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Abstract

We develop an abstract framework for the study of multigrid algorithms for the approxi-
mate solution of a general fixed-point problem that can be discretized at various levels of
accuracy ("grids"). We assume that at each grid-level, we have an iterative algorithm for
solving the resulting discretized problem. There are three grid-level dependent parameters:
(i) the rate of convergence of the iterative algorithm, (ii) the distance of the solution of
the discretized problem from the solution of the original problem, and (iii) the cost per
iteration. The objective is to find a most cost-efficient algorithm for computing an approx-
imation to the solution of the original problem, by performing iterations on a sequence of
different grid-levels. We derive an optimal algorithm and evaluate its complexity. Further-
more, under our assumptions, we establish the optimality of one-way multigrid algorithms
whereby iterations proceed from coarser to finer grids.
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I. INTRODUCTION

There are several computational problems whose exact solution is difficult or im-
possible, but which can be solved approximately when they are discretized or otherwise
approximated. (Examples abound in image processing [T84] or in the numerical solution
of partial differential equations [H851.) When choosing a problem discretization, one is
always faced with the dilemma that a finer discretization can improve solution accuracy,
at the expense of higher computational costs. This generic tradeoff has led to multigrid
algorithms, whereby an approximate solution on a coarser grid is used as a starting point
for the computations on a finer grid. The key idea is that iterations at finer grids, being
more costly, could greatly benefit from the availability of a good starting point. Such
algorithms, that move from coarser to finer grids, are sometimes called one-way multigrid
algorithms.

In this paper, we address the problem of designing an "optimal" one-way multigrid
iterative algorithm. That is, we take into account the grid-level dependence of the conver-
gence rate, the solution accuracy, and the cost per iteration at each grid-level, to decide
how many iterations should be performed at each grid-level, and at what sequence of
grid-levels. This is done within a general framework that captures the essence of several
interesting problems.

Within our framework, it is shown that there is no advantage in considering multigrid
algorithms that are not of the one-way type. This seems contrary to what is known for the
numerical solution of certain classes of partial differential equations where sophisticated
multigrid methods that move back and forth between coarse and fine grids have been
very succesful [H851. The explanation for this discrepancy is that, in numerical analysis,
multigrid methods are designed to exploit the special structure of certain PDEs, whereas
our framework is in a sense too general to capture such special structure. In fact, our
results are based on worst-case considerations and on an assumption that our knowledge
of the problem's structure is somewhat limited. Thus, our results are not necessarily
useful for the solution of certain classes of PDEs, but can be applicable to the solution of
less structured, possibly nonlinear, problems, as they arise in image processing, stochastic
control, and other contexts.

We now give an informal overview of the basic results in this paper. Consider a fixed-
point equation Aox = x, where A 0 is a contraction mapping [on a metric space (M,d)]
with fixed point xs. Suppose that we can discretize Ao and obtain a family of fixed-point
equations AhZ = x, h E (0,11, where Ah is a contraction mapping [on the same metric
space (M, d)] with fixed point xh. (Our convention is that h denotes the grid-level with a
smaller h corresponding to a more accurate discretization.)

We make the following assumptions:
1. The discretization error d(xo, x) is bounded above by a function D(h), where D(h) -

h " for some known s > 0.
2. The contraction factor a(h) of Ah satisfies a(h) - 1 - hQ for some known q > 0.
3. The computational cost of an iteration at grid-level h satisfies C(h) - h-' for some

known r > 0.
We are interested in computing an approximation of x;, within some given accuracy

E, by applying a sequence of iteration mappings drawn from the family {Ah I h E (0, 1]}.

2



(Different values of h can be used at different iterations.) The objective is to design such
a multigrid algorithm that has minimal computational cost.

We show that the complexity of a single-grid algorithm is O((1/E)(q+r)/" . log(1/E))
and that the complexity of a particular one-way multigrid algorithm is O((1/E)(q+')/°).
We also establish the optimality of the one-way multigrid algorithm by proving a lower
bound on the complexity of any multigrid algorithm within the class of algorithms that
we consider. (Of course, this does not preclude algorithms with better complexity if more
were known on the structure of the problem under consideration.)

Most available lower bounds on the algorithmic complexity of problems involving
continuous variables are based on the so called "information-based" approach ([NY79],
[TWW88]) and hold for fairly arbitrary classes of algorithms. In contrast, our lower bound
exploits in an important manner the assumed limitations on the class of algorithms under
consideration.

Our results are actually developed for a more general model. In particular, we let
a(h) = 1- f 1h , C(h) = f 2h-', and D(h) = f 3h ° , for some known positive constants
f,, f2, and f 3, and we analyze the dependence of the algorithms and their complexity
on these constants as well. One of the reasons for introducing this generalization is to
account for the discount-factor dependence of the complexity in discrete-time stochastic
control problems (Section 7). Another generalization is that we only require that for each h
and x, the sequence {A' x} converges to xh geometrically, thus weakening the contraction
assumption.

Outline
In Section 2, we introduce our assumptions on the available family of iteration map-

pings. In Section 3, we provide a formal definition of the class of algorithms to be considered
and describe the problem to be addressed. In Section 4, we evaluate the complexity of
a single-grid algorithm. In Section 5, we introduce a one-way multigrid algorithm and
upper bound its complexity. In Section 6, we develop a lower bound on the worst-case
complexity of an arbitrary multigrid algorithm and establish the optimality of the algo-
rithm of Section 5. In Section 7, we apply our results to the numerical solution of the
Bellman equation for discrete-time stochastic control problems and some other examples.
Section 8 contains our conclusions.

II. FAMILIES OF ITERATION MAPPINGS

Let (M, d) denote a metric space with metric d. Elements of M will be referred to as
points. We use Z to denote the set of nonnegative integers. For any mapping A: M - M,
and any t E Z, At denotes the composition of t copies of A. (In particular, A ° is the
identity mapping.)
Definition 2.1: A mapping A : M t-+ M is called a pseudocontraction if there exists some
a E [0, 1), some K e [1, oo), and a point x* E M, such that

d(Atx, x*) < Ka t d(x,x*), Vt E Z, Vx E M. (2.1)

We call a the contraction factor, K the delay factor (because it determines the number
of iterations needed before the distance from x* is guaranteed to be reduced), and x* the
fixed point of A. [Note that the uniqueness of x* follows from Eq. (2.1).]

3



Some interesting special cases are the following. If A is a contraction mapping, then it
is automatically a pseudocontraction, with K = 1. Suppose now that A has the following
two properties: a) d(Ax, Ay) < d(x,y), and b) d(Am"x, Amy) < ad(x,y), for all x,y E M
and for some specific positive integer m. (Such a mapping A is usually called an m-step
contraction.) We then have

d(x*, At) < at/d(x*,x), Vt E Z, V E M,

and A is a pseudocontraction with contraction factor acl/ " and delay factor K = a- .
Our objective is to compute (approximately) a certain element xo of M. To this effect,

it is assumed that we have available a family {Ah I h E (0, 1]} of pseudocontractions that
map M into itself. Here, the parameter h is meant to represent the grid-level, with the
convention that a smaller h represents a finer grid. Each mapping Ah has a fixed point
x*,, and it is assumed that lim 0Io x = x. For example, x0 could be the solution to a
PDE, and each x* could represent the solution to a difference equation Ah x = x obtained
by discretizing the original PDE.

We assume that each one of the pseudocontractions Ah has a grid-dependent discount
factor a(h) E [0,1) and the same delay factor K. In particular, for every t E Z, h E (0, 11],
x E M, we have

d(Ah x, x) < Ka(h)td(x,x*). (2.2)

To model computational costs, we assume that we are given a function C: (0,1] 
[0, oo), and that C(h) represents the computational effort involved in applying the mapping
Ah once. Thus, C(h) is the cost per iteration at grid-level h.

If we wish to compute xo within a desired accuracy, we need some bounds for the
distance of the solutions zx of the discretized problems from xo. We thus assume that we
are given a function D: (0, 1] H- [0, oo) such that

d(xo,X ) < D(h), Vh E (0, 1]. (2.3)

We call d(xo, x*) the discretization error and D(h) the discretization error bound.
While a theory can be developed when the functions a, C, and D are allowed to be

fairly general [C89], the results are most powerful and informative when a special form is
assumed, as we now proceed to do.
Assumption 2.1: (a) a(h) = 1- fh q , where fi E (0,1] and q > 0 are constants
independent of h.
(b) C(h) = f 2h-', where f2 > 0 and r > 0 are constants independent of h.
(c) D(h) = f3 h", where f3 > 1 and s > 0 are constants independent of h.

Our interest in Assumption 2.1 is justified because it corresponds to the most com-
monly encountered cases of problem discretization. For example, if a PDE in r dimensions
is discretized and h indicates the grid spacing, then the number of grid points is of the
order of h- . Assuming a constant computational effort per grid point and per iteration,
the assumption C(h) - h-' is justified. Similarly, for the discretization of linear elliptic
PDEs, the spectral radius a(h) of an iteration matrix typically satisfies ac(h) - 1 - hq for
some q > 0, which motivates our assumption on a(h). Also, notice that by letting q = 0,
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we obtain the interesting case where the contraction factor is grid-independent. Finally,
the case where d(xzo, Zx) - f3h° for some f3 and s is quite common.

III. PROBLEMS, INSTANCES, AND ALGORITHMS

In this section, we specify a class of algorithms based on the iteration mappings Ah,
that can be used to compute an approximation to the desired point x 0. Loosely speaking,
the algorithms we consider have the following capabilities (and only those):

1. For any x E M and h E (0,1], we are able to compute Ahx, at a cost of C(h).
2. The only knowledge available is the delay factor K, the parameters q, r, s, f, f 2, f 3 of

Assumption 2.1, and an accuracy parameter e > 0,
Given the above capabilities, we are to apply a finite sequence of iteration mappings

Ah (different iterations can use different values of h) and terminate with a point x E M
satisfying d(xz, x) < E. We view such a sequence of iterations as an algorithm. Note that
an iterative algorithm always needs a starting point, and we will assume that the point xl
is available for free. This is not a significant loss of generality because h = 1 corresponds
to the coarsest possible grid and, in practical problems, an exact solution at a very coarse
grid is usually easily computable.

It should be emphasized that the algorithms to be considered are free to apply the
mappings Ah but do not have any insights into the internal structure of the mappings
Ah. For example, a very intelligent algorithm, could look into the subroutine defining Ah ,
perform some mathematical analysis and come up with a closed-form formula for zx. Our
model precludes such forms of intelligence. In essence, we assume that the subroutines
corresponding to Ah are given to us in the form of black boxes.

We now formalize the above described notions. Following common practice in the
theory of computation [LP81] it is important to distinguish between problems and problem
instances.
Definition 3.1: Let us fix a metric space (M, d).
(a) A problem P [defined on (M,d)] consists of a collection of constants K > 0, q > 0,
r > 0, s > 0, fi E (0, 1], f2 > 0, and f3 > 1. Symbolically, P = (K, q, r,s, fi, f 2 , f3)-

(b) An instance of the problem P = (K, q, r, s, fi, f2, f3) is a point x0 E M and a collection
of mappings Ah : M - M, h E (0,1], such that the following are true for every h E (0,1]:
(i) Ah is a pseudocontraction with delay factor K and contraction factor 1 - f1 h.
(ii) The fixed-point xh of Ah satisfies d(zx, xo) < f3 h° .

Notice that condition (b)(ii) in this definition has the implication that d(x*,x.) <

2f3 (h" + h ° ), a fact that will be often used later.
Definition 3.2: Let there be given a problem P = (K, q, r, s, f1 , f 2 , f 3 ) and a posi-
tive scalar c > 0. An E-approximation algorithm for this problem is a finite sequence
((tl, h),...,(ti, hi)) such that

d(x0, Ati ... A". x;) < (

for all instances of the problem. The complexity of such an algorithm is defined to be
-. = tjC(hi). An algorithm is called single-grid if i = 1; it is called one-way if h1 >
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h2 > ... > hi. The complexity C(P, E) of the problem is defined as the infimum of the costs
of all c-approximation algorithms for this problem.

In our development, we view K, q, r, s as given absolute constants and we will inves-
tigate the dependence of the complexity C(P, c) on c, fi , f 2 , f 3 . As we cannot hope to
obtain a closed-form formula for the complexity, it is convenient to introduce the follow-
ing order-of-magnitude notational convention. If P = (K, q, r, s, fi , f2, f3), we will write
C(P, ) = O(g(f, f2,f3,c)) [respectively, C(P,E) = n(g(f,f2, f3, ))] to indicate the fact
that there exist constants c > 0 and Eo E (0, 11 (possibly depending on K, q, r, s), such that
C(P, c) < cg(f, f 2 , fs,) [respectively, C(P, E) > cg(fl, f 2 , f3 ec)], for all fL E (0, 1], f2 > 0
and f 3 > 1, and for all c E (0, o).

IV. SINGLE-GRID ALGORITHMS
For the purpose of comparison with subsequent results, we evaluate here the complex-

ity of a single-grid algorithm.
A single-grid c-approximation algorithm is easily described. Given e > 0, we choose

a grid-level he E (0, 1] so that d(xz,z x) < c/2. This is certainly the case if we choose
he so that f3ha < c/2. Furthermore, we require that he = 2 -' for some integer i and we
choose the largest possible he subject to this restriction. Thus, the chosen he satisfies

E C
2 -° - < f3 he < . (4.1)

Next, we find the smallest t that satisfies

2Ka(hC)t f 3 < . (4.2)

The single-grid algorithm consists of t iterations at grid-level he, initialized with xz (which
is assumed to be available for free).

We verify that this is indeed an e-approximation algorithm. We have

d(xo, At:x;) < d(x0, x;) + d(x*;,At, x) •< + K(a(h)t d(xh x;)hi 1 0 h h h 1 2 +ah d* 1)
c (4.3)

< 2 + K(he)t f 3 (ht + 1") < 2 + 2f 3Ka(ht)t < •,

where the last inequality follows from our choice of t [cf. Eq. (4.2)].
The complexity of this algorithm is tC(ht). Using Eq. (4.1), we have

C(h,) = f 2 2 3 (4.4)

Furthermore, Eq. (4.2) yields

log(4Kf3 /c) += log(4Kf3 /c) + < log(4Kf3 /c) + 1, (4.5)
- log aC(he)[ I log(1 -f h) L f 1 h)
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where the last inequality follows from log(1 - 6) < -6 for all 6. Using Eqs. (4.4)-(4.5),
some algebra, and ignoring the constants that do not depend on fl , f2, f3, E, we conclude
that the complexity of the single-grid algorithm is

( f2-f (-E' logt (f3/) ) (4.6)

V. A ONE-WAY MULTIGRID ALGORITHM

We now introduce a one-way multigrid algorithm and analyze its complexity. This
algorithm has better complexity than the single-grid algorithm of the preceding section
and is based on the following:
Multigrid Principle: Iterate at each level h, and obtain an approximation Xh of x*, until
the "approximation error" d(Xh, xh) is comparable to the "discretization error" d(x , x*).
Then, continue on a finer grid, using 'h as a starting point.

The above stated multigrid can be considered part of folk knowledge. Interestingly
enough, within our framework, it can be shown to lead to optimal algorithms.

We now provide a precise description of the algorithm. The algorithm employs the
grid levels hi = 1/2', i = 1,2,..., , where e is the smallest positive integer such that
f 3 h < E/2. In particular, the finest grid-level he is chosen exactly as in the single-grid
algorithm, and Eq. (4.1) still holds. At each grid-level hi, the algorithm starts with a point
xi-1 computed at the preceding grid-level, and performs ti iterations, thus computing

xi = AtS i-1_ (5.1)

For the first grid-level (h1 = 1), the starting point is taken to be xo = xl (assumed to be
available).

The number ti of iterations at grid-level hi is chosen so that d(:,, x*,) < f3 hi. This
ensures the correctness of the algorithm because at the final grid-level he we have

d(xe, xo ) < d(xL,x*,) + d(x*, x0o) < 2f3 h8 < E, (5.2)

where the last inequality follows from our choice of ht.
We now estimate the number of iterations needed at each grid-level. Assuming that

d(i,_, ,i_ ') < f 3 h_, we have

d(Zi, x.) < Ka(hi)t i d(xi_ 1, Zx ) < Ka(h.) ti [d(i_+ 1,i ) + d(, ) + d( )]

< Ka(hi)t i f 3 [h_ 1 + ht._ + hi] = Ka(hi)t f 3 (1 + 28+l)h,.,
(5.3)

where the last equality follows because hi = hi_1 /2. Since we wish to have d(i,, x) <
f3 hM, it is sufficient to choose ti large enough so that

Ka(hi)t i f3 (1 + 2+ 1 )hi < f 3 h .
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Thus,

log [K(1 + 2+'1)] log [K(1 + 28+ ' )]
t < loga(h,)] + 1< + 1, (5.4)i log a (hi)) fx hq

where we have used the inequality log(1 - fi h!) < -fi h.
We now evaluate the complexity of the one-way multigrid algorithm. Note that, by

our choice of grid-levels, we have

1_ _ 1 1: 1 E P hp= C 2-P'i < hp 1 2-P. (5.5)

~i=li 1 iM i=O 1

Using Eqs. (5.4)-(5.5), we obtain the following bound on the total complexity:

ti C(hi) < E (log [K(1 +2 + 1) f2Etic~hj) i< f, h - 7+ h

log[K(1+2 °+')] 1 1

• 2+2 (q+r) (5.6)< 2f2 log [K(1 + 2+ 1)] 1 1 (5.6)
fi h q +" 1 - 2- (<+r)

<: 2f log [K(1 + 2'+1)] 2f3 )(q+"/ 2 ( q+ )
-:_ _ _ _ _ _ _ _ _ _ 1 - 2 -((q+))

= fi (e +r))

We note, for future reference, that in the special case where the discount factor a(h)
is equal to a constant ]3, for all grid-levels h, we can let q = 0, fi = 1 - ], to see that the
complexity of our algorithm is

0 ( 1 P (f3 (5.7)

In our algorithm, we have used the grid-levels hi = 2-'. In general, we could have
used hi = z-', for any z > 1. Both the single-grid and the multigrid algorithms are easily
adapted to this choice of grid-levels and their respective complexities remain unchanged.
In practice, there is a preference for choosing z an integer.

We notice that our multigrid algorithm improves upon the complexity of its single-
grid counterpart by a factor of log(f3 /E). The natural question at this point is to inquire
whether there exists an alternative multigrid algorithm with better complexity. For exam-
ple, could it be advantageous to consider multigrid algorithms that are not of the one-way
type? In the next section, we provide a negative answer to these questions.
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VI. LOWER BOUNDS AND THE OPTIMALITY OF ONE-WAY
MULTIGRID ALGORITHMS

In this section, we show that for any fixed K, q, r, s, no algorithm (within our model
of computation) can have better complexity than that of the one-way multigrid algorithm
of the preceding section (at least as far as the dependence on fi, f2, f3, E is concerned).
There is one technical assumption that will be needed. In particular, it is not possible
to prove a lower bound on the computational complexity of a fixed-point problem if that
problem is trivial, which would be the case if the metric space (M, d) were an extremely
simple one. For this reason, we have to assume that the underlying metric space is rich
enough.
Assumption 6.1: The interval [0, 11 (with its usual metric) is isometrically imbedded in
the metric space (M, d).

Theorem 6.1: Suppose that the metric space (M, d) satisfies Assumption 6.1. Then,

C ) o A, (e +r)/)

Proof: We first prove the result for the case where M = [0, 1] and d is the usual metric.
We will later indicate how the proof can be generalized.

For any problem P = (K,q, r, s, fi, f 2, f 3 ), we construct an instance as follows. We
let x0 = 0, xz = min{1, f3 h }, and

Ah = min{1, x - fhqx + ff 3hq+}, Vx E [0,1].

(It is easily seen that this is a legitimate instance satisfying all of our requirements.)
Consider an arbitrary c-approximation algorithm. Let x(t) be the value of x after

t iterations, and let h(t) be the grid-level employed for the tth iteration. We then have
x(0) = xi = 1 and, since xo = 0, we also have x(T) < c, where T is the number of
iterations. Furthermore,

x(t) = min{1, x(t - 1) - fih(t)qx(t - 1) + fif 3 h(t)q+}, t = 1,... ,T. (6.1)

It remains to derive a lower bound for the expression = f2h(t) - r, which is the com-
plexity of the algorithm.
Lemma 6.1: There exists some eo < 1/5, depending only on q,r,s, such that if c < ec
and x(t - 1) > 5c, then x(t) > 4e.
Proof: Suppose that x(t-1) > 5E and that c < co < 1/5. If x(t) = 1, then x(t) > 5E0 > 4c.
If x(t) < 1, then Eq. (6.1) yields

2(t) > 5E- f1 h(t)q 5 + f, f 3 h(t)q+. (6.2)

If 5E < f 3 h(t)°, then x(t) > 5c and we are done. So, let us assume that 5E > f 3 h(t)'.
Then, h(t)q < (5c/f3 )ql/, and Eq. (6.2) becomes

x(t) > 5c - f1 h(t)q5c > 5 (1- f 5 (1 -5 - (5)/), 
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where the last inequality follows because f 1 < 1 and f3 > 1. If we now choose Eo so that
1 - (5E0 )/l > 4/5, we obtain x(t) > 4E, as desired. Q.E.D.

Let us assume that E < Eo, where Eo is the constant of Lemma 6.1. Let r be the last
value of t for which x(t) E [4E, 56]. Such a r exists because x(O) = 1 > 5E, x(T) < e, and
because of Lemma 6.1. Let

J = {t I r < t < T and x(t) - x(t - 1) < 0}.

For every t E J, Eq. (6.1) and the fact x(t - 1) < 5E imply that

5E > x(t - 1) > f 3 h(t)', t E J. (6.3)

From Eq. (6.1), we also obtain

x(t) > (1- f, h(t)q)z(t- 1),

which, combined with Eq. (6.3) yields

x(t) > (1 - fl(5E/f 3)q/)x(t - 1), t E J. (6.4)

If t > r but t . J, we have x(t) > x(t - 1), by the definition of J. This observation,
together with Eq. (6.4) yields

E > x(T) > (1 - fl(5E/f3)q/)' x(r) > (1 - fl(5/3)q/f ) 4

Thus, (1- f(5c/f 3 )q/) I' I < 1/4. Let us first consider the case IJI > 2. Then, we can

use the inequality (1 - 1/l J I)IJI > 1/4 to conclude that

I I_> · T (6.5)

Using Eq. (6.3), for every t E J, the cost f2 h(t)- ' of the tth iteration is bounded below by
f 2 (f /5f)'/'. Using this and Eq. (6.5), we conclude that the complexity of the algorithm
is bounded below by

f2( )'/ 1 (f 3 q/ (f 2 (f) (
+r

) / s )

As for the case IJI = 1, it is easily shown to be impossible when Eo (and therefore E)

is chosen sufficiently small.
We have thus proved the result for the case M = [0, 1]. In the general case, we have

assumed that M contains a set Q which we can identify with [0, 1]. We then construct an
instance by defining Ah on Q exactly as before, and by letting AhX = zX for all x 0 Q.
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It is easily verified that this is an instance of the problem P, and the proof of the lower
bound is identical. Q.E.D.

The lower bound of Theorem 6.1 coincides (up to a constant depending only on
K, q, r,s) with the complexity of the one-way multigrid algorithm of Section 5 [cf. Eq.
(5.7)]. Thus, if we are only concerned with the order of magnitude dependence of the com-
plexity on the parameters f 1 , f 2, f 3, e, the algorithm of Section 5 is an optimal algorithm.
The lower bound of this section and the just stated optimality result should be interpreted
with some care. It does not preclude the existence of better algorithms for a given problem.
Rather, it should be interpreted as saying that if the only useful or available information
about a given problem is captured by Assumption 2.1, then there cannot be any multigrid
algorithm that works correctly and has lower complexity. This allows the possibility that
non-multigrid algorithms could have better complexity, but such algorithms would have
to rely on additional structural assumptions on the problem at hand. Similarly, it is also
possible that better multigrid algorithms can be found, but they should again exploit some
additional information on the problem.

VII. EXAMPLES

We illustrate our results by considering the problem of the numerical solution of
Bellman's equation in discrete-time stochastic control. Some other examples are also
discussed. The discussion in this section is brief and occasionally informal, because our
aim is only to highlight the connections with our framework.

Solving the Bellman equation
Let S = [0,1]" and U = [0, 1]m be the state and control spaces of a discrete-time

stochastic control problem. Let g: S x U - [0,1] be a cost function, and let p: S x S x
U - [0, oo) be another function satisfying fs p(Y, , u) dy = 1, for all x E S and u E U.
Intuitively, p(., x, u) is the probability density function of the next state when the current
state is x and control u is applied. Finally, let 8 E [0, 1) be a discount factor. We assume
that the functions p and g are Lipschitz continuous and that a bound L on their Lipschitz
constants is available. The objective is to minimize the infinite horizon discounted expected
cost, starting from a given state.

Let M be the set of all Borel measurable functions J: S -+ R2, and let d be the Loo
norm on M. Solving the above described stochastic control problem amounts to finding
a function J* E M (the optimal cost-to-go function) that solves the Bellman equation
TJ = J, where T: M '- M is the dynamic programming operator defined by [BS78]

(TJ)(x) = inf E [g(,u) + p(y, x, u)J(y) dy] (7.1).

Under our assumptions, it is well known that T is a contraction mapping, with con-
traction factor A. Furthermore, the problem can be approximated by one involving finite
state and control spaces, as follows. We discretize the problem using 1/h points per di-
mension, thus partitioning S into (1/h)" cubes and U into (l/h)m cubes. There is a
dynamic programming operator Th associated with the discretized problem which is also a



contraction mapping with contraction factor P, and has a unique fixed point J* satisfying
[W78, W79, CT89a]

d(J-, J;) < Bhl(l-)2

where B is a constant depending only on L, m, and n. Given a function J E M which
is constant on each of the above mentioned boxes, ThJ can be evaluated using c/h 2n + "m

arithmetic operations, where c is some given constant [CT89a]. [This is because the integral
in Eq. (7.1) is replaced by a summation.]

The classical successive approximation (value iteration) algorithm for approximating
J' chooses a grid-level h and an initial function J 0 , and applies Th a number of times until
Jh is closely approximated. If h is chosen suitably small, this provides an approximation to
J*. In a multigrid version of this algorithm, different iterations apply the operator Th with
different choices of h. We notice that the problem of finding a good multigrid algorithm is
a special case of the problem considered in the preceding sections of this paper, with the
following identifications:
(a) 1 - f, hq = /, which yields q = 0 and f, = 1 -/i;
(b) f 2 h-r = ch- 2 n - m , which yields r = 2n + m and f2 = c.
(c) f 3 h ° = Bh/(l - p3)2, which yields s = 1 and f3 = B/(1 - 3)2;

According to the results of Sections 5-6, and disregarding the dependence on B, c, the
one-way multigrid algorithm of Section 5 has complexity

(1 ,i l [(1 2+)n] ), (7.2)

and is optimal within the class of multigrid algorithms. (This is the same as the algorithm
proposed in [CT89a].) In [CT89b], it is shown that every algorithm (not necessarily of the
multigrid type) for the problem under consideration has complexity

which differs by a factor of 1/(1 - /) from the upper bound of Eq. (7.2). Whether this gap
can be closed is an open problem. However, as the results of Section 6 show, if that gap
is ever closed, this will be accomplished by a more sophisticated algorithm that exploits
properties of the problem other than the facts C(h) h - 2 " - " and D(h) h/(1 - /3)2.

Stochastic approximation
Consider the iteration

y(t + 1) = y(t) - h(t)(y(t) + w(t)), (7.3)

where y(t) is a scalar, w(t) is a white noise sequence of unit variance, and h(t) is a stepsize
parameter. Equation (7.3) is the stochastic gradient algorithm for the minimization of the
cost function y 2 on the basis of noisy observations. Let V(t) be the mean square error
E[y(t)2]. Then, Eq. (7.3) yields

V(t + 1) = V(t)(1 - h(t))2 + h(t)2 . (7.4)
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The stepsize is under our control, and we can pose the problem of finding a stepsize
sequence so as to minimize the number of iterations until we have V(t) < E.

It is clear that Eq. (7.4) is a contracting iteration with contraction factor (1 - h(t))2,
which is close to 1 - 2h(t) when h(t) is very small. In terms of our formalism, we have
q = 1, s = 1, and r = 0. Thus, Eq. (5.6) shows that an optimal choice of the sequence h(t)
requires O(1/E) iterations. In contrast, if we were to let h(t) be a constant (this would
correspond to what we call a "single-grid algorithm"), h should be chosen to be of the
order of E and the number of iterations would be O((1/E) . log(l/E)).

Furthermore, our "one-way multigrid algorithm" indicates an appropriate choice for
the stepsize sequence h(t). The sequence h(t) takes the values 2-i, i = 0,1,..., and the
value 2-i is used for 0(2') iterations. Thus, we have (up to a constant multiplicative
factor) h(t) 1l/t which coincides with the most common choice of stepsize in practice. Of
course, the optimality of a stepsize sequence of the form h(t) - lt can be derived from
first principles (or from the Kalman filter equations). Our point is that there is a more
general principle at play.

Other examples

In [L90], it is shown that the backpropagation algorithm for learning in feedforward
neural networks attains a desired accuracy much faster if a slowly decreasing learning rate
(stepsize parameter) is used, in contrast to a constant learning rate. The principle at play
here is similar to the one in our stochastic approximation example, and we believe that
the results of [L90] have a similar interpretation within our framework.

For another example, consider simulated annealing. If we view different temperatures
as different "grid-levels", a cooling schedule corresponds to a "multigrid algorithm". As
it turns out [C89], under our formalism, the one-way multigrid algorithm of Section 5
corresponds to the the popular logarithmic schedule [H85a]. Unfortunately, there is one
technical assumption (the assumption that the delay factor is the same at all grid-levels)
that does not seem to hold. Nevertheless, the analogy between our framework and simu-
lated annealing is quite suggestive.

Finally, let us consider the celebrated Full Multigrid V-cycle algorithm [H85]. This
algorithm is usually described as moving up and down between different grid-levels. There
is however an alternative description whereby the algorithm is viewed as a sequence of
V-cycles performed on a sequence of successively finer grids. If we view a V-cycle at grid-
level h as an iteration of Ah, then the Full Multigrid algorithm corresponds to the one-way
multigrid algorithm of Section 5, with its attendant optimality properties. In contrast,
if each V-cycle were to be performed at the same grid-level, we would be in a situation
analogous to the single-grid algorithm of Section 4, which is non-optimal.

For most of the examples mentioned here, our formalism does not lead to any new
results. On the other hand, we find it conceptually satisfying to realize that a common
principle is at play in so many different types of algorithms.

VIII. DISCUSSION

We have described an abstract general framework for the design of multigrid algo-
rithms for a class of fixed-point problems, and have demonstrated that a particular one-
way multigrid algorithm has certain optimality properties. In particular, our framework
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establishes rigorously the principle stating that computations at a grid-level should be
carried out only until the solution accuracy balances the discretization error.

In our model, we have assumed specific functional forms for the contraction factor,
the discretization error bound, and the cost per iteration. A related theory can be carried
out in much greater generality. In particular, it can be shown [C89] that under some
reasonable and fairly general assumptions, one-way multigrid algorithms are no worse
than more general multigrid algorithms. Furthermore, similar results are also possible
when one also considers a somewhat enlarged class of algorithms where the next iterate is
a function of all previous iterates at the current grid-level [C89].

Regarding further research directions, it would be interesting to identify interesting
application areas that can be cast within our framework.
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