the voltage loop. Specifically, we develop continuous
time averaged models at the time scales of the switching
period and the input period, and also derive their sam-
pled data counterparts. These models yield efficient sim-
ulations, and enable the simple design of control schemes
that permit recovery from large perturbations away from
the operating point. Section 2 describes the operation of
the inner current loop shown in Fig. 1. Section 3 presents
continuous time averaged and sampled data models for
the dynamics of the outer voltage control loop. The con-
tinuous time averaged models are verified in Section 4 by
comparison with both the results of SPICE implementa-
tions of the models and experimental results for an actual
ac-dc converter. Section 5 discusses the use of a sampled
data model to design a digital  controller for the outer
loop, including PI control, and presents simulation re-
sults for the behavior of the full closed loop system.

2. Current Loop Operation

The current loop is responsible for obtaining the high
power factor by drawing a resistive current from the ac
line. Any current mode control scheme may be used.
The operation of one such scheme is illustrated by the
simulation in Fig. 2. At the beginning of every switch-
ing period, every Ts seconds, a decision is made to have
the transistor on or off, as required to force the inductor
current towards the switching boundary, i.,4(t). This is
a compromise between the usual constant frequency dis-
cipline and hysteresis band control. It provides a natural
control implementation, given that the control is exer-
cised periodically, and was shown in [7] to be effective in
digital sliding mode control of the buck-hoost converter.
The commanded input current, iemd(t), is set according
to:

iemd(t) = k(t)vin(t) (1)

where k(t) is determined by the voltage control loop. In
usual practice, k(t) is held constant (or approximately



constant) for the duration of the rectified input’s period,
Tg.-

For the simulation in Fig. 2, we have assumed a con-
stant power load, P and chosen parameter values as fol-
lows:

L = 600uH P = 1100W

Ts = 10usec

C = 940uF
vin(t) = V]sin(120xt)|

The value of k(t) in Fig. 2 equals 0.055. The power
factor during this line cycle is calculated to be 0.977.

The running average, i(t), of the input current over an
interval T is defined by i(t) = :}; f:_,-s tin(c)do. It is
reasonable to assume, when the current loop is working
well, that i(f) = iona(t) = k(t)vin(t). This will be a
standing assumption in what follows.

3. Voltage Loop Dynamics

In this section, we obtain dynamic models for the outer
control loop. We assume the load comprises a parallel
combination of a constant power load P and a resistor
R.

Continuous Time Ts-Averaged Model

Ignoring switching frequency ripple in the output volt-
age, v,(t), and assuming that the inner curient loop
maintains i(t) = k(t)v;n(t), conservation of power for
the boost converter yields:
mn

%C’d[vﬁ(t)]/dt = k)l (t)—%Ld[k’(t)vfn(t)]/dt—}’

1
-—ﬁvf(t) (2)

This already shows that the use of v3(t) as the state
variable, instead of the more common v,(t), leads to an
essentially linear first-order model for large signal behav-
jor. This observation has also been made by Sanders [8].
The model (2) corresponds, in effect, to averaging a
switched model over the switching period, and we shall
refer to it as the “Ts-averaged” model. Other averaged
and sampled data models (SDM’s) can be obtained from
(2). K v,(t) is taken as the state variable, (2) is a non-
linear description; linearization yields a small signal pe-
riodically varying model, which is the starting point for
Williams’ discussion of control possibilities [5].

Continuous Time T.-Averaged Models

To ohtain an averaged model on the time scale of the
input period, average (2) over T, using the running av-
erage defined by w(t) = 71: I:‘TL w(o)do. Denote v2 by
y. If the input frequency ripple in vo(t) is small, then

¥y =~ 7,2. Assuming that k(¢) varies slowly enough to

V = 200volts

be considered constant over any interval of length Ty,
the resulting “T-averaged” model is given by the linear
first-order description

dy(t)/dt = —Ez-—o-y(t) + EI;(V‘Ic(t) - 2P) 3)

The block diagram in Fig. 3(a) shows the transfer func-
tion representation of (3). Notice that the term involv-
ing k2(t) in (2) has disappeared, because our assump-
tion of slowly varying k(t) causes the average value of
d[k?(¢t)v?,}/dt to be negligible. Even if k(t) is not slowly
varying and this average is not negligible, it is often true
that the term Ld[k*(t)v?]/dt contributes little to the
power balance in (2), because L is small. The model
(3) already suffices to design linear controllers (e.g. P1
controllers) for large deviations in y(t) or ,.

To exploit the linear mode] above, the linear controller
needs to operate on the squared output voltage. Other-
wise a linear controller that acts on ¥, itself can be de-
signed on the basis of a small-signal linearization of (3),
as in Ridley [6] and Williams [5], but then good control
is only guaranteed for small perturbations of ¥, from its
desired nominal value, V3. The linearized model is easily
derived from (3) and is shown in Fig. 3(b). The tildes
() denote perturbations from nominal. We have not
represented the effects of perturbations in the line volt-
age amplitude V, since these are normally compensated
for by a feedforward that makes k proportional to 1/V?2,

Sampled Data Models

To maintain sinusoidal waveforms in each input cycle,
we must keep k(t) constant over each cycle. Under this
condition, it is natural to look for sampled data models
and controllers. To obtain an SDM on the time scale of
the input period Tz, we can integrate (2) or (3) over Ty,
assuming that k(t) is essentially constant over intervals of
length Tp. The “T;-SDM” that results from (3) under
the assumnption that RC >> T is shown below, with
k(t) in the n** cycle denoted by k[n] and y(t) at the
beginning of the n** cycle by y[n]:

s+ 1) = (1- ZE) oln) + LV - 2P) ()

Hence, assuming that the inner control loop successfully
maintains i(t) at its commanded value i.,4(t), the dy-
namics of the boost converter is completely described by
the single linear, time invariant difference equation (4),
with state y[n] and control k[n]. If the input frequency
ripple in v,(t) is small, then y[n] ~ vZ[n], the squared
output voltage at the beginning of the n** cycle. If v,[n],
rather than v2[n], is taken as the variable to be modeled,
we obtain a nonlinear model. Its linearization is a small
signal time invariant model that turns out to be the same
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as what Williams [5] obtains through heuristic and not
very satisfying arguments.

The regulation of v, about V3 can be accomplished by
regulating v2 about V}?, as we show in Section 5. For
our purposes there, it is useful to develop an alternative
model, using the state variable z|n] defined by

zln] = ol[n] - V7 (5)
Combining (4) and (5) yields

zln+1)= (1~ &) zln] + LFkin]

2T vV}
- (P + -I—:-) (6)

Note that z[n] is not restricted to be small.

An SDM at the time scale of the switching period is
derived in a similar manner, by integrating (2) over the
switching period T's. Assuming that k(t) is constant over
Ts, and that RC >> Ts, we get the “T's-SDM” shown
below. The time index 1 denotes the switching period,
whereas the time index n in the Tr-SDM denotes the
input period

zln+ 1) = 2z[n]+ bi[n}k[n] + ba[n}k*[n]

2FPTs
- 7
- (7)
where the time varying input gains are given by:
V?
n] = —
biin] = C Ts
V2

C
b:[n] = —V—Cz—é {sin’(r(r] + 1)Ts/TL) - sinz(ans/TL)}

Note that in steady state, the Tz-SDM satisfies z{n+ 1] =
z{n]. However, the T's-SDM has a cyclic steady state and
does not satisfy z[n + 1] = z[n].

4. Model Verification

In this section we compare the continuous time aver-
aged models (2) and (3) with each other and with exper-
imental data from a test circuit.

The test circuit uses a Micro Linear ML 4812 power
factor controller chip to implement the control functions
shown in Fig. 1. The parameters of the test circuit are

L=1mH C=410uF V =+2x 120volts

The load is a square-wave current source switching be-
tween 0.2A and 0.4A at a frequency of 0.5Hz. The output
voltage is to be regulated at V; = 386volts.

- {gﬁ[sin(mr(r) + 1)Ts/TL) - sin(?’"ITs/TL)]}
g

Using the models we have developed, it is quite
straightforward to design a good PI compensator for this
circuit, using either v2(t) or v,(t) as the feedback signal.
The particular test results shown in Fig. 4, however,
correspond to using only integral compensation, with
F=-.076 J Ydt. Integral control contributes nothing to’
the damping of transients here, and is a very poor control
choice in this case, even though it provides insensitiv-
ity to constant disturbances (such as load uncertainties).
However, the large oscillatory transients that result allow
us to make a clearer comparison with the predictions of
our models than would have been possible with the small
transients produced by good PI compensation.

Our linear averaged models (2) and (3) were derived
assuming a load comprising a constant power component
P in parallel with a resistor R. The models can easily
be extended to handle a current source load, as in the
test circuit, but then would no longer be linear. This is
because a constant current load I, contributes the term
—1I,v,(t) to the right side of the power balance equation
(2), and this term involves /v2(t) rather than v2(t). For
the transients in Fig. 4, however, v2(t) does not deviate
excessively from V2, so not much error would be incurred
if we replaced —I,\/vI(t) by its linearization at v3(t) =
Vi

I,
=L\/vi(t) =~ -LVa— 2—‘5(”:(‘) -V

LV 1, ,

The current source therefore behaves, to a first order

(8 hpproximation, as the parallel combination of a constant

power load I,V;/2 and a resistor 2Vy/I,.

Linearity of the model is not as important for simula-
tion as for control design, so for the simulations in Figs.
5 and 6 we have used the nonlinear extensions of (2) and
(3) that incorporate the current source load. However,
no significant differences are expected if the substitution
in (9) is used instead, with a linear model. The results
in Figs. 5 and 6 were obtained using SPICE implemen-
tations of the (extended) models; their listings are given
in the Appendix. The output voltage v,(t) is fed back, in
both cases, through the same integral compensator used
for the test circuit.

The match hetween the responses of the Ts-averaged
model in Fig. 5 and the Tr-averaged model in Fig. 6
is excellent. Unlike Fig. 2, neither of these simula-
tions represents the details of the switching frequency
ripple, so they are very efficient to run. The T;-averaged
model does not model the input frequency ripple either.
so the corresponding simulation can take larger time
steps than the Ts-averaged model, for the same accu-
racy. The damping and oscillation frequency are what
we would expect from (3) for a resistive load of value




n

R = 2V,/I, = 3.86KQ. For this load, the decay time
constant for v,(t) under integral compensation is com-
puted to be 0.63 sec, and the oscillation period is 75.5
ms, which are consistent with Figs. 5 and 6.

The frequency of the oscillatory transients in Figs. §
and 6 matches that of the test circuit transient in Fig.
4, but the damping is larger for the test circuit. This is
probably the result of losses in the test circuit that have
not been modeled.

5. Control Design

The design of an analog control (e.g. PI control) for
the model (3) or its linearization is routine. For ex-
ample, it is not hard to see that the PI control law
= -.013[0.19, + [ ¥,dt] will perform much better than
pure integral control on the circuit in Section 4. The
response to the same square-wave current source load as
before is shown in the T -averaged simulation in Fig. 7.
Since analog control design is relatively familiar, we do
not discuss it further here. Instead, we now illustrate the
design of digital control schemes, using the T;-SDM in
(6) with a constant power load and the parameter values
in Section 2. The controllers will feed back and regulate
v2 rather than v,. In steady state, z[n + 1] = z[n] = 0,
so the constant control k{n] = K required to maintain
equilibrium in steady state is seen from (6) to be:

K =2P/V? (10)

which varies as 1/V2. However, we only know the nomi-
na! load power Py and the actual power is P = Py + P.
Consequently, let K = 2Py/V?. Rewriting the control
as k[n]= K + z[n] reduces the state equation (6) to:

Vg - ZZF ()

zln+1] = z[n}+ C

State Feedback

Specifying the control to be in state feedback form,

Finl = - (g ) =l (12)

yields the closed loop model

eln+1] = (1 - 8)eln) - (27) ¥ (13)

Note that k[n] is inversely proportional to V2. The so-
lution for z[n] is given by the standard variation of con-
stants formula in discrete time:

'z[n] = (1-1b)"z[0]

n-1
l-b""“} LIAD SV
+[Zz( r-| () F ag)

The constant b is chosen to place the pole z, = 1 - b at
a desired location.

Placing the pole at z, = 1/2 and initiating the output
voltage with a 50% initial perturbation away from equi-
librium results in the sampled output voltage transient
shown in Fig. 8 for the model (13). The output voltage
starts at v, = 173 volts and requires approximately 8 in-
put periods to attain the desired level of V3 = 346 volts.
The corresponding control signal F[n] is also shown.

Before connecting the voltage loop to the current loop,
the range of values of kin] specified by the voltage loop
must be checked for consistency with the range allowed
by the current loop. If k[n] is too large, then the inductor
current will be unable to rise fast enough to follow the
commanded current i.mg(t) = k(t)vin(t). In this example
k[n] = K = .055 results in the current response shown in
Fig. 2. Further simulations demonstrate that for k[n] <
.5, the input current is able to follow its commanded
value i.,4(t). Consequently, for k[n] in the vicinity of K
the full closed loop system will perform as expected. In
particular, for the transient in Fig. 8, the current loop
will perform as desired.

Figure 9 shows a detailed simulation of the response
of the full closed loop system to an initial 50% perturba-
tion away from the desired output voltage level, V4 = 346
volts. As predicted by the sampled data voltage loop sim-
ulation in Fig. 8, the transient has decayed in about 8
input periods. In Fig. 9, each input period T is approx-
imately equal to 830 switching periods Ts. The power
factor corresponding to each cycle of the current response
in Fig. 9 is shown in Fig. 10. The power factor in steady
state is close to the power factor of the open loop re-
sponse in Fig. 2.

Figure 11 illustrates the response of the full closed loop
system to an unanticipated step change in output power
att = 2000. At that time, P is stepped from 0 to 1Py, s0
that the power in the load steps by 50% from 1100 watts
to 1650 watts. The output voltage attains a new cyclic
steady state, but exhibits a dc offset of approximately 30
volts, or 9%.

State Feedback with Integral Control

In order to correct for the effect of such uncertainties
in the load power, integral control must be incorporated
into the voltage loop control scheme, as shown in Fig.
12. The state equations for the outer loop are given hy:

gin +1)

I

gin] + z{n] (15)

dln+1] = ~braln] + (1 - be)eln] - (222) (16)

The pole locations of this system are given by:

% = (1-bp/2) 2 \fibp/2~b;  (17)




Selecting the “best” bp and b; is complicated by the limi-
tations on the control k[n] noted earlier. For the purpose
of demonstrating the performance of the outer loop with
integral control, the poles will be placed at z, = 1,1.
This choice results in a small enough k{n] and a rea-
sonahly fast response. The response of the preceding
second order sampled data model for the voltage loop,
after a 50% perturbation in output voltage, is shown in
Fig. 13. It has approximately the same settling time and
a shightly greater overshoot than the first order voltage
loop response in Fig. 8.

The response of the full closed loop system with in-
tegral control to a 50% initial perturbation in output
voltage is shown in Fig. 14 and is consistent with the
sampled data outer loop response in Fig. 13. The output
voltage reaches its desired level of 346 volts in approxi-
mately 8 line periods with a peak overshoot of about 40
volts. The response to a 50% step change in load power
at t = 2000 is shown in Fig. 15. With integral control,
the output now recovers and requires a settling time of
only 8 line periods.

8. Conclusions

The models we have developed suggest that there
might be value in feeding back and regulating the squared
output voltage of high power factor ac-dc converters.
This would permit linear controllers to handle large per-
turbations in the output voltage, as demonstrated in Sec-
tion 5. The required control functions would compare in
style and complexity with what is presently available on
single-chip controllers. It may also be of interest in fu-
ture work to study the use of periodic controllers [2],
using the models (2), (7) or (8).

Apart from suggesting new control possibilities, our
development clarifies the relationships among different
mo-deling and simulation approaches for such converters.
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APPENDIX

SPICE Input Listing of Ts-averaged Model

TS-AVERAGED NODEL FOR HPF POVER STAGE

e Simulation of Microlimear test circuit (with modified
* values) - coastast csrreat load

VYIEAC 6 6 SIN 0. 170. €0.

EVIN2 10 O poly(1) 1 00. 0. 1.

GXVIN2 0 21 POLY(2) 10020 0. 0. 0. O. 1.

e Xosl

EX2 12 0 POLY(3) 200. 0. 1.

12 0 1¢

o {Xe82)(VINee3l)

CX2VINZ O 13 POLY(2) 12010 00. 0. 0. 0. 1.

L 130 X

XIDVIR2 21 0 13 0 0.8

s For coastamt-carreat lcad, use vces, vith fain =
GILOAD 21 0 poly(2) 40030 0 O0. 0. ©. 0. 1.

g

e root of vles2
POLY(2) 26 0 41 0 O0. 1XBG -1MEG

POLY(2) 400 40 00. 0. 0. O. 1.

B83d
3 E2-3%

o

.
g
"
i
of
’

rapge
LIRS,
83:8

;

s [mltiplier gaia * Ramit]/[Rsize » (N1/X2) s Rsease]
s vhere, Rmult = termiaatioa resistor for mmltiplier,
® Rsisze = resistaace msed to derive curreat refereace
¢ from lize, N1/XN2 = curreat transformer primary to
® secondary turas ratio, amd

® Rsease = curreat-traxsformer durdex resistor

XX 2 0 52 0 0.0129

201

® kevil (to get iaput currest vaveform)
EXVIN 60 0 poly(2) 201 00. 0. 0. O. 1.

REXVIN 60 O 16

-SUBCKYT MIA81ZEA 1 23 4 6 6

® 1 is non-iavertiag iapat, 2 is iavertiag iaput,

® 3 is grouad, 4 is estput, 6 is +VCC, 6 is -VCC

* Iaput stage

RIN 1 2 1GOMEC

® Caia, slev rate limitiag and dominant pole stage

® opea-loop gain is 90 4B (31622). dominaat pole

* ig 30 Hz {C1 = ;I(wll)] GVI 3 812 1.

€1 & 3 167.8¥F

10

21 88 31.6X

* ontput clamping
VLOY 11 6 DC 0.01

.TRAN 260U 11.3 10.0 2850V UIC

.GPTIONS NUXDGTI=8, ITLE=0, ITL4=10000

.PRINT TRAN V(40) V(1) V(S0) ¥(2) V(35) V(62) V(50,62
B

SPICE Input Listing of T;-averaged Model

TL-AVERAGED NODEL FOR HPY POWER STAGE

¢ Bimmlation of Microlisear test circuit (with mcdified
* valses) - coastaat-currest load

VIE 1 0 DC 120

1IN 1 0 1G

¢ yINee2 (rms value)

EVINZ 10 O poly(1) 1 00. 0. 1.

EXVINZ 311 O POLY(2) 10020 0. O0. 0. O. 1.

s for constant-currsat load, use vevs, with gaia = ]
EILOAD 3i 12 POLY(2) 16 030 00. 0. O0. 0. 1.
VILOAD 30 O PULSE 0.2 0.4 176X 100U 1000 1. 3.
RVILOAD 30 0 1K .

REXVINZ 12 0 16

* [(xevIN(ra8)e+2) - P]/NO

EFVYD 20 0 POLY(2) 212 0 21 0 0. 1G -1C

RFYD 20 ¢ INES

EREV 21 O POLY(2) 20 016 00. 0. 0. O. 1.

RREV 21 O 16EG

C 15 0 4100

RDUNL 18 O 100G

SCDVD 0 16 20 0 1.

DCLL O 16 D8

VDCL1 15 16 DC 10.

* Output feeddack VAC 15 44 AC 0.01

RVAC 16 4 BO

R1 44 60 s60x

22 50 0 4.7X

CF 60 52 0.47UF

X1 51 BO 0 52 63 0 NLAS1ZTA

VREF 61 0 DC 6.0

VPCS 63 0 DC 6.0

* Gais of EX is

¢ [mltiplier gaiz * Ramit]/[Rsize ¢ (N1/H2) ¢ Rsense)
* vhere, Rmalt = terxiastios resistor for mmitiplier,
¢ Raine = resistance used to derive curreat refereace
¢ from lise, N1/E2 = curreat transformer primary te
s secoadary taras ratio, aand

ses For NLA8124 szbcircuit listiag, see earlier SPICE
ses Listiag

.NODEL DS D(N=1¥)

.TRAN 500U 10.3 9.0 5000

.OPTIONS NUMDCT=8, ITLE=0, ITL4=10000

-PRINT TRAN V(1B) V(30 v(2)

.EXD




