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Abstract

We propose a path-following algorithm for linear programming using both logarithmic and quadratic

penalty functions. In the algorithm, we place a logarithmic and a quadratic penalty on, respectively,

the non-negativity constraints and an arbitrary subset of the equality constraints; we apply Newton's

method to solve the penalized problem, and after each Newton step we decrease the penalty

parameters. This algorithm maintains neither primal nor dual feasibility and does not require a Phase

I. We show that if the initial iterate is chosen appropriately and the penalty parameters are decreased

to zero in a particular way, then the algorithm is linearly convergent. We also present numerical

results showing that the algorithm can be competitive with interior point algorithms in practice,

requiring between 30 to 45 iterations to accurately solve each Netlib problem tested.
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1. Introduction

Since the pioneering work of Karmarkar [Kar84], much interest has focussed on solving

linear programs using interior point algorithms. These interior point algorithms may be classified

roughly as either (i) projective-scaling (or potential reduction), or (ii) affine-scaling, or (iii) path-

following. We will not attempt to review the literature on this subject, which is vast (see for example

[Meg89], [Tod88] for surveys). Our interest is in algorithms of the path-following type, of the sort

discussed in [GaZ81]. These interior point algorithms typically penalize the non-negativity

constraints by a logarithmic function and use Newton's method to solve the penalized problem, with

the penalty parameters decreased after each Newton step (see, e.g., [Gon89], [KMY89], [MoA87],

[Ren88], [Tse89a]).

One disadvantage of interior point algorithms is the need of an initial interior feasible

solution. A common technique for handling this is to add an artifical column (see [AKRV89],

[BDDW89], [GMSTW86], [MMS88], [MSSPB88], [MoM87]), but this itself has disadvantages.

For example, the cost of the artificial column must be estimated, and some type of rank- updating is

needed to solve each least square problem which can significantly increase the solution time and

degrade the numerical accuracy of the solutions.

Recently, Setiono [Set89] proposed an interesting algorithm that combines features of a path-

following algorithm with those of the method of multipliers [HaB70], [Hes69], [Pow69] (also see

[Roc76], [Ber82]). This algorithm does not require a feasible solution to start, and is comparable to

interior point algorithms both in terms of work per iteration and, according to the numerical results

reported in [Set89], in terms of the total number of iterations. To describe the basic idea in Setiono's

algorithm, consider a linear program in the standard dual form

minimize -bTp (1.1)

subject to t+ATp =c, t>0,

where A is some matrix and b, c are vectors of appropriate dimension. Let us attach a Lagrange

multiplier vector x to the constraints t + ATp = c and apply the method of multipliers to the above

linear program. This produces the following iterations

Xk+l = xk + (tk+ATp k-C), k = 1, 2, ... , (1.2)
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where {Ek} is a sequence of monotonically decreasing positive scalars and (tk,pk) is some (inexact)

solution of the augmented Lagrangian subproblem

minimize -bTp + (xk)(t + ATp - c) + Ilit + ATpcI2 (1.3)

subject to t 2 0.

[An advantage of the above multiplier iterations is that they do not need a feasible solution to start.]

A key issue associated with the above multiplier iterations concerns the efficient generation of an
inexact solution (tk,pk) of the convex quadratic program (1.3) for each k. [Notice that as Ek

decreases, the objective function of (1.3) becomes progressively more ill-conditioned.] Setiono's

algorithm may be viewed as the method of multipliers in which (tk,pk) is generated according to the

following scheme, reminiscent of the path-following idea: Add a logarithmic penalty function

m
yke ln(tj) to the objective of (1.3), where yk is some positive scalar monotonically decreasing

j=1

with k, and apply a single Newton step, starting from (tk-l,pk-l), to the resulting problem. [If the tk

thus obtained lies outside the positive orthant, it is moved back towards tk - l until it becomes

positive.1]

In this paper, inspired by the work of Setiono, we study an algorithm that also adds to the

objective a quadratic penalty on the equality constraints and a logarithmic penalty on the

nonnegativity constraints; and then solves the penalized problem using Newton's method, with the

penalty parameters decreased after each Newton step. Unlike Setiono's algorithm, our algorithm

does not use the multiplier vector xk (so it may be viewed as a pure penalty method) and allows any

subset of the equality constraints to be penalized. We show that if the problem is primal non-

degenerate and the iterates start near the optimal solution of the initial penalized problem, then the

penalty parameters can be decreased at the rate of a geometric progression and the iterates converge

linearly. To the best of our knowledge, this is the first linear convergence result for an non-interior

point path-following algorithm. We also present numerical results indicating that the algorithm can

be competitive with interior point algorithms in practice. We remark that penalty methods which use

1More precisely, tk is given by the formula

tk = tk-l+ .98kAtk ,

where Atk is the Newton direction (projected onto the space of t) and Xk is the largest Xe (0,1] for which

tk-l + XAtk is nonnegative. [The choice of .98 is arbitrary - any number between 0 and 1 would do.]
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either the quadratic or the logarithmic penalty function have been well studied (see, e.g., [Ber82],
[FiM68], [Fri57], [JiO78], [Man84], [WBD88]), but very little is known about penalty methods
which use both types of penalty functions (called mixed interior point-exterior point algorithms in
[FiM68]).

This paper proceeds as follows: In §2 we describe the basic algorithm; in §3 we analyze its
convergence; and in §4 we recount our numerical experience with it. In §5 we discuss possible
extensions of this work.

In our notation, every vector is a column vector in some k-dimensional real space SRk, and
superscript T denotes transpose. For any vector x, we denote by xj the j-th coordinate of x, by
Diag(x) the diagonal matrix whose j-th diagonal entry is xj, and by 11xll, lixll, Ilxlloo the Ll-norm, the
L 2-norm and the L.O-norm of x, respectively. For any matrix A, we denote by Aj the j-th column of
A. We also denote by e the vector of l's (whose dimension will be clear from the context) and
denote by ln(-) the natural logarithm function.
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2. Algorithm Description

Let A be an nxm matrix, B be an lxm matrix, b be an n-vector, c be an rn-vector, and d be an

1-vector. Consider the following linear program associated with A, B, b, c and d:

minimize -bp (D))

subject to t+ATp=c, Bt = d, t>0,

which we call the dual problem. The dual problem may be viewed as a standard linear program in t,
in which we arbitrarily partition the equality constraints into two subsets and write one of which in
the generator form t + ATp = c. [There is no loss of generality in assuming that t is absent from the
objective since t can always be replaced in the objective by c - ATp.] The constraints t + ATp = c can

be thought of as the complicating constraints which, if removed, would make (D) much easier to
solve. [The form in which we write the equality constraints is not very important, except that one
form may be easier to work with than another.]

By attaching Lagrange multiplier vectors x and y to the constraints c - ATp = t and Bt = d

respectively, we obtain the following dual of (D):

minimize cTx + dTy (P)

subject to Ax=b, x+BTy >O,

which we call the primal problem.

We make the following blanket assumptions, which are standard for interior point
algorithms, regarding (P) and (D):

Assumption A:
(a) { x I Ax = b, x + B Ty > O for some y } is nonempty and bounded.
(b) { t I Bt = d, t > 0, t + ATp = c for some p } is nonempty and bounded.

(c) A has full row rank.

Consider the dual problem (D). Suppose that we place a quadratic penalty on the constraints
t + ATp = c with a penalty parameter 1/e (£ > O0) and we place a logarithmic penalty on the constraints
t > 0 with a penalty parameter y > O. This gives the following approximation to (D):



minimize fe ,(t,p), (D ,)

subject to Bt = d, t > 0,

where f, :(0,o) mx9Rn is the penalized objective function given by

m
f ,(t,p) = lic - t- ATpll 2/2 - C£ A ln(tj) - bTp, V t > 0, V p. (2.1)

j=1

The penalized problem (DE ) has the advantage that its objective function fi, is twice differentiable

and the Hessian V2fy is positive definite (cf. the full row rank assumption on A). Since there can

not exist u with ATu > 0, ATu * 0, BATu = 0 [cf. Assumption A (b)], it can be seen that the
intersection of any level set of fE,Y with the constraint set of (DEQ,) is bounded. This, together with

the fact that f tends to - at the boundary of its domain, implies that such an intersection is
E,y

compact, so (D,?) has an optimal solution. By the strict convexity of f?, this optimal solution is

unique.

Note 1: We can use penalty functions other than the quadratic and the logarithmic. For example,
we can use a cubic in place of the quadratic and -tjln(tj) in place of ln(tj). The quadratic and the

logarithmic function, however, have nice properties (such as the second derivative of the logarithmic

function is minus the square of its first derivative) which make global convergence analysis possible.

It is well-known that (t,p) is the optimal solution of (D.,?) if and only if it satisfies, together

with some us 9tl, the Kuhn-Tucker conditions (see [Roc70])

t > 0, Bt = d, Vf 7Y(t,p) + Lul _ . (2.2)

Straightforward calculation using (2.1) finds that

r t+ ATp - c - y(T)-le 

Vf ,(t,p) = I l, (2.3)

L A(t+ATp-c)-£b J

and
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r I + ef(T)- 2 AT 1
V2f ,(tp) = I 1, (2.4)

LA AAT J

where T = Diag(t). The above formulas will be used extensively in the subsequent analysis. Notice
that V2f is ill-conditioned at the boundary of its domain.

It is not difficult to show that, as £ and y tend to zero, the optimal solution of (D aY)

approaches the optimal solution set of (D) (see Lemma 1). This suggests the following algorithm for
solving (DE,). At each iteration, we are given E, y and a (t,p) which is an approximate solution of
(D£ ,); we apply a Newton step to (D.,) at (t,p) to generate a new (t,p) and then we decrease y, £.

In other words, we consider a sequence of penalized problems { (D£k, }k_ -l with £k ,L 0 and /k $ 0,

and use a Newton step to follow the optimal solution of one penalized problem to that of the next.
We now formally state this algorithm, which we call the QLPPF (short for Quadratic-Logarithmic
Penalty Path-Following) algorithm:

QLPPF Algorithm
Iter. 0 Choose e 1 > 0 and 9 > 0. Choose (tl,p1)e (O,oo)mX9jn with Btl = d.

Iter. k Given (tk,pk)E (0,oo)mx9tn with Btk = d, compute (Atk,Apk,uk) to be a solution of

Fk A1tk pk) FBTUk1
V 2fek,,k(tk,pk) L tk k + [B 0 = 0, BAtk = 0, (2.5)

and set

tk+l = tk + Atk, pk+l = pk + Apk, (2.6)
Yk+1 = akk, Ek+ l = ak£k (2.7)

where a k is some scalar in (0,1).

Note 2: It can be seen from (2.3)-(2.4) that, in the special case where B is the zero matrix, the
direction finding problem (2.5) differs from that in Setiono's algorithm [Set89, Eq. (6)] by only an
order ok term in the right hand side (which tends to zero as £k tends to zero).
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3. Global Convergence

In this section, we show that if (D) is in some sense primal non-degenerate and if (tl,pl) is
1"close" to the optimal solution of (DE1 ,1) in the QLPPF algorithm, then, by decreasing the ok's at

an appropriate rate, the iterates {(tk,pk)} generated by the QLPPF algorithm approach the optimal
solution set of (D) (see Theorem 1). Because the Hessian V 2 fc, is ill-conditioned at the boundary of

its domain, the proof of this result is quite involved and relies critically on finding a suitable
Lyapunov function to monitor the progress of the algorithm.

For any e > 0 and X > 0, let pc,,(0,oo)mx9Znx9Z1 be the function given by

p,?(t,p,u) = max { IIT(c - t - ATp - BTu) + eIll/(ey),

IIA(c - t- ATp) + Ebllt/fy }, V t > 0, V p, V u, (3.1)

where T = Diag(t). From (2.2)-(2.3) we see that (t,p) is a solution of (Dey) if and only if t > 0, Bt =
d and, for some u, p,?(t,p,u) = O0. Hence p,7y acts as a Lyapunov function which measures how far
(t,p) is from solving (De,7). This notion is made precise in the following lemma.

For any £ > 0, let

JpE = { (t,p) I A(c - t - AT p) = -eb, Bt = d, t > O }. (3.2)

Lemma 1. Fix £ > O, ¥ > O and 1e (0,1]. For any (t,p)e LJt and any u with pe,(t,p,u) < A, the

following hold:

(a) (x,y), where x = (t + ATp - c)/£ and y = u/e, is feasible for (P).

(b) (x,y) and (t,p) are optimal primal and dual solution pairs of a linear program which is obtained

from (D) by perturbing each right hand coefficient by at most max{£MO, (1+3)4-71 and each

cost coefficient by at most ~, where Mo = maxi lixll, I (x,y) is feasible for (P) for some y }.

Proof: (a) Since (t,p) is in tJ,, it follows from the definition of 1J8 [cf. (3.2)] that Ax = b. Since
pe,y(t,p,u) < 3, we have from the definition of Pe, [cf. (3.1)] and x that IIT(-£x - BTu) + eyell <
£yj, where T = Diag(t), implying

y(1-[3)e < T(x + BTu/£) _< y(l+[)e. (3.3)
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Since t > 0 and 3 < 1, the first inequality in (3.3) yields x + BTu/£ 2 y(1-P)Tle > 0. Hence, (x,u/e)

is feasible for (P).

(b) From y = u/£ and the second inequality in (3.3) we have T(x + BTy) < (1 + [3)ye, so

xj+BjTy >4 tj < (1+[)>i (3.4)

Since (x,y) is feasible for (P), then Ilxll-, < Mo and thus lit + ATp - cill < £MO. This together with
(3.4) and the facts t > 0, Bt = d, x + BTy > 0 shows that (x,y) and (t,p) satisfy the optimality

conditions for a perturbed linear program (which is obtained from (D) by perturbing each component

of c by at most £M0 , each right hand side coefficient of the constraints t 2 0 by at most (1+0)~,

and each cost coefficient on t by at most \/-;. Q.E.D.

Since we are dealing with linear programs, part (b) of Lemma 1 implies that, as e -- O and
y -> 0, the (x,y) of part (a) approaches the optimal solution set of (P) and (t,p) approaches the
optimal solution set of (D). In fact, it suffices to decrease e and y as far as 2

- 'L, where K is some

scalar constant and L is the size of the problem encoding in binary (defined as, say, in [Kar84]), at
which time an optimal solution of (P) and of (D) can be recovered by using the techniques described
in, for example, [Kar84], [PaS82].

For each X > 0, let Ox:(O,oo) m -- [0,oo) be the function given by

0k(t) = (IIEDl/2ATFADl/2E + E + + IIED1/2ATFII) 2, V t > 0, (3.5a)

where

D = (I+ T-2) - 1 , (3.5b)

E = I - Dl/2BT[BDBT]-BDl /2, (3.5c)
F = [A(I - Dl/2ED11/2)AT]-, (3.5d)

and T = Diag(t). [F is well-defined because IIEII < 1 (E is a projection matrix) and IIDII < 1, so that I -

D1/ 2ED1/2 is positive definite. We also use the assumption that A has full row rank.] The quantity
OX(t) estimates the norm squared of certain projection-like operator depending on X and t, and it will
be used extensively in our analysis. In general, OX(t) is rather cumbersome to evaluate, but, as we
shall see, it suffices for our analysis to upper bound 0Q,(t) [see Lemma 3 (b)].
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3.1. Analyzing a Newton Step

In this subsection we prove a key lemma which states that if (t,p) is "close" to the optimal
solution of (D-e ), then (t,p) generated by applying one Newton step to (D) at (t,p) is close to the

optimal solution of (D,,) for some e < £ and some y < y. The notion of "closeness" is measured by
the Lyapunov function p,y and the proof of the lemma is based on the ideas used in [Tse89a, §2].

Lemma 2. For any e > 0, any ~ > 0 and any (t,P,Ui)e (0,oo)mx9inx9il with Bt = d, let (t,p,u) be

given by

t = t + At, (3.6a)
p = P + Ap, (3.6b)

where u and (At,Ap) together solve the following system of linear equations

rtl at ~,V([O) + 0 FBTulv2_ (t)A + Vf- -BT(tp) +BAt =, Bt = 0. (3.6c)t,(p) [ApJ + L0J

Suppose that p- -(t,p,ui) < f3 for some [3 < mint 1, 1/0-y(t)). Then the following hold:

(a) (t,p)E tj-

(b) For any a satisfying

max{ / (0y(t)t32 + m)/([ + i), 1/(1 + [,y/llbll)} < a < 1, (3.7)

there holds pcga£(t,p,u) < [.

Proof: Let

= T(c-t-A T p-BTu) + e, (3.8)
and

s = A(c - t - A Tp) + :b, (3.9)
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where T = Diag(t). Then [cf. (3.1)]

max{lrll/('y), 11\/I} -= pF ,y(,p,i) < P3. (3.10)

By using (2.3)-(2.4) and (3.8)-(3.9), we write (3.6c) equivalently as

D-1At + ATAp + BT(u - ii) = T-l,

AAt + AATAp = S,

BAt = 0,

where for convenience we let D = (I + ey-2)- 1. Solving for At gives

At = D 1/2(ED1/ 2 AT FAD1/ 2E + E)D1 /2' 1 _- D1/2ED1/ 2ATFS,

where we let E = I - Dl/2BT[BDBT]-'BDl /2 and F = [A(I - Dl/2ED1/2)A T]-'. [F is well-defined by

the same reasoning that the matrix given by (3.5d) is well-defined.] Then, we can bound l-'At as

follows:

IIT-lAtll < IITlD1/21 2 IIED1/2ATFAD1/2E + Ell IIlI + ll- 1D1/211 IIED1/2ATFII RII.

Since TF2 D is diagonal and each of its diagonal entry is less than 1/(YT), we obtain that 11'r2DII <

1/(gry) and hence

II-l'Atll < IIED1/2ATFAD1/2E + Ell Ilifl/(ey) + IIED1/2ATFII lsl/it

< /e (t)j3, (3.11)

where the last inequality follows from (3.10) and the definition of T, D, E, F and 0-(t) [cf. (3.5a)-

(3.5d)].

Now, by using (2.3)-(2.4), we can write (3.6c) equivalently as BAt = O0 and

jlAt = T(c - t - ATP - At - ATAp - BTu) + Ee, (3.12)



O = A(c - t - ATP - At - ATAp) + b, (3.13)

so from (3.6a)-(3.6b) we obtain

T(c - t - Ap - BTu)+ ae = r + AT)(c - I -At - ATP - ATAp - BTU) + Ee

= (c - -t-A-AT - ATAp -BT) + ye

+ AT(c - t - At- ATP - ATAp - BTu)

= E-yFi'lAt + AT(c - t-AT - AT Ap - BTu)
= '-1AT('e + T(c - t - ATP - At - ATAp - BTu))
= -,F-2ATAt,

where T = Diag(t), AT = Diag(At), and the third and the last equality follow from (3.12). This
implies

IIT(c - t - ATp - BTu) + ielf < a/ri- 2 ATAtll

< a1F- 2ATAtll

wi~-'1 A2
_ :-?,(t),2, (3.14)

where the third inequality follows from (3.11).

(a) We have from (3.11) and the hypothesis ,3 < 1/0,(t) that IIT-'At ll 2 < 0 < 1,

so (3.6a) and t > O0 yields t = t + At > 0. Also, Bt = d together with BAt = 0 [cf. (3.6c)] and (3.6a)
yields Bt = d and (3.13) together with (3.6a)-(3.6b) yields 0 = A(c - t - ATp) + Eb. Hence

(t,p)E J-.

(b) Fix any ea satisfying (3.7) and let y = ea, £ = a£. [Notice that because 0-(t)f3 < 1, the

left hand quantity in (3.7) is strictly less than 1, so such an a exists.] Let

r = T(c - t-ATp - BTu)+ e. (3.15)

Then the triangle inequality and (3.14) imply

Ilrll/(ey) < IIT(c - t - ATp - BTu) + -ellI/(£) + (1 - a2 )--I-/a 2
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< 0y(t)[l/0 /+ (l/a2- 1)/,

which together with the fact [cf. (3.7)]

(0(i)2+ - 4 )I/( +4 i < a 2

yields

lIrll/(ey) < . (3.16)

Let

s = A(c - t - A Tp) + Eb. (3.17)

By using (3.6a), (3.6b) and (3.13), we have

s = A(c-t- At - AT! - AT Ap) + acb

= (a - 1)Eb,

which together with the fact [cf. (3.7)]

1/(1 + Fy/E/llbll) < a < 1,

yields

IISII/'ePy = (1/a - 1)1bllb rY - <.3.

This together with (3.16) and the definition of ps,(t,p,u) [cf. (3.1)] proves our claim. Q.E.D.
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3.2. Bounds

Lemma 2 shows that if the rate a at which the penalty parameters £ and y are decreased is not
too small [cf. (3.7)], then a single Newton step suffices to keep the current iterate close to the
optimal solution of the penalized problem (De ,). Thus, in order to establish the (linear)
convergence of the QLPPF algorithm, it suffices to bound a away from 1 which, according to (3.7),
amounts to bounding OE(t) by some quantity independent of t and £, y. It is not difficult to see that

such a bound does not exist for arbitrary t. Fortunately, we need to consider only those t which,
together with some p, are close to the optimal solution of (De,, ), in which case, as we show below,

such a bound does exist (provided that a certain primal non-degeneracy assumption also holds). The
proof of this is somewhat intricate: For e and y large, we argue by showing that t can not be too

large, i.e., of the order £ + ;y (see Lemma 3 (a)) and, for £ and y small, we argue by showing that,

under the primal non-degeneracy assumption, the columns of A corresponding to those components
of t which are small (i.e., of the order y) are of rank n.

Lemma 3.

(a) There exist constants M1 > 0, M 2 > 0 depending on A only such that 1ltll < M 1(£ + \Q') + M 2

for all (t,p)E 1J8 satisfying py(t,p,u) < 1 with some u, for all £ > 0 and all y > 0.

(b) Suppose that (P) is primal non-degenerate in the sense that, for every optimal solution (x*,y*) of
(P), those columns of A corresponding to the positive components of x* + BTy* have rank n.
Then, for all (t,p)e LJA satisfying p.,(t,p,u) < 1 with some u, all £ > 0, all y > 0 and all X >
ey`mh/(l+4m), there holds 0X(t) < Nf(e/Y), where

V(c0) = (M 3 + M 4/0+ M5 0o) 2, V o > 0, (3.18)

and M 3 > 1, M4 > 0, M5 > 0 are scalars depending on A, B, b, c and d only.

Proof: (a) The proof is by contradiction. Suppose the contrary, so that there exists a sequence
{ (tk,pk,uk,k,yk) } such that

(tk,pk) lJyk, pkk(tk,pk,uk) < 1, V k, (3.19)

and

Iltkll/(k + £ik) -- 0, Iltkll - oo. (3.20)
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By passing into a subsequence if necessary we will assume that (tk,pk)/ll(tk,pk)ll converges to some
limit point, say (ty,po) (so (ty,po) * 0).

Since we have from (3.19) [also using (3.1)-(3.2)] that

A(c-tk- ATpk) = -_kb, Btk = d, tk > 0, Vk,
IITk(c tk _ ATpk_ BTUk) + ekkelI < ek'k, V k,

where Tk = Diag(tk), then, upon dividing both sides of first three relations (respectively, fourth
relation) by II(tk,pk)ll (respectively, II(tk,pk)ll 2) and letting k -- c, we obtain from (3.20) and
(tk,pk)/ll(tk,pk)ll - (tr,p) that t> 2 0 and

A(t- + ATp-) = 0, (3.21)
BtO = 0, (3.22)

IIT(A(tTp + + vll < 0, (3.23)

where To = Diag(to) and vi = lim TkBTuk/ll(tk,pk)112. From (3.21) (and using the full row rank
k--oo

property of A) we have po = -(AAT)-lAto°, so to * 0 (otherwise po = 0 also). Let us, by re-

indexing the coordinates if necessary, partition to into to =Lt with t o' = 0 and t o" > 0. We

rv'correspondingly partitionA = [A' A B = B' B" = tkcorrespondingly partition A = [A' A"], B = lB' B"], votk = Then, from (3.21),Lv-"'J tj Then, from (3.21),

(3.22) and (3.23) we have, respectively,

A'(A')Tp- + A"(t" + (A")Tp-) = 0, (3.24)
B"tA" = 0, (3.25)

t" + (A")Tp o + (To)-lv " = 0. (3.26)

Also, from tk"/ll(tk,pk)ll -- to" > 0 and Tk"(B")Tuk/ll(tk,pk)II2 - vx", where Tk" = Diag(tlk), we see
that (B")Tuk/ll(tk,pk)l converges to (TV") -v', where T" = Diag(tf"), so that

(T")-lvo o " = (B")WTu, (3.27)

for some u'. Multiplying both sides of (3.26) by A" and using (3.24) and (3.27) gives
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O = -A'(A)Tp + A"(B")Tu-. (3.28)

Multiplying both sides of (3.26) by B" and using (3.25), (3.27) gives

o = B"(A)Tp- + B(B)Tu .

Multiplying both sides of the above relation by (u)T and using (3.28) gives

o = (poo)TA'(A)Tpoo + (u)TB"(B") Tu o

Hence, (A')Tpoo = 0 and (B")Tu = 0, which together with (3.26), (3.27) and the fact t° ' = 0 shows

t o' = -(A')Tp"o and to" = -(A")Tp-, i.e., to = -ATp'. Since t 2 >0, to ; 0 and [cf. (3.22)] Bto = 0,

this contradicts the boundedness of the dual feasible set [cf. Assumption A (b)].

(b) Fix any E > 0, y > 0, X 2> t---m/(1+-im), and any (t,p)e tJe satisfying pe,y(t,p,u) < 1

with some u. Let T = Diag(t) and let D, E, F be given by, respectively, (3.5b), (3.5c), and (3.5d).

Then, F 1 = A(I - D1/2EDl/2 )AT, IIEll < 1 and D = (I + XT-2)-1. From the definition of 0;(t) [cf.

(3.5a)] we then obtain

0x(t) = (lIE + ED11/2ATFAD/2EII + IIEDl/2ATFII) 2

< (11EII + llEI 2 lD /112112 llA11II2F lI + IIEll IIDl/211l IIFII) 2

< (1 + IIAII211FII + IIAII IIFII) 2, (3.29)

where the strict inequality follows from the facts IIDII < 1, IIEll < 1. Now we bound IIFII. We have

zT(F1)z = zTA(I- Dl/2ED/2)AT z

> zTA(I - D)ATz

= _j (AjTz)2/((tj)2f, + 1)

2 Xj (AjTz)2/(tj)2 (3.30)

2 kj (AjTz)2/lltll2

_2 Xlzl 2/lltl 2, z,

where the first inequality follows from IIEII < 1 and o > 0 denotes the smallest eigenvalue of AAT. [o

> 0 because A has full row rank.] Hence, part (a) and X > -ii/(1 + J-m)ey yield
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IIFII < 11tll2 /(X9) < (1 + 1/'Im)(Ml(£ + y) + M 2)2 /(eya). (3.31)

For e and y near zero, we give a different bound on IIFII. By the primal non-degeneracy
assumption, there exists a constant 6 > 0 depending on A, B, b, c and d only such that if (x,y) is any

optimal primal solution of a perturbed linear program, which is obtained from (D) by perturbing the
cost coefficients and the right hand side coefficients by at most 6, then the columns { Aj I xj + BjTy >
6 } have rank n. Suppose that EE (0,6/Mo] and ye (0,(6)2/4]. Since (t,p)e t8J and p, (t,p,u) < 1, it

follows from Lemma 1 that the columns { Aj I (tj + AjTp + BjTu - cj)/e 2 6 1 have rank n. Since

(t,p)e 1J and Pc,(t,p,u) _ 1, we have T(c - t - ATp - BTu) 2 -2eye [cf. (3.1), (3.2)] so that (tj +

AjTp + BjTu - cj)/Ie 6 implies tj < 2y/6. Hence, we obtain from (3.30) that

zT(F-1)z 2 _j (AjTZ)2/(tj) 2

2 X(8)2 X (AjTz)2/(2y) 2

tjs2Y/6

>2 X() 2 'l1lzll2/(2y)2, V z,

where the last inequality follows from the fact that those Aj for which tj < 2y/6 have rank n, and 6' is
some positive scalar depending on A only. Since X 2 mi/(1 + J-m)Ey, we then have

IIFII < 4(y)2 /(X(6)2o') < 4(1 + 1/J)y/(£(6)2 '). (3.32)

For convenience, let co = E/Y. Then, y < min{ (6)2/4, 6/(Moc) } implies y < (6)2/4, £ < 6/Mo
so (3.32) yields IIFII < 4(1 + 1/]-m)/(C6)() 2 a'); otherwise y > min{(6)2/4, 6/(M0 o )} so (3.31) yields

IIFII < (1 + 1/-m)(Mj(iFf + 1) + M 2 /(\fc min{(6)2/4, 6/(Moo)}))2 /a. Therefore, there exist

positive scalars K 1, K 2, K3 depending on A, B, b, c and d only such that

Kl/(o if y< min{ (6)2/4, 6/(Moco) };
IIFII < 

(KxR 240 + K2 + K 3 4 )2 otherwise.
min(io,4/Mo}

Combining the above bound with (3.29) and we conclude that there exist scalars M 3 2 1, M 4 > 0,

M 5 > 0 depending on A, B, b, c and d only such that 0X(t) < (M 3 + M 4/O + M5 0C)2. Q.E.D.
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3.3. Main Convergence Result

By combining Lemmas 1 to 3, we obtain the following global convergence result for the
QLPPF algorithm:

Theorem 1. Suppose that (P) is primal non-degenerate in the sense of Lemma 3 (b) and let yr(.)
be given by (3.18). If in the QLPPF algorithm (tl,pl) together with some u1 satisfies

tl > 0, Bt 1 = d, (3.33)
01,l1(tl) < v(£l/l), (3.34)

Pell1(t ,p l u )-< , (3.35)

for some scalar

0 < B < 1/V4(£e1/), (3.36)

and if we choose

ak = max{ 4((0kyk(tk)32 + - )/(3 + i), 1/(1 + /777/el/llbIl)}, V k, (3.37)

then {ek} ) 0, {ok} I 0 linearly, and {((tk + ATpk - C)/k,u/Ek)}, {(tk,pk)} approach the optimal
solution set of, respectively, (P) and (D).

Proof: First notice from N(co) > 1 for all co > 0 [cf. (3.18)] and (3.36) that 1 < 1, so (ak)2 is lower
bounded by -mi/(1 + -mi) for all k [cf. (3.37)]. Also notice from (2.7) that

£k/lk = el/y', V k. (3.38)

We claim that

(tpkC te lk_l, Pek-lk- l(tk,pk, u k ) < , Pek,7k(tk,pku k) < [, (3.39)

for all k > 2. It is easily seen by using (3.33)-(3.37), (2.5)-(2.7) and Lemma 2, that (3.39) holds
for k = 2. Suppose that (3.39) holds for all k < h, for some h > 2. Then, (th,ph)e Yteh-1 and
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Pehl,Yhl(th ph,uh ) • < 1. Since £h = ah-l£h-l1 h = ah-lyh-l [cf. (2.7)] and (ah-l) 2 Ž> /--m(1 +

I-m), we can apply Lemma 3 (b) to conclude

e0h.h(th) -< v(h-l/y-l) = 1(£1l/ ) (3.40)

where the equality follows from (3.38). Then, by (3.36), 3 < 1/0Ehl,(th). Since (3.39) holds for k
= h, we also have pCh (th,ph,uh) _ < , so Lemma 2 together with (2.5)-(2.7) and (3.37) yields

(th+lph+l) tJh, Ph,h(th+lph+l,uh+l) < Ph+l1,h+l(th+l ph+l uh+l )_< .

Hence, (3.39) holds for k = h+l.

Since (3.39) holds for all k > 2, we see that (3.40) holds for all h > 2. Then, by (3.36),
Oeh¢h(th)5 is less than 1 and bounded away from 1 for all h > 2, so that [cf. (3.37)] ak is less than 1

and bounded away from 1. Hence {£k} ) 0, {;k} I 0 at the rate of a geometric progression. The
remaining proof follows from (3.39) and Lemma 1. Q.E.D.

Notice that instead of 0£kk(tk) we can use, for example, the upper bound 1/W(£e/y 1) in

(3.37), and linear convergence would be preserved. However, this bound is typically loose and
difficult to compute. There is also the issue of finding e 1, i, 7, (tl,p1) and ul satisfying (3.33)-
(3.36), which we address in §3.4.
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3.4. Algorithm Initialization

By Theorem 1, if the primal non-degeneracy assumption therein holds and if we can-find £,
y, (t,p) and u satisfying

t > 0, Bt = d, (3.41)
0 y(t) _< V(Efy), (3.42)

p, (t,p,u) < /I(e/Y), (3.43)

then we can set 3 = p ,,(t,p,u) (assuming p, ,(t,p,u) * 0) and start the QLPPF algorithm with e, y,
(t,p), and we would obtain linear convergence. How do we find such e, y, (t,p) and u?

One obvious way is to fix any e > 0, any y > 0, and then solve the penalized problem (D,).

BrBTUlThe solution (t,p) obtained satisfies t > 0, Bt = d, Vfe,7 (t,p) + L B J = 0 for some u [cf. (2.2)] so,

by (2.3) and (3.1)-(3.2), p ,(t,p,u) = 0 and (t,p)e LJe. Hence (3.41), (3.43) hold and, by Lemma 3
(b), 0eY(t) < Nf(e/y), SO (3.42) also holds. [Of course (Dr, needs not be solved exactly.] To solve
the problem (De ), we can use any method for convex differentiable minimization (e.g., gradient
descent, coordinate descent), and we would typically want e small and y large so that (DQ,O is well-

conditioned.

Suppose that there holds Be = 0 and Ae = b. [This holds, for example, when B is the zero
matrix (which corresponds to the case when all equality constraints are penalized), and a change of

variable x' = (X)-lx, where x is any interior feasible solution of (P) (i.e., Ax = b, x > 0) and X =
Diag(R), has been made in (P).] Then we can find a usable e, y, (t,p), u immediately: Fix any e >
2y(1)(11cll + IIBT(BBT)-ldll) and let y = a. Also let w = BT(BBT)-ld and

p = (AAT)-A(c - w),

t = Ce+w,
u = -(BBT)-ld.

Then Bw = d, A(c - ATp) = Aw, At = Eb + Aw and BTu = £e - t, so that

Bt = Bw = d,
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A(c - t - ATp) = -Eb,
T(c - t - ATp - BTu) + eye = (£I + W)(c - £e - AT p) + (£)2e

= (eI + W)(c - A T p) - ew,

where T = Diag(t) and W = Diag(w). Also from W(1) > 1 and our choice of e we have £ > Ilwll, so t
> 0. Hence (t,p)e tJE [cf. (3.2)] and [cf. (3.1) and e = 7]

p (t,p,u) = II(£I + W)(c-ATp) -£wll/(e)2

< lic - w - ATpll/e + IIWII Ilc - ATp)ll/(E)2

= I11(I - AT(AAT)-lA)(c - w)ll/£ + IIWII I11(I - AT(AAT)-lA)c + AT(AAT)-lAwlI/(£)2

< lIc - wll/£ + Ilwll (Ilcll + IIwII)/(£)2. (3.44)

where the last inequality follows from the triangle inequality and the nonexpansive property of
projection matrices. From our choice of e we see that (Ilcll + Ilwll)/£ < .5/V(1), so the right hand side
of (3.44) is bounded by .5/hr(l) + (.5A/r(1)) 2 < 1/A(1) = 1AN(e/y), where the inequality follows from
Nr(1) > 1 and the equality follows from y = E. Hence (3.41), (3.43) hold. Also, since (t,p)E tJe,
then (3.43) together with Lemma 3 (b) shows that (3.42) holds.
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4. Numerical Results

In order to study the performance of the QLPPF algorithm in practice, we have implemented
the algorithm to solve the special case of (P) and (D) in which B is the zero matrix, i.e., (P) is of the
form

minimize CTx (4.1)

subject to Ax = b, x > 0.

[This corresponds to penalizing all equality constraints in the corresponding dual problem.] Below
we describe our implementation and present our preliminary numerical experience.

1. Initialization. In our implementation, we set for all problems

1 = 10- 711cIll/m, 1 = 10411CIll/m,

and set (arbitrarily)

p = O, t1 =e.

[Notice that since B is the zero matrix, t1 can be set to any positive vector.] Care must be exercised
in choosing e1 and y1: if their values are set too low, then the QLPPF algorithm may fail to converge;

if their values are set too high, then the QLPPF algorithm may require many iterations to converge.
[Notice that we set e1 and y1 directly proportional to the average cost 11clll/m so their values scale with

c.]

2. Steplength Selection. To ensure that the tk's remain inside the positive orthant, we employ
a backtracking scheme similar to that used by Setiono: whenever tk + Atk is outside the positive

orthant, we replace the formula for tk+l in (2.6) by

tk+l = tk + .98k k Atk, (4.2)

where
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xk = min _- (4.3)
Atjk<O Atjk'

However, this raises a difficulty, namely, for )k much smaller than 1, the vector (.98XkAtk, Apk)

may be far from the Newton direction (Atk, Apk) and, as a consequence, the iterates may fail to

converge. To remedy this, we replace [analogous to (4.2)] the formula for pk+l in (2.6) by

pk+l = pk + .9 8 k Apk,

whenever non-convergence is detected. [The parameter value .98 is chosen somewhat arbitrarily,

but it works well in our tests.]

The proper choice of the ak's is very important for the QLPPF algorthm: if the ak's are too

near 1 (so the penalty parameters decrease slowly), then the algorithm would converges slowly; if
the ak's are too near 0 (so the penalty parameters decrease rapidly), then the algorithm may fail to

converge. In our implementation we adjust the ak's dynamically according to the following rule:

r max{ .3,.95ak- 1 } if xk = 1;
ak = .6 if Xk <.2; V k > 2,

L a k- 1 otherwise,

with al set to .5. The rational for this adjustment rule is that, if Xk = 1, then the current iterate is

closely following the solution trajectory (so we can decrease the penalty parameters at a faster rate
and still retain convergence) and, if Xk < .2, then the current iterate is unable to follow the solution

trajectory (so we must decrease the penalty parameters at a slower rate).

3. Termination. To avoid numerical problems, we stop decreasing the penalty parameters E and y
when they reach some prespecified tolerances Emin and yain, respectively. In our tests we set

Emin = 10- 1211c1ll/m, Ymin = 10-9 11clll/m.

We terminate the QLPPF algorithm when the relative duality gap and the violation of primal and dual

feasibility are small. More specifically, we terminate whenever the current iterate, denoted by (t,p),
satisfies
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IIX(ATp - c )ll)
IIX(A p C~lil < 10 - 7, (4.4)

max{ IIAx - bll,, Il[-x]+11, ) < 10-7, (4.5)
II[ATp - c]+ll < 10- 7 , (4.6)

where x = (t + ATp - c)/e [cf. Lemma 1], X = Diag(x), and [-]+ denotes the orthogonal projection

onto the nonnegative orthant. Only for three of our test problems could the above termination
criterion not be met (owing to violation of (4.4) and (4.6)) in which case the algorithm is terminated
whenever primal feasibility (4.5) is met and IcTx - v*l/lv*l is less than 5x10-7 , where v* denotes the

optimal value of (4.1).

4. Solving for the Direction. The most expensive computation at each iteration of the QLPPF
algorithm lies in solving the system of linear equations (2.5). This can be seen to entail solving a
single linear system of the form

AQATw = z, (4.7)

for w, where z is some n-vector and Q is some nxn diagonal matrix whose j-th diagonal entry is

ey+(tj)" (4.8)
et + (tj) 2 '

with e > 0, y > 0, and t some positive m-vector. [Linear system of the form (4.7) also arise in

interior point algorithms, but (4.7) has the nice property that the condition number of Q can be
controlled (by adjusting the penalty parameters e and y).] In our implementation, (4.7) is solved

using YSMP, a sparse matrix package for symmetric positive semi-definite systems developed at
Yale University (see [EGSS79], [EGSS82]) and a precursor to the commercial package SMPAK
(Scientific Computing Associates, 1985). YSMP comprises a set of Fortran routines implementing
the Cholesky decomposition scheme and, as a preprocessor, the minimum-degree ordering algorithm
(see, e.g., [GeL81]). In our implementation, the minimum-degree ordering routine ORDER is
called first to obtain a permutation of the rows and columns of the matrix AAT so that fill-in is
reduced during factorization. Then, AAT is symbolically factored using the routine SSF. (SSF is
called only once since the nonzero pattern of AQAT does not change with Q.) At each iteration, the
matrix AQAT is numerically factored by the routine SNF (taking advantage of information generated
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by SSF concerning the location of the nonzeros in the factorization), and the two triangular systems
thus generated are solved by the routine SNS to obtain a solution of (4.7). (We also experimented
with the public domain version of the sparse matrix package SPARSPAK [GeL81], presently
avaliable from Netlib. We found SPARSPAK to be comparable to YSMP in solution time but
somewhat inferior in solution accuracy.)

5. Data Structure. The data structure used in our implementation is similar to that described in,
e.g., [AKRV89], [MoM87]. Each matrix is stored in sparse format by row. In order to compute the
nonzero entries of the matrix AQAT efficiently for any Q, we also store the nonzero entries of the
outer products Aj(Aj)T, where Aj denotes the j-th column of A. AQAT is then computed using the
formula

AQAT = qj Aj(Aj)T,

where qj denotes the j-th diagonal entry of Q and the product of qj is taken with each nonzero entry
of Aj(Aj)T.

6. Test Problems. Our test problems comprise twenty of the linear programming problems
distributed publicly through Netlib (see [Gay86]). These problems range in size from 27 rows and
51 columns up to 712 rows and 2467 columns and, for some of them, slack columns must be added
and null rows must be removed to transform them into the form (4.1). [We also wrote a routine to
convert these problems from their original MPS format to that used by our implementation.] The
statistics for the test problems (after problem transformation) are summarized in Table 4.1.

7. Computing Environment. Our implementation was written in Fortran and was compiled
and ran on a single-processor Ardent TITAN (a graphics supercomputer) under the AT&T System V
Release 3 UNIX operating system with Berkeley 4.3 extension. The optimization option for the
compiler is -O1, i.e., optimization without vectorization/parallelization.

Table 4.2 summarizes the computational results obtained with our implementation of the
QLPPF algorithm. Columns 2 and 3 show, respectively, the total number of iterations and the CPU
time. Columns 4 and 6 show, respectively, the cost and the accuracy of the final primal solution [the
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latter is measured by the left hand side quantity in (4.6)]. Analogously, columns 5 and 7 show,
respectively, the cost and the accuracy of the final dual solution [the latter is measured by the left
hand side quantity in (4.7)]. For most of the problems, the primal cost agrees with the optimal value
in the first 7 digits and the accuracy of the primal solution is between 10- 7 and 10-14. Thus the

quality of the computed solutions compares favorably with that of solutions generated by interior
point algorithms. The number of iterations varies between 29 and 44 and the CPU time varies
between 0.3 and 83 seconds, depending on the problem size and the sparsity of the constraint
matrix. For most of the problems, over half of the CPU time is devoted to solving the linear system
(4.8) at every iteration. (We also performed tests on a ,gVAX-2000 Work Station under the

operating system VMS 4.1. The resulting number of iterations is roughly the same; the accuracy of

the final solutions improves slightly; and the CPU times are from 6 to 7 times that on the TITAN.)

The number of iterations for the QLPPF algorithm is comparable to that for the projected
Newton barrier method of Gill et. al. [GMSWT86], but is typically more than that for the affine-
scaling algorithm or for Setiono's algorithm. Specifically, by comparing column 3 of [MoM87,
Table 5] (also see [BDDW89], [MSSPB88]) with column 2 of Table 4.2, we see that the number of
iterations for the QLPPF algorithm can be up to 3/2 times that for the affine-scaling algorithm.
Similarly, the number of iterations for the QLPPF algorithm can be up to 5/3 times that for Setiono's
algorithm (compare column 3 of [Set89, Table 3] with column 2 of Table 4.2). On the other hand,
there are some problems on which the number of iterations is less for the QLPPF algorithm than for
the other algorithms.

In conclusion, our computational results indicate that, for linear programming, a mixed
interior point-exterior point penalty method, as exemplified by the QLPPF algorithm, can perform
near the level of interior point algorithms. On the other hand, we caution that these results are very
preliminary and thus should be viewed only as encouraging. In particular, some fine tuning of the
initial penalty parameters are necessary for the QLPPF algorithm to attain the performance shown in
Table 4.2. As a case in point, for the Netlib problem Scagr7 (see [Gay86]), the total number of
iterations is 52 if e1 is set according to (4.2) and drops down to 42 if 1l is raised by a factor of ten.

Finally, we remark it is typically beneficial to operate the QLPPF algorithm with a large ratio
of yk/e k. An intuitive explanation for this is that, if yk/ek is small, then yk is not a sufficiently large
penalty (relative to ek) to maintain tk + Atk within the positive orthant. This results in small stepsizes
Xk [cf. (4.4)] and hence slow convergence.
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Problem Constraint Hessian
Name Rows Cols Nonzeros 1 Nonzeros 2 Optimal Value 3

Afiro 27 51 102 90 -4.6475314E+2

Adlittle 56 138 424 384 2.2549496E+5

Scsdl 77 760 2388 1133 8.6666666E+0

Share2B 96 162 777 871 -4.1573224E+2

SharelB 117 253 1179 1001 -7.6589319E+4

Scsd6 147 1350 4316 2099 5.0500000E+1

Lotfi 153 366 1136 1196 -2.5264706E+1

Beaconfd 173 295 3408 2842 3.3592486E+4

Israel 174 316 2443 11227 -8.9664482E+5

BrandY 193 303 2202 2734 1.5185099E+3

Sc205 205 317 665 656 -5.2202061E+1

E226 223 472 2768 2823 -1.8751929E+1

ScTapl 300 660 1872 1686 1.4122500E+3

BandM 305 472 2494 3724 -1.5862801E-2

Scfxml 330 600 2732 3233 1.8416759E+4

Ship04s 360 1506 4400 3272 1.7987147E+6

ShipO41 360 2166 6380 4588 1.7933245E+6

Scrs8 490 1275 3288 2198 9.0429695E+2

Scfxm2 660 1200 5469 6486 3.6660261E+4

Ship08s 712 2467 7194 5440 1.9200982E+6

Table 4.1. Test Problem Characteristics.

1 The number of nonzero entries in A.

2 The number of nonzero entries in AAT.

3 Cited from [Gay86].
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Problem CPU Primal Dual
Name Iters. (sec.) 1 Primal Cost 2 Dual Cost 2 Feas3 Feas.3

Afiro 29 0.26 -4.6475313E+2 -4.6475316E+2 2E-08 6E-11

Adlittle 35 1.12 2.2549498E+5 2.2549497E+5 4E-09 3E-08

Scsdl 37 5.56 8.6666685E+O 8.6666668E+0 2E-14 0

Share2B 33 2.26 -4.1573226E+2 -4.1573218E+2 7E-10 0

SharelB 37 3.49 -7.6589327E+4 -7.6585942E+4 8E-08 2E-06

Scsd6 37 10.46 5.0500016E+1 5.0499999E+1 6E-13 0

Lotfi 41 5.22 -2.5264705E+1 -2.5264679E+1 4E-11 3E-10

Beaconfd 28 10.00 3.3592487E+4 3.3592486E+4 1E-09 2E-09

Israel 42 83.56 -8.9664481E+5 -8.9659622E+5 3E-08 5E-05

BrandY 35 12.08 1.5185099E+3 1.5185098E+3 5E-08 1E-11

Sc205 34 2.32 -5.2202054E+1 -5.2202059E+1 1E-10 7E-12

E226 44 14.09 -1.875192113E+1 -1.8751929E+1 1E-11 2E-10

ScTapl 40 7.60 1.4122500E+3 1.4122499E+3 4E-12 0

BandM 40 14.45 -1.5862803E+2 -1.5862803E+2 9E-11 9E-10

Scfxml 36 13.93 1.8416759E+4 1.8416758E+4 2E1-08 2E-09

Ship04s 41 14.49 1.7987148E+6 1.7987147E+6 3E-10 0

Ship041 42 20.70 1.7933246E+6 1.7933245E+6 3E-10 0

Scrs8 44 23.52 9.0429723E+2 9.0429692E+2 7E-11 1E-08

Scfxm2 37 34.01 3.6660262E+4 3.6660260E+4 1E-08 3E-09

Ship08s 43 29.97 1.9200984E+6 1.9200981E+6 6E-10 0

Table 4.2. Computational Results for the QLPPF Algorithm.

1 Obtained using the intrinsic function SECNDS on the TITAN.

2 Shown first 8 digits only.

3 Shown first digit only.
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5. Some Extensions

We have thusfar assumed that the parameters e and y are decreased at the same rate in the

QLPPF algorithm. Alternatively we can decrease them at different rates. For example, Setiono's
algorithm employs the strategy whereby e is first decreased with y held fixed and, once e reaches a
prescribed tolerance, then y is decreased with e held fixed. (In [Set89], the product £y is what is

referred to as y.) We can also use different penalty parameters for different coordinates.

Our convergence results very possibly also extend to linear complementarity problems with
positive semi-definite matrices - in the same manner that the results in [Tse89a] can be extended to

these problems (see [Tse89b]). This is a topic for further study.
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