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Abstract

Fabry-Perot Filters are major candidates for use as demultiplexers in wavelength division

multiple access networks. In this paper we investigate the crosstalk limitations of such

filters, compare their performances, and optimize the filter design to minimize the crosstalk

degradation.
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1 Introduction

The advent of dense wavelength division multiple access (WDMA) optical networking is

contingent upon the development of several key system components. Among the compo-

nents required for a non-coherent/direct detection implementation of a WDMA system is

a tunable optical filter with a sufficiently narrow passband and a sufficiently wide tuning

range to allow extremely close channel spacings over the entire low-loss optical bandwidth

window. Fabry-Perot (FP) filters show promise of fulfilling these requirements [1],[2].

The use of FP filters in WDMA systems for channel selection has been studied in several

papers [31-[9], but the analysis of the crosstalk degradation of the bit error rate and the

power penalty required to overcome it has only been approximately estimated. The purpose

of this paper is to analyze, in an exact and unified manner, the crosstalk degradation for

several different variations of the basic FP filter, to compare their performances, and to

optimize their design paranleters.

This paper is organized as follows: In Section 2 we describe the system model and

the parameters used throughout this paper, give a brief review of relevant Fabry-Perot

equations and terms, and discuss the four different filter structures to be analyzed in this

paper. The following four Sections are devoted to the analysis of crosstalk in the cases of

a Single-Cavity FP filter, a Double-Pass FP filter, a Two-Stage Double-Cavity FP filter,

and a Vernier Double-Cavity FP filter. A discussion of our results and the conclusions are

stated in Section 7.



2 Preliminaries

2.1 System Model

The system analyzed in this paper is a wavelength division multiple access system consisting

of M connected transmitters and receivers. Each transmitter consists of an on-off modulated

fixed-frequency laser, with the "OFF" power level equal to zero (i.e an ideal extinction ratio).

We denote by W the system bandwidth in which the transmitter frequencies are equally

spaced, thus giving a channel spacing of W/M Hz. All laser linewidths are assumed to be

negligible compared to both the channel spacing and the receiver resolution. In addition,

any spectrum broadening due to modulation is, for simplicity, neglected. These limitations

are further discussed in Section 7.

Each receiver has an optical filter that may be tuned to select any one of the M trans-

initters. However, the large passband and non-ideal stop-band attenuation of the filter

introduce crosstalk from the other M - 1 channels. Following the filter, a direct detection

receiver detects both the filtered signal and the crosstalk, and performs further electronic

processing through which receiver, or thermal, noise is added. This noise is independent

of the received power level, and can be modeled as additive Gaussian noise. Since this

is an Intensity Modulated/Direct Detection system, the receiver noise dominates all other

forms of noise (shot noise, laser excess noise, phase noise, etc...) [101, and therefore will be

considered as the sole noise source (in addition to the crosstalk interference).

Crosstalk analysis in this system depends on the structure of the optical filter used

in each receiver. In this paper we consider only basic Fabry-Perot filters and variations

on them. The following subsection is a brief review of the basic equations describing the

operation of such filters.

2.2 Fabry-Perot Filter Equations

A Fabry-Perot (FP) filter consists of two highly reflective parallel mirrors with reflection

coefficients rl and r 2 separated by a distance L, thus forming a cavity. As is the usual case,

we take r2 = r2 = R = reflectivity of both mirrors. In addition, for generality, we assume

the mirrors to be lossy with loss parameter A = 1 - R - T, where T is the transmittance

of both mirrors. Intra-cavity losses are ignored.
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The field transfer function of an FP filter is then given by [11]

t(6) = (1 - R- A) Z(Rej 2 i6 ) (1)
i=O

where 6 is the normalized optical frequency = 2f nL/c, so that t(6) is periodic in 6 with

period 1. The quantity c/2nL is commonly referred to as the free spectral range (FSR),

where n is the refractive index of the medium between both mirrors, and c the speed of

light in vacuum. Phase changes on the mirrors are ignored.

The power transfer function is given by

Tsc(a) = t(6)t*(6) (2)

= (1- 1 ) E R(lnIej2wn (3)

A )2 1(4)
= (1 - A R 1 + ((2F/lr)sin(7r)) 2

where the subscript (SC) denotes single-cavity. F is the finesse of the FP filter, defined

as 7rVR/(1- R). For large reflectivity values (1- R < 1), F ~ FSR/FWHM where FWHM

(Full Width at Half Maximum) is the 3-dB bandwidth of a passband of the FP-filter. F

can be further approximated by

F = -w/ In(R) (5)

We term the factor (1 - A/(1 - R))2 in (4) as the maximum intrinsic filter transmission.

External losses, such as connector and coupling losses, necessarily reduce the effective filter

transmission.

2.3 Alternative Fabry-Perot Filter Structures

The above equations were for a single-cavity FP filter. Several variations on this standard

structure are possible (see Fig. 1):

1. Double-Pass FP Filter: This is a variation on the single-cavity structure, in which

the cavity is "re-used" by returning the output of the filter to pass through the cavity

another time. 2
2'thilt.iple (> 2) pass lilters are theoretically possible [121, but tvill suffer significant losses. and will tlhlus

not. Ie considlered hlere.
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2. Two-Stage Double-Cavity FP Filter: In this case, the filter consists of two cavities

with equal or comparable F values, but widely different free spectral ranges (and thus

widely different FWHM values). We term it "two-stage" since the first filter may

be considered as the first, or rough, stage filter with an FSR equal to the system

bandwidth that suppresses all far channels, and the second filter as the "fine-stage"

filter that provides the required selectivity by suppressing the adjacent channels.

3. Vernier Double-Cavity FP Filter: Here two cavities are also used, but with FSR values

such that K FSRs of filter 1 cover K + 1 FSRs of filter 2, thereby resulting in a much

increased effective FSR, with a reduced FWHM.

A plot of a specific case (Single-Cavity finesse = 100) of the transfer functions of the

four structures analyzed in this paper is given in Fig. 2, clearly showing the tradeoff

between transmission (or attenuation) and selectivity (or FWHM) for the three double

cavity structures above.

All of the above three variations require some form of isolation between the two filter

sections in order to prevent unwanted resonances. Several methods for achieving this isola-

tion have been discussed in detail in [4] and [11]. Other alternative structures, such as the

three-mirror FP filter [4] [12], will not be covered in this paper.

3 Single-Cavity Filters

3.1 Crosstalk PMF & Worst-Case Crosstalk

An exact analysis of crosstalk in the case of single-cavity filters may be performed as follows:

We first note that the system bandwidth in this case is just one FSR, to avoid aliasing effects.

We assume all users output equally probable "ON" and "OFF" levels in synchronism and

with equal peak power (taken as unity). Justification of the synchronism assumption will be

given shortly. The output of the filter, centered on the 0
th channel due to the ith channel,

0 < i < M, is then a random variable with the probability mass function (pmf)

P= 0 prob = 1/2

Tsc(i/M) prob = 1/2

where Tsc(') is defined in (4). The resultant crosstalk is then given by
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M-1

C= EPi (7)
i=l

where the dependence on M and F is suppressed. The pmf of C may be simply obtained

by the convolution of the above M - 1 pmf's. An example of the crosstalk pmf for the case

M = 40, F = 100 is given in Fig. 3(a), showing its significantly non-Gaussian shape 3. This

is primarily due to the dominance of the closest neighbors in the crosstalk sum. Fig. 3(b)

shows the pmf for "OFF" and "ON" levels, with the threshold set at the midpoint, for the

case Mi = 80, F = 100.

The worst-case crosstalk occurs when all other M - 1 transmitters are sending "ON"

levels, and may be expressed as

M-1

Ssc(MF) = 1 + ((2F/Tr)sin (ri/M))2 (8)

As can be easily seen, if users were assumed to be perfectly asynchronous, Pi in (6) would

consist of two impulses, each of weight 0.25, at 0 and Tsc(ilM) and a continuous uniform

density between those two points with area 0.5. The worst-case crosstalk is identical in

both synchronous and asynchronous cases, but the tails of the pmf using the synchronous

assumption are larger than those using the asynchronous assumption. Hence synchronism

is a worst-case assumption.

In Appendix A, we show that an exact closed-form expression for the worst-case crosstalk

is given by

1-R 1+RM
Ssc(M, F)= M(- R )( +M)- 19)

where R is the nmirror reflectivity, whose dependence on F is suppressed. By using (5),

(9) can be rewritten in terms of F resulting in, for the case of large F,

TM lrM
Ssc(M,F) -- cotanh( )-1 (10)

showing that Ssc(M, F) is, for large F, a function of MIF only. This formula is plotted

in Fig. 4. For F = 100, it is indistinguishable from (9).

Convenient lower and upper bounds for Ssc(M, F) can be derived using results given

in Appendix B

All convolutions in thllis )pa.er were perfornled using a 10 2 4-point. F'F
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· 't2M/r'F )2" .2 2
12+ 2(MF) < Ssc(M,F) < 2 (11)- )12+22r(M/F) 12 F

showing that the the worst-case crosstalk grows roughly as j2-(M/F)2, in agreement with

the results in [8].

The value of M/F that gives SsC(M, F) = 1 provides an upper bound on the maximum

number of users M that can be supported with a finesse F to produce a zero BER, taking

into account only the crosstalk interference. This bound can be easily computed from (10)

to be approximately

M < 1.22F

which is an overly optimistic bound, since receiver noise was neglected. This is corrected

for in the next subsection.

3.2 Probability of Error and Power Penalty Computation

Assuming that the detector output is scaled such that an "ON" results in a unit level, the

probability of error taking into account both the crosstalk and the receiver noise can be

straightforwardly calculated as

P= EC{ Q( aC )+Q( 1 )} (12)

where the expectation is taken over all possible values of the crosstalk random variable

C. q is the decision threshold, given by

1 + Ssc(M, F)
= 2 (13)

and a is the receiver noise standard deviation. o is equal to the ratio of the noise equivalent

power to the peak optical power. Q(z) is the Q-function defined as

Q(Z) = 9 fj e- 2 /d

Fig. 5 shows the bit error rate P,, for the case F = 100 and a range of M/F ratios

versus SNR, where SNR is defined as

SNR (14)
06
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It should be noted that these plots appear to depend only on the ratio M/F. Fig. 6

shows the resultant crosstalk power penalty at three different BERs, where crosstalk power

penalty is defined as

10 logl 0( )

where PO is the power needed to produce the given BER in the absence of crosstalk,

and P, the new power needed to produce the same BER in the presence of crosstalk. Fig.

6 shows that, for example, for a power penalty of 0.5 dB at a BER of 10- " a maximum of

M _ 0.5F users may be allowed. The same figure also shows the zero probability of error

power penalty, which is just -10 log1 o(1 - Ssc(M, F)).

The fact that there is a power penalty indicates that there is a tradeoff between band-

width efficiency and power efficiency. In local distribution systems, where power efficiency

is not critical, it may be appropriate to operate with a large power penalty to support many

users even if some devices have bandwidth limitations.

3.3 Effect of Laser Drift

Ideally, one would require all transmitter frequencies to be absolutely stable at their assigned

values over time. In reality, however, this is not always the case, and one must take account

of this effect.

Fig. 7 shows the degradation of the BER with increased worst-case laser drift for

M = 40, F = 100, where a worst-case laser drift of D is defined as the case when all the

transmitter frequencies drift by D Hz such that the desired transmitter is attenuated while

all other frequencies are amplified. D is measured in units of the FWHM of the filter.

3.4 Additional System Degradations

1. Threshold Setting

So far, we have assumed that the threshold is permanently set at (1 + Ssc(M, F))/2,

which is the average received power when all transmitters are active and sending

equally likely "ON"-"OFF" signals. This is optimum only for the case when all users

are continuously transmitting; that is when there are no idle or "off-line" users. This

clearly may not always be the case.
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It is tempting to make the threshold slowly adaptive by setting it to the (time-varying)

mean received power instead. However, for large Ssc(M, F) this can be disastrous

when transmitters on adjacent channels become active after having been inactive,

unless if inactive transmitters continue transmitting at half power.

It is interesting to note, however, that if 7 is kept fixed at (1 + Ssc(M, F))/2, then

the probability of error can actually increase as other transmitters become inactive.

In the extreme case when all but one of the transmitters are inactive, the probability

of error is given by

P, =2 Q( )+Q(

2. Non-zero Mirror Loss

As is evident from (4), the effect of the mirror loss A is an attenuation of the trans-

mission transfer function by a factor (1 - A/(1 - R))2. It has no effect on the filter

finesse F. Thus, all channels are uniformly attenuated, and the SNR will be reduced

accordingly. The same comment holds for other sources of attenuation.

3. Near-Far Effect

The near-far effect is an additional degradation that occurs when the desired channel,

or transmitted frequency, is attenuated while all other channels are not. Eliminating

this effect simply requires an additional power penalty equal to the suffered attenua-

tion.

4. Nonideal Eztinction Ratios

We have so far assumed an ideal extinction ratio r = 0, with r given by r A g one

then may easily show that an additional power penalty equal to 10log1 0(l/1 - r) (for

peak power) must be paid (i.e the same as that of the single user case). This can be

seen by noticing that the received power distribution in this case will be similar to

that of Fig. 3(b), but with a translation to the right by r(1 + Ssc(M, F))/(1 - r).

This translation does not affect the probability of error.

3.5 Finesse Optimization

From the previous discussion it appears that it is always beneficial to increase the finesse of

the filter to accommodate a larger number of users. However, this is not true when intrinsic



filter losses are taken into account. Consider a filter with mirror loss A and reflectivity R.

From (4), the intrinsic filter transmission is (1 - A/(1 - R))2 which decreases with F. Some

insight can be gained by taking the simplified view that a filter designer can vary R while

keeping A fixed. We will seek the finesse F -' ,t maximizes the quantity

p = (1- 1 i - Ssc(M, F))

where the first factor reflects the transmissi, ? and the second factor the crosstalk effect.

-10 log(p) can be interpreted as the zero probability of error power penalty.

Using the approximations Ssc(M, F) ~ 1(.)2 and 1/(1 - R) ~ F/7r, the problem is

then to maximize the quantity

(1 - AF)2(1 _ ( )2)
I 12 F

over F. Elementary calculus reveals that at the optimal F,

AF) 2 A)2

from which it is easy to show that the optimal finesse is given by

A 12

and that the optimum p is

p*= 1 (MA )1 /

above formulas show that the number of users that can be supported for a given

,er penalty is inversely proportional to the attenuation coefficient. One can show that

this conclusion remains valid even when using the exact value of Ssc(M, F) given by (9)

as long as F is large.

Fig. 8 shows the dependence of F* on M, where both are normalized by A - 1. In

addition, it shows the increase in optimum crosstalk power penalty (in dB) with the number

of users M, where M is normalized by A - 1'. Both curves in Fig. 8 were obtained by

numerical maximization of p, to avoid using the approximations of R and Ss c(M, F) above.

The same method can be applied to determine optimal finesse for arbitrary relationships

between A and F, as well as for other FP structures.
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4 Double-Pass Filters

4.1 Crosstalk PMF & Worst-Case Crosstalk

Extension of the results of the previous section for the case of the Double-Pass FP filter is

quite straightforward, and simply involves the replacement of the transfer function (4) by

TDP(v)--(1 + ((2F/7r) sin(7r)) 2)2 (15)

where we set A to zero. Thus C, the crosstalk random variable, is still given by (7), but

with Tsc(') replaced by TDp(.) in (6).

Fig. 9 shows the crosstalk pmuf for the case of M = 112 and F = 100, where F is the

single-pass finesse. It clearly shows that most of the crosstalk is contributed by the adjacent

channels.

The worst-case crosstalk for this case is given by

M-1

SDP(MF) = E (1 + ((2F/r) sin(7ri/M))2 )2 (16)

In Appendix C, we show that an exact closed-form expression for SDP(M, F) is

!- R M (1- R2M)(1 + R 2 )

SDP(M, F) = ( R)2 M _ )[(1- R + 2MRM] -1 (17)1+1R (1 -RM)2 1-7R 2

where the dependence of R on F is suppressed. After using (5) and some algebra, we

can rewrite the above in terms of F

SoD(M,F) 4 (1 e-(M/F))2[1 - e-2M/F) + 2 e -(M/F)] - 1 (18)
4(1- e-(FMIF))2 F

(rM/F) 4 1 - (rM/F) + "(rM/F)2 - 7(rM/F)3 +...'re8A (19)
720 1 - (rM/F) + 7 (rM/F)2 - 1 (rM/F)3 +...

('M/F) 4
_ ('M/F) 2 (TM/F)4 (M/F) (/20)

720 21 + 560 16632

where the last power series expansion is valid for MIF < 2. Thus for small MIF, the

worst case crosstalk grows as -2 (rM/F) 4, in agreement with results in [81. The constraint

SDp(M, F) < 1 results in a zero-error upperbound on M given by approximately

IM < 2.53F
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4.2 BER and Power Penalty Computation

Calculation of the BER and crosstalk power penalty involves the same equations used for the

single-cavity filter case ((12) and (13)), with the substitution of SDP(M, F) for Ssc(M, F).

Fig. 10 shows the BER for F = 100 and various M/F values, and Fig. 11 shows

the crosstalk power penalty in this case. Comparing Fig. 10 and 11 with Fig. 5 and 6

respectively, one may see that the value of M that can be supported with a double-pass FP

filter for a given BER or power penalty is about 2.1 times that allowed using a single-cavity
FP filter.

5 Two-stage Double-Cavity Filters

5.1 Transfer Function

The effective transfer function of the two-stage double-cavity filter is given by

TTS() = + ((2F/)sin( )) (21)1 + ((2F/r)sin(w6))2 1 + ((2F/lr)sin(r6bK))2

where F is the finesse of each stage, and K is the ratio of FSR1 to FSR2 (K > 1),

where FSR1 is equal to the system bandwidth W, as was shown in Fig. 2 with K = 10.

If K is too large, the number of secondary peaks becomes large and excessive crosstalk

results. If K is too small, however, then to keep the finesses equal each second-stage

passband (FWHM) must be increased, thus reducing the effective resolution of the filter.

An optimum K exists, and the following subsection investigates the choice of optimum K.

5.2 Ratio Optimization for Worst-case Crosstalk

The worst-case crosstalk of a two-stage FP filter is extremely sensitive to small changes in

M, as exhibited in Fig. 12 for the case F = 100, K = 28. Peaks occur when transmitter

frequencies coincide with the second-stage transmission maxima. One design method for

this structure might then be to choose K so that none of the transmitter frequencies co-

incides with a second-stage transmission peak. Several problems prevent this kind of fine

optimization, however. First, the exact transmitter frequencies maybe unknown when de-

signing the filter. Second, since the filter must be tunable, its effective free spectral range
is variable, and hence so are the secondary peak locations.
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An alternative design criterion is to require that the crosstalk be small for all transmitter

frequency configurations in the vicinity of a nominal design point, which is equivalent to

minimizing the maximum, or worst-case, crosstalk. As proved in Appendix C, the worst case

occurs when there is a transmitter frequency at each secondary peak, i.e, when K divides the

number of transmitters M. If both filters have the same reflectivity R and losses are ignored,

and if all transmitters have unit peak power, then the maximum crosstalk is upperbounded

by the following formula, which is exact when K divides M. It is also plotted in Fig. 12.

STS(M, F,K) = M( R)2( 1RM)( RM/)(a + )- 1 (22)

where

(1 - RMRMIK)(1 + RRK)
1 - RRK

(R + RK)(RM/K - RM)
R - RK

which reduces to (9) for K = M (single cavity) and (17) for K = 1 (double-pass). This

formula is exact only when K divides M, but is smooth in M and K and will be used for

the optimization over K. The optimal K must be in the vicinity of VIM, since this is where

the competing factors (1 - RK) and (1 - RM/K) in the denominator are equal. Assuming

this to be the case and M large, we neglect RM compared to both RK and RM/K, and we

approximate 1 + R by 2. This yields

s - R 1+ RMIK 1 + R K

STs(M, F, K) M( )2 (___+ )-1 (23)2 1- RM/K )(1 RK)

This is minimized by K = vM-, and the resulting crosstalk is

1-R 1+ (24)
STs(M, F) M )2( 1 + )2 - 1 

Using the approximations 1 - R 7lr/F and R z ew- /F yields

Srs(M, F) ( )2 cotanh2( 2 )-1 (25)

Thus the zero-error upperbound on M, when STs(M, F) = 1 is found to be

M < 0.55F2
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Fig. 13 shows the value of K minimizing (22); the ripples are caused by the constraint

that K be integer. Fig. 14 displays both the minimum value of (22) and (25).

The first term in (23) is equal to the square of the first term in (10), with v/M/F

replacing MIF. The bounds in Appendix B can therefore be adapted to this case, revealing

2M M
STs(M,F) 6F2 1.6452

which is a very good approximation even for large MIF. Thus the worst-case crosstalk

in this system with Mi users and a single filter finesse F grows as -f(M/F2), and is roughly

equal to the worst-case crosstalk in the single-cavity filter with v/7M users. Note that the

behavior of the optimized system in Fig. 14 is quite different from that of a non-optimized

filter as that of Fig. 12, and is in fact just the lower envelope of the upper bound curves for

different K's. One should note that the filter of Fig. 12 is optimal when M is around 784.

The resulting worst-case crosstalk is about 0.12, but the actual crosstalk is very sensitive

to the exact value of M as seen in Figures 12 and 14.

5.3 Crosstalk PMF, BER and Power Penalty Computation

The computation of the crosstalk pmf follows exactly the same method as that of the

previous two Sections. In this case we have (7) with TTS(') replacing Tsc(.) in (6).

Fig. 15 shows the crosstalk pmf resulting from two cases: M = 784, F = 100, K = 28

and M = 800, F = 100, K = 28. The former case, even though it uses a smaller M, has a

larger worst-case crosstalk STS(M, F, K). This is since K divides M (i.e it lies on one of

the peaks of Fig. 12). One should also note that the shape of the pmf is also dependent on

the exact value of M.

Fig. 16 shows the resulting BER with F = 100, and several different values of M with

K = VM. This choice of K makes it likely that these BER curves are worst-case curves.

Fig. 17 shows the resulting crosstalk power penalty for several BERs, where the condition

K = JVW is also used.

6 Vernier Double-Cavity Filters

6.1 Transfer Function

The power transfer function for the general case double cavity filter with FSR1 /FSR 2 ratio

equal to IK2/K 1 is
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Tv(6) = 1 1 (26)
1 + ((2F/7r)sin(reK1))2 1 + ((2F/lr)sin(7rK 2))

2

It is necessary that K1 and K 2 be relatively prime to insure that there be a single

frequency in the system bandwidth where both filters transmit maximally. The tradeoff in

choosing K 1 and K 2 is as follows. K1 and K2 cannot be chosen too large since the number

of secondary peaks is equal to K 1 + K2 - 1. In addition, secondary peak separation will

be as small as the system bandwidth divided by K 1K 2, which for large K 1 and K 2 may

be too small to provide an acceptable attenuation level. On the other hand, having large

K 1 and K 2 leads to a narrower FWHM of the individual filters and thus of the combined

filter response. The rolloff of the central peak of the combined filter is the product of the

rolloff of the individual filters, and this effect is most pronounced if both filters have about

the same FWHM. Taking into account that K 1 and K 2 must be relatively prime, it would

thus appear that it is best to have K 2 equal to K 1 + 1. The following subsection elaborates

further on this point.

6.2 Ratio Optimization for Worst-Case Crosstalk

Our methodology to optimize K 1 and K2 is similar to that used in Section 5.2, since it

can be shown that that the worst case crosstalk is sensitive to the exact value of M, as was

the case for the two stage filter. So, as in that case, we choose them to minimize the worst

case crosstalk when M is in the vicinity of a nominal design point. In Appendix C we show

that, assuming all users have unit peak power and both filters have the same finesse, the

crosstalk does not exceed

l-R 1 1
~Sv~(M, F(+/ = M3)- )2 1p 1 t(27)

1 + R (1- RMIK,) (1 - RMIK2)

where

(1 - RM/KZ+M/K2)(1 + RK2+Kt)

(1 - RK2+K)

and

(RK2 + RKI)(RM/K2 - RM/K )
(RK1 - RK2)

This bound is exact when both K1 and K 2 divide M. The symmetry in K 1 and K 2

shows that our intuition in choosing K 2 = K1 + 1 is justified. In fact the previous formula is
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smooth in K 1 and K 2 and its value when K 2 = K 1+ 1 is close to that when K 1 = K 2 (i.e. the

formula does not take into account that if K 1 actually equals K 2 then the crosstalk would

dramatically increase). Further progress can be achieved by assuming that K 1 = K 2 = K,

and due to the competing factors in the denominator K should be of the order of VMA, say

K = kvJ'M. Using (5), we can rewrite (27) as

?rM 1 f(1 - e_2rvW/kF)(1 +e-2#kv'//F) 2 viyFI
Sv(lMl, F)= 4F2 (1 - e-Ikv/F))2 (1 - e-2r/kv/F) /kF

(28)
Using (28), the zero-error upperbound on M can be found to be (using k = 0.6):

M < 0.7F2

Fig. 13 displays the values of K 1 minimizing (27), using K 2 = K 1 + 1. The ripple is

due to the integer constraint. The same figure also displays the value of K minimizing (28)

without the integer constraint. It can be shown that K/IvM converges to V/T72 for large

M/F. The resulting values of the worst-case crosstalk are shown in Fig. 14. It should be

noted that the exact and approximate values are so close that they cannot be separated in

the figure.

6.3 Crosstalk PMF, BER and Power Penalty Calculation

Fig. 18 shows the crosstalk pmf when a vernier-type filter is used with F = 100, M =

1210, K = 22. As can be noted, the crosstalk pmf in this case appears to be more "Gaussian-

like", reflecting the addition of a large number of comparable interference terms because the

influence of the adjacent channels has been much reduced. This is not a worst-case pmf

however, since M is divisible by K 1 but not by K 2.

Fig. 19 shows the resulting BER in the case of F = 100, K = K 1 = v0A4M, for different

values of M such that Kh (but not necessarily K 2, since few such pairs exist) divides M. As

can be easily seen, the BER degradation due to crosstalk is significantly smaller than in the

case of the two-stage filter. In addition, the power penalty is observed to be significantly

smaller, for equal values of M, than in the previous cases, as shown in Fig. 20.
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7 Discussion and Conclusions

We have investigated in this paper the performance of four different Fabry-Perot filter struc-

tures that may be used as filters or demultiplexers in wavelength division multiplexed net-

works. The criteria uses for performance comparison were the resulting worst-case crosstalk,

BER and crosstalk power penalty. The double-cavity structures all outperformed the single

cavity structure, with the optimized vernier-type filter producing the best performance.

As a specific example, consider the case when the maximum allowed crosstalk-induced

penalty is 1 dB at a BER of 10 - 9. Table 1 shows the maximum number of users M

that is allowed with F values of 100 and 300. As can be seen, the difference between the

performance of the Vernier filter and the two-stage filter is much greater than that of both

the double-pass and the single-cavity filters.

It is necessary to add here though that while the vernier type double-cavity filter may

perform best, it is probably also the most difficult to implement since keeping the ratio

of the free spectral ranges constant over the entire tuning range is likely to be a complex

and delicate operation. Thus a suitable alternative is the two-stage filter, which is easier to

control, but at the expense of some performance loss.

Finally, it must be emphasized that the systems analyzed in this paper were highly

idealistic, since several important practical limitations, such as the stability of both the

lasers and the filters, finite laser linewidths, and filter tunability were not taken into account.

Many of these phenomena will become dominant when M is large. For example, if 104 users

are placed in the low-loss window of 1.5-1.6 microns, this will result in channel separations of

approximately 1 Ghz, so that the above phenomena may be the main causes of degradation,

and our results may no longer reflect the truly attainable performance. Further research is

thus necessary to determine the full effect of these limitations on Fabry-Perot filter-based

dense WDM systems.
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A Appendix

We derive the total power T transmitted through a lossless FP filter with mirror reflectivities

R, by M unit power users equally spaced in frequency over the free spectral range of the
filter, with a normalized frequency offset A with respect to a peak transmission frequency.

It is convenient here to use the alternate form of the transfer function (3), which is
simply the Fourier series expansion of the Airy function (4). We then have

M-1 oo1- R M-l T+R E Tl=- R (A.1)
i=O n-=-oo

M-1
1 R Rn ej2n(+R) (A.2)T-R R (A.2)

n=-oo i=O

But

E m = n=mM , m integer

·i=o 0{ otherwise

Thus,

T=M + R E RMjmIej 2 AmM (A.4)
m=-cO

Comparing (A.4) with (3), we recognize that the last sum is proportional to the power

transmitted by a single user with a normalized frequency offset MA through a FP filter

with nmirror reflectivity RM. Simplifying,

T= ( )( 1 - RM ) 1+ ((2 /(1 - RM in(M)) 2 (A.5)
I + R 1 - RM I + ((2v1R-M1 - RM ))sin(?rMA))2

Substituting A = 0 , and subtracting 1 (the desired signal) we get (9).
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B Appendix

The following inequalities hold for z > 0

z 2 z(e± + 1) 2
< -2 < -

6+z - ez - 1 6

Proof: Consider the function

z(ex + 1) zX
f(z) = -2 -- bz (B.1)

ez(z 2(b - 1) + z(6 - 2b) - 12) + z2 (1 + b) + z(6 + 2b) + 12 (B2)

(ez - 1)(6 + bz)

where b is a parameter. For z and b non-negative, the function has the same sign as the

nunlerator. The first three derivatives of the numerator are

f'(z) = e( 2 (b- 1) + 4z- 6 - 2b) + z(2 +2b) + 6 +2b

f"(z) = e(zx2 (b- 1) + z (2 + 2b)- 2-2b)+ 2(1+b)

f"'(z) = ez(z 2(b- 1)- + 4zb)

One sees that the numerator itself and its first two derivatives are 0 at z = 0, but that

the third derivative is non-positive for b = 0, and non-negative for b = 1 and z > 0. This

proves the desired inequalities.
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C Appendix

We derive here a tight upperbound on the total power T transmitted through two inde-

pendent lossless FP filters by M unit power users equally spaced in frequency. We assume

that the system bandwidth is K 1 and K2 times the free spectral range of filters 1 and 2

respectively, and that the frequency of one user coincides with transmission peaks of both

filters. K 1 and K 2 are assumed to be relatively prime integers so that this double coinci-

dence occurs only for one user. R1 and R 2 will denote the mirror reflectivities of filters 1

and 2 respectively.

From (3) we have,

T + RI 1 + R2 i=0 nl=-n2=-o (1)

Using (A.3), only the values of n1 and n2 such that

njlj + n2Ks =n1 =I + n2K 2 = (C.2)
M

for I integer, will contribute to the sum.

As Kh and K 2 are relatively prime, Euclid's Greatest Common Divisor algorithm guar-

antees that there exists integers N 1 and N2 such that N 1 K 1 - N 2K 2 = 1. Thus (C.2) can

be rewritten as

Kt(nl - N 1 IM) + K 2 (n 2 + N 21M) = 0

It follows that nl - NIlM is 0 modulo K 2, and n2 + N21M is 0 modulo K 1. The nl and

n2 that satisfy (C.2) must have the form n1 = IN1M + jK 2 and n2 = -(IN2 M + jKi) for

some integer j.

We can thus rewrite (C.1) as

1 - R 1-R 2 RZN1M+jK2iR11N2M+jK1I (C.3)
1 + R 1 1 + R2 1=- j-2 

Fig. 21 plots Inl, and In21 versus j for a given 1. It shows that there is a point nl where

Inll is less than K 2 on one side of the central region, and a point n' where In2i is less than

K 1 on the other side. We denote the corresponding values of In2j and Inll for the same j's

by n~ and n" respectively. Note that nl, n', n', n' all implicitly depend on 1. One sees from

(C.2) that
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M ,K 1

and similarly for nl'. With these auxiliary definitions, it is simple to find an expression

for the sumn over j in (C.3), as it decomposes into power series in the central and side regions

of Fig. 21. We obtain

T=M 1R 11-R Z Al (C.5)
1 + R1 1 + R: l=-(C

where

1RfX IRq n Rn1 R '-" R _ R I R -
Al = 2 + 2 + (C.6)

1-RlK2RKK R Ki -RK K

Consider now n' and n2 in (C.6) as independent variables and n'" and n' as variables

that depend on 1, n' and n' through (C.4). Using that formula, the part of Al that depends

on n' (first and third terms) can be written as

2 I |f/K2 (R K2 K,)n' /K2 (( (KR l yK[)n Kl KC
RIIIM/K (RK , Rf) 2 /KR (R'2/R )I/K) (.7)

V 1 - RK2R 1 1- R K/RK2

The value of this expression is the same for nl = 0 and n' = K 2. Moreover the difference

between the value at ni = 0 and the general expression is

RJLIM/K, 1 -(RKIR1KI)nI/K 1- (RK1 /R2)nlI/K2
21 RKfR? - R:,/R K,

One verifies that this quantity is positive if 0 < nl/K 2 < 1 because R' "/RK2 exceeds

RK2RK ' , and the function (1- zc)/(1- z) decreases with z > 0 for 0 < a < 1. Thus

the maximum of (C.7) occurs at ni = 0. The same reasoning holds for n'. We can thus

obtain an upper bound for Al by using n = n' = 0, and from (C.2), nq = IIIM/hK and

n" = IIIM/K 2, yielding

A R, M2 + RI M/K1 RK2IIMK - R+l1MIK RKC

1 - RK2R K R -R - R( 
Sununing over I gives the following bound on T:

T < ±R1 - Rr 1 - R2 )(
T < 20[c + 3] (C.9)

20



where

(1 - R /IK' R MK2 )(1 + RK2 R K )
a-

(1 - RI2R2' )

and

_ (RK2 + RKI )(RM/K2 _ RIM/K )

~- (R2' - RX')

/3 above is always positive and simplifies to ~2M RM/K1 when RK' = RK.

This bound is achieved with equality when M is such that n i and n' are zero for all 1,

which occurs when K 1 and K2 both divide M. In that case there is a transmitter frequency

at each peak of the series transmission of the filter.

By substituting R 1 = R2 = R, KI = 1, K 2 = M, and subtracting 1 we get (9). If we

substitute as above but with K 2 = 1, we get (17).
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List of Figure Captions

Fig. 1: Illustrative diagram of the four Fabry-Perot structures analyzed in the paper.

Fig. 2: Comparison of the transfer functions of the four FP structures, for the cases:

Single Cavity finesse F = 100, K = 10, Kll = K 2 - 1 = 6.

Fig. 3: (a) Crosstalk probability mass function (pmf) for the Single-Cavity FP filter

(M = 40, F = 100). (b) Crosstalk pmf for ZERO and ONE levels for (M = 80, F =

100). Threshold value is shown.

Fig. 4: Worst-case crosstalk for Single-Cavity and Double-Pass FP filters (F = 100)

versus M, and approximations to them. Note only two curves appear due to the

excellence of the approximations.

Fig. 5: BER versus SNR for different values of MIF, F = 100, for the Single-Cavity

FP filter.

Fig. 6: Crosstalk power penalty for 4 different BERs for the Single-Cavity filter.

Fig. 7: BER versus SNR for different values of worst-case laser drift (normalized by

FWHM).

Fig. 8: Normalized optimum finesse F* and optimum crosstalk power penalty versus

normalized M. Normalization factor is A - 1 where A is the loss parameter of both

mirrors.

Fig. 9: Crosstalk pmf for Double-Pass FP filter. M = 112, F = 100, SDp(M, F)

defined in (18).

Fig. 10: BER versus SNR for different values of M/F, F = 100, for the Double-Pass

FP filter.

Fig. 11: Crosstalk power penalty versus MIF for different BERs for Double-Pass FP

filter.

Fig. 12: Variation of worst-case crosstalk for Two-Stage FP filter versus M. F = 100,

KI = 28. Bound (22) is also plotted.
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Fig. 13: Variation of optimum K with M, F = 100, for Two-Stage and Vernier FP

filters (K 1 = K).

Fig. 14: Optimnm worst-case crosstalk for Two-Stage and Vernier filters. Exact and

approximate fte rlas are plotted for both filters, (which overlap for the Vernier case).

Fig. 15: Crosst mf for Two-Stage FP filter for two cases: M = 784, F = 100, K =

28 and M = 80t - 100, K = 28. Note STs(M, F, K) is larger for the first case (M

smaller) since 28 as 784 and is thus a worst-case.

Fig. 16: BER versus . R for different M, F = 100, K = JM for the Two-Stage FP

filter.

Fig. 17: Crosstalk power penalty versus M/F2 for different BERs for the Two-Stage

FP filter, for F = 100.

Fig. 18: Crosstalk pnff for Vernier filter, with M = 1210, F = 100, K 1 = 22.

Fig. 19: BER versus SNR for different values of M, F = 100, K = /0.A4M for the

Vernier FP filter.

Fig. 20: Crosstalk power penalty versus M/F2 for different BERs for the Vernier FP

filter, for F = 100.

Table 1: Performance comparison of the four FP structures for a 1 dB crosstalk power

penalty. See comments in Section 7.

Fig. 21: Diagram illustrating relationship between n', n', nq, n", and Ki'l, K 2.
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