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Abstract

In many applications, it is of interest to analyze and recognize phenomena oc-
curring at different scales. The recently introduced wavelet transforms provide
a time-and-scale decomposition of signals that offers the possibility of such an
analysis. Until recently, however, there has been no corresponding statistical
framework to support the development of optimal, multiscale statistical sig-
nal processing algorithms. A recent work of some of the present authors and
co-authors proposed such a framework via models of "stochastic fractals" on
the dyadic tree. In this paper we investigate some of the fundamental issues
that are relevant to system theories on the dyadic tree, both for systems and
signals.



1 Introduction

The investigation of multi-scale representations of signals and the develop-
ment of multiscale algorithms have been and remain topics of much interest
in many contexts. In some cases, such as in the use of fractal models for
signals and images [4, 30] the motivation has directly been the fact that the
phenomenon of interest exhibits patterns of importance at multiple scales. A
second motivation has been the possibility of developing highly parallel and
iterative algorithms based on such representations. Multigrid methods for
solving partial differential equations [9, 24, 31, 33] or for performing Monte
Carlo experiments [14] are good examples. A third motivation stems from
the so-called "sensor fusion" problems in which one is interested in combining
measurements with very different spatial resolutions. Geophysical problems,
for example, often have this character. Finally, renormalization group ideas,
from statistical physics, now find application in methods for improving conver-
gence in large-scale simulated annealing algorithms for Markov random field
estimation [19].

One of the more recent areas of investigation in multi-scale analysis has
been the development of a theory of multi-scale representations of signals [27,
29] and the closely related topic of wavelet transforms [15, 21, 25, 16, 23, 17,
22]. These methods have drawn considerable attention in several disciplines
including signal processing because they appear to be a natural way to perform
a time-scale decomposition of signals and because examples that have been
given of such transforms seem to indicate that it should be possible to develop
efficient optimal processing algorithms based on these representations. The
development of such optimal algorithms-e.g. for the reconstruction of noise-
degraded signals or for the detection and localization of transient signals of
different duration-requires, of course, the development of a corresponding
system theory and a theory of stochastic processes and their estimation. The
research presented in this and several other papers and reports [13, 7, 14, 5]
has the development of this theory as its objective.

In the next section, we introduce multi-scale representations of signals and
wavelet transforms and from these we motivate the investigation of models on
dyadic trees. Then we report some facts on the geometry of dyadic trees that
are essential in our theory. In particular we introduce 1/ shift operators to en-
code any move on the tree, and 2/ translations on the tree, and we show that
these are entirely different notions, as opposed to the case of classical 1D- and
2D- systems. In section 3 we develop a sample of a system theory of "general"
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transfer functions, i.e. a theory where transfer functions are considered as for-
mal power series in the primitive shift operators. We show that this theory
is a particular case of noncommutative formal power series theory introduced
and studied mainly by M. Fliess [8]. This theory however does not seem to
be a reasonable basis for a theory of stochastic processes on the dyadic tree.
Such a topic is the purpose of Section 4. In this section, stationary transfer
functions are defined as transfer functions commuting with any translation.
We characterize in a simple way such stationary transfer functions and develop
a realization theory for them, showing by the way that such a theory relates
to S. Attasi's 2D-system theory [3]. Then we define stationary stochastic pro-
cesses as stochastic processes with translation invariant covariance function,
and we present a sample of first basic properties of such processes.

In [5, 7, 6], we have studied extensively a subclass of the stationary pro-
cesses, namely the class of isotropic processes, i.e. processes with isometry
invariant covariance functions; we have also developed Schur- and Levinson-
like parametrizations for such processes. However, we were not able to develop
a corresponding theory of "isotropic" transfer functions, and the present paper
fills this gap by providing a clean system theory for a more general class of
systems.

Due to lack of space, results are stated without proof in this paper, proofs
will be presented in a full paper in preparation.
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2 Multiscale Representations and Stochastic
Processes on Homogeneous Trees

2.1 Multiscale Representations and Wavelet Transforms

The multi-scale representation [28, 29] of a continuous signal f(x) consists of
a sequence of approximations of that signal at finer and finer scales where the
approximation of f(x) - the mth scale is given by

+00

f m (x) = E f(m,,n)(2 m x - n) (2.1)
n=-oo

As m -+ oo the approximation consists of a sum of many highly compressed,
weighted, and shifted versions of the function +(x) whose choice is far from
arbitrary. In particular in order for the (m + 1)st approximation to be a
refinement of the mth, we require that 4(x) be exactly representable at the
next scale:

¢(x) = Z h(n)Q(2x - n) (2.2)
n

Furthermore in order for (2.1) to be an orthogonal series, +(t) and its integer
translates must form an orthogonal set. As shown in [16], h(n) must satisfy
several conditions for this and several other properties of the representation
to hold. In particular h(n) must be the impulse response of a quadrature
mirror filter [16, 34]. The simplest example of such a X, h pair is the Haar
approximation with

x) = 1 otherwse (2.3)0 otherwise

and

) = { otherwise (2.4)

Multiscale representations are closely related to wavelet transforms. Such
a transform is based on a single function Ob(x) that has the property that the
full set of its scaled translates {2m/2Ib(2mX- n)} form a complete orthonormal
basis for L2. In [16] it is shown that X and / are related via an equation of
the form

Ob(x) = a g(n)0(2x - n) (2.5)
n

where g(n) and h(n) form a conjugate mirror filter pair [34], and that

f m +i(x) = f m (x) + £ d(m, n)b(2mx - n) (2.6)
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fm(x) is simply the partial orthonormal expansion of f(x), up to scale m, with
respect to the basis defined by 4. For example if q and h are as in eq. (2.3),
eq. (2.4), then

1 0 < x < 1/2
(x) =)= -1 1/2 < x < 1 (2.7)

0 otherwise

1 n=O
g(n) = -1 n= 1 (2.8)

O otherwise

and {2m/24'(2mX - n)} is the Haar basis.
From the preceding remarks we see that we have a dynamical relationship

between the coefficients f(m, n) at one scale and those at the next scale. In-
deed this relationship defines a lattice on the points (m, n), where (m + 1, k)
is connected to (m, n) if f(m, n) influences f(m + 1, k). In particular the Haar
representation naturally defines a dyadic tree structure on the points (m, n)
in which each point has two descendents corresponding to the two subdivi-
sions of the support interval of 0(2 mx - n), namely those of 0(2(m+i)x - 2n)
and 0(2(m+l)x - 2n - 1). This observation provides the motivation for the
development of models for stochastic processes on dyadic trees and associated
system theory as the basis for a statistical theory of multiresolution stochastic
processes.

Let us discuss briefly how particular such a system theory may be. In classical
system theory on Z, an important tool is the z-transform. In this case, the
shift operator z is used both for defining what stationary means for a linear
operator on sequences (commuting with z, viewed as a primitive translation),
and for encoding transfer functions. Moreover, Z is totally ordered so that
there is an obvious notion of causality which plays an important role in sys-
tem theory. In the 2D-case of time index set Z2, the natural definition of
causality is lost but other features remain. As we shall see throughout this
paper, the situation is drastically different for system theory on homogeneous
trees. Although less natural than for Z, causality may be reasonably intro-
duced far less arbitrarily than for the 2D case. However natural shift operators
that encode "transfer functions" in our case will not be translations, not even
isometries; on the other hand, translations may be defined as we shall see
next, but they cannot be represented using the shift operators. This strange
situation has deep consequences which we shall investigate throughout this
paper.
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2.2 Homogeneous Trees

Homogeneous trees, and their structure, have been the subject of some work
[1, 2, 12, 18, 11] in the past on which we build and which we now briefly review.
A homogeneous tree T of order q is an infinite acyclic, undirected, connected
graph such that every node of T has exactly (q + 1) branches to other nodes.
Note that q = 1 corresponds to the usual integers with the obvious branches
from one integer to its two neighbors. The case of q = 2, illustrated in Figure
1, corresponds, as we will see, to the dyadic tree on which we focus in this
paper. In 2-D signal processing, it would be natural to consider the case
of q = 4 leading to a pyramidal structure on the indexing set of the 2-D
processes.

Isometries. The tree T has a natural notion of distance: d(s, t) is the num-
ber of branches along the shortest path between the nodes s, t E T (by abuse
of notation we use T to denote both the tree and its collection of nodes). One
can then define the notion of an isometry on I which is simply a one-to-one
map of I onto itself that preserves distance. For the case of q = 1, the group
of all possible isometries corresponds to translations of the integers (t - t + k),
the reflection operation (t '-4 -t), and concatenations of the two. For q > 2
the group of isometries of T is significantly larger and more complex. The
following classification of isometries may be found in [12]:

Lemma 1 (classification of isometries) Given an isometry f of the ho-
mogeneous tree T, three cases are possible, namely:

3s E : f(s) = s (2.9)

3s, t E T : d(s,t) = 1 and f(s) = t,f(t) = s (2.10)
3 (sn)nez e T, 3i > O : d(sn, sn+l) = 1, f(sn) = sn+i (2.11)

Boundary points and horocycles. An important concept here is the no-
tion of a boundary point [2, 11] of a tree. Consider the set of infinite sequences
of T where any such sequence consists of a sequence of distinct nodes tl, t 2,...

where d(ti, ti+l ) = 1. A boundary point is an equivalence class of such se-
quences where two sequences are equivalent if they differ by a finite number of
nodes. For q = 1, there are only two such boundary points corresponding to
sequences increasing towards +oo or decreasing towards -oo. For q = 2 the
set of boundary points is uncountable. In this case let us choose one boundary
point which we denote by -oo.
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Once we have distinguished this boundary point, we can identify a partial
order on T. In particular note that from any node t there is a unique path
in the equivalence class defined by -oo (i.e. a unique path from t "towards"
-co). Then if we take any two nodes s and t, their paths to -oo must differ
only by a finite number of points and thus must meet at some node which we
denote by s At (see Figure 1). Thus, we can define a notion of relative distance
of two nodes to -o:

S(s, t) = d(s,s A t) - d(t, s A t) (2.12)

so that

s _ t ("s is at least as close to -oo as t") if 6(s, t) < 0 (2.13)

s -< t ("s is closer to -oo than t") if 6(s,t) < 0 (2.14)

This also yields an equivalence relation on nodes of T:

Sz t - 6(s,t) = O (2.15)

For example, the points s, v, and u in Figure 1 are all equivalent. The equiv-
alence classes of such nodes are referred to as horocycles.

These equivalence classes can best be visualized as in Figure 2 by redrawing
the tree, in essence by picking the tree up at -oc and letting the tree "hang"
from this boundary point. In this case the horocycles appear as points on the
same horizontal level and s -< t means that s lies on a horizontal level above or
at the level of t. Note that in this way we make explicit the dyadic structure of
the tree. With regard to multiscale signal representations, a shift on the tree
toward -oo corresponds to a shift from a finer to a coarser scale and points on
the same horocycle correspond to the points at different translational shifts in
the signal representation at a single scale.

Translations. Translations will play an important role in the definition of
stationarity. Translations certainly should be isometries of the third class (cf.
(2.11)) according to lemma 1. However, for the sequel, we shall need primitive
translations encoding "moving away from -oo", i.e. the counterpart of the
shift operator z on Z. These are defined as follows:

1. select an infinite path (tn)nEZ originating from -oo, call it the skeleton
of the translation,

2. denote by s, the unique point outside the skeleton such that d(s,, t,) = 1
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3. denote by T.+ the semi infinite dyadic tree with root s, composed of the
semi infinite paths originating at s, and moving away from -oo

4. then the translation with skeleton (tn) is the unique isometry r such
that (cf. Figure 3)

= r(tn) = (t;+) -= 1-+ (2.16)

2.3 Shift operators and transfer functions on T

Shifts on the tree. The counterpart of the shift operator z is composed of
the two shifts which are illustrated in Figure 2

* 1 the identity operator (no move)

* a the left down-shift (move one step away from -oo toward the left)

*· the right down-shift (move one step away from -oo toward the right)

These shifts act on the right (if t is any node on the tree, ta is its left offspring).
Note that a and / are one-to-one but not onto; they are not isometries.

Shift operators on signals. By "signal" we mean a family yt of scalars or
vectors indexed by the vertices of the tree. The primitive operators that we
consider are "dual" of the shifts on T, namely (see figure 2):

* 1 the identity operator (no move)

* a the left down-shift operator:1

y = au t ' : yt = Ut,

* 3 the right down-shift operator:

y = Ou X Vt: yt = utP

*· the right up-shift operator: 2

y= Su X Vt:{ yt = Ut

'the value of y at a given node is obtained by picking the value of u at the corresponding
left down node

2the value of y at a given node is obtained by picking the value of u at the corresponding
right up node if available, or by setting 0 otherwise
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* /3 the left up-shift operator:

Yto - Ut

The class of operators we consider is the linear space over R spanned by these
primitive shifts: this is a noncommutative algebra. We shall call transfer
functions the matrices the entries of which are elements of this algebra. It is
easy to verify that the primitive operators obey the following simplification
rules:

acz=F3 = 1 (2.17)

Aj= a: = 0 (2.18)

-ca+ 3, = 1 (2.19)

Thanks to these rules, any transfer function may be expressed as follows:

S = E sT,i , wtwl (2.20)

wt E W T

w I E W1

where WT and W 1 are the family of monomials generated by the up-shifts t, /
and the down-shifts ac, 3 respectively, and the swTwl's are matrix coefficients.
In this writing we implicitly assume that all simplifications (2.17, 2.18, 2.19)
have been performed. This means that any monomial may be decomposed
into a down-shift followed by an up-shift.

We shall call the support of S the set of monomials in (2.20) with nonzero
coefficient.

Causality. We shall say that a monomial w Tw I is causal if

degree(wT) > degree(w 1) (2.21)

and we say that the transfer function S is causal if, in expression (2.20),
SWT,, = 0 whenever w Tw I is non-causal. Strict causality is defined accordingly.

Causal transfer functions may be written as follows

S = SEt' Wfw (2.22)
wt E W T

O' E W
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where W is the set of monomials wtw I such that

degree(wT ) = degree(w )

i.e. monomials in W combine data from the considered horocycle.
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3 System theory and realization of general causal
transfer functions

In this section, we investigate some aspects of system theory for the notion
of transfer function introduced in the preceding section. Here we consider
"general" (not necessarily stationary) transfer functions; stationary systems
will be studied in Section 3. We shall see that the theory of general transfer
functions is related to realization theory for automata [8] rather than linear
system theory even though we are considering linear operators on signals.

Definition 1 We define the depth of a causal monomial w = wTo (cf. for-
mula (2.22)) as one half the degree of ii. A transfer function S is called
finite depth if it can be expressed as a sum of bounded depth monomials.

The following lemma is obvious:

Lemma 2 If S is finite depth we can decompose it as follows

S = ST S (3.1)

where S t is a transfer function with support in W T and S a finite degree trans-

fer function with support in W.

St performs a smoothing along the infinite path linking the current point to
-oo while S performs a smoothing along the horocycle. Hence the support of
a finite depth transfer function is a cylinder as shown in the figure 4.

3.1 State-space realizations

Definition 2 A transfer function S is realizable if there exist constant matri-
ces C, A,, A: and a transfer function S as in (3.1) such that

S = C (I AA - 7A)S (3.2)

A state-space realization of (3.2) is

x| = aAx + A,3x + Su
y = Cx

which is equivalent to

ta = Axt + aSut
xta = Abxt + SUt
yt = Cxt
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3.2 Realization in the zero depth case

According to (3.1), a zero depth transfer function may be expressed as

S = E st WT

As usually done in automata and noncommutative formal power series theo-
ries, we associate with S the following Hankel matrix:

'H(S)ij = SwTt

where the monomials (w)i>0 are ordered according to the increasing degree

with priority given to c. Then the following results may be borrowed from
noncommutative formal power series theory [8]:

Theorem 1 S is realizable if and only if 7-t(S) has finite rank. Moreover, the
dimension of minimal realizations equals this rank, i.e.

S = C (I-TA4 -dAy) -IB

where the dimensions of A, and A: equals the rank of 7-(S).

By writing

Aw = coefficient of w in (I - ZA - --Ap)

we also have:

Theorem 2 A realization (C, A,>, A,, B) is minimal if and only if

V Im(A4,B) = R
Iwl<n

n Ker(CAw) = {0)
Iw|<n

where n is the dimension of the state and where Iwl denotes the total degree

of w.

As a corollary, we know that all minimal realizations are related by similarity
transformations.

To conclude, nothing new really appears, except that our theory relates
to noncommutative power series theory rather than usual 1D- or 2D-system
theories.



3.3 Realization in the k-depth case

The above procedure has to be modified for this case. Consider the space Wk
spanned by the monomials v of degree < 2k. Recall that ita + /33 = 1 so
that the family of these monomials is not a basis of Wk. However, it is easily
checked that monomials with degree exactly equal to 2k form a basis for Wk.
Denote by {(l,...I,,k)} such a basis, and set

q Onk -

where 0 denotes the Kronecker product, and the identity matrix I is of suitable
dimension for eqn. (3.3) to be consistent. Then we have the following theorem:

Theorem 3 1. If S has depth k, it can be expressed as

S = ST 1 k (3.3)

2. S is realizable if and only if S t in (3.3) is realizable.

3. If (C, A, Ap, B) is a minimal realization of St then (C, A,, A3, B'Ik) is
a minimal realization of S.

The realization procedure for the k-depth case is:

1. Express S as
S = S t 4k

making sure that no simplification is possible.

2. Realize S T as

St = C (I- A, - Ap) B

3. Construct the minimal realizations:

xtta = Alcxt + aB4kut

xt, = Apst + /3Bkut
Yt = Cxt
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3.4 Discussion

In this section, we have developed a realization theory for finite depth transfer
functions. To extend such a theory to infinite depth transfer functions, we need
a notion of rationality for the matrix S. This does not seem to exist in general.

On the other hand, the notion of transfer function that we have introduced
cannot be considered as "stationary" in any reasonable sense. For instance
the relation y = cu where u = 1 yields Yt, = 1 but Yto = 0! This means that,
to develop a theory of stationary processes, we need to constrain the class of
transfer functions that we have considered so far. This will be the subject of
the next section.
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4 Stationary causal and noncausal transfer func-
tions and stochastic processes

Given a translation r of T, by abuse of notation, we also denote by r its action
Ion signals defined by

7(y)t = Y-(t)

Definition 3 (stationary transfer functions) A transfer function S is said
to be stationary if 3

So t = - 0 S

for any primitive translation r.

To further study this notion, we need to know more about the primitive
translations.

4.1 More on primitive translations

It will be convenient to re-encode definition (2.16) of primitive translations us-
ing the shift operators on T. Let r = (tn}nEz be the skeleton of the considered
primitive translation denoted by rr, and denote by s, the unique point out-
side the skeleton such that d(tn, sn) = 1. Then 7r is encoded by the following
formulae

rr(tn) = tn+l (4.1)

Tr(SnWL) = Sn+l1W

Given two skeletons r and r', we define their composition

F" ro F'

by the following formulae, where we label the two skeletons in such a way that
they exactly bifurcate after to, i.e. to = t', tl : t' and n denotes an arbitrary
nonnegative integer:

t"n = t-n (4.2)

t = tl

t11 S 1W' if t t' w2+n = slw if tl+n 

30 denotes the composition of maps.
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We have the following result:

Tr 0 rr, = 7ror, (4.3)

A nice consequence of formula (4.3) is that the family of powers of primitive
translations is a semi-group.

4.2 Characterization of stationary transfer functions

Noncausal transfer functions. Using formulae (4.1,4.3) the following fun-
damental result may be proved:

Theorem 4 The transfer function S is stationary if and only if it can be
written as follows

S = Slrllwil wtUI (4.4)

wT E WT

WI E WI

Let us introduce the following stationary primitive transfer functions:

-1( + (a ) (4.5)

V = a +, (4.6)

These two operators generate two semi-groups. The action of these semi-
groups is depicted in Figure 5: T is a "backward" shift towards -oo whereas
y is a "forward-and-average" shift (the "Haar smoother"). Using these oper-
ators, formula (4.4) may be rewritten as

S = E Sk,l kl (4.7)
k,I>0

Causal transfer functions. The y and a operators obey the following
simplification rule

(4.8)

It will be useful to introduce the following family of operators which perform
a smoothing of data on the same horocycle as shown in the figure 5:

b[k] = 7kyk (4.9)

All 6[k]'s are idempotent operators. These operators may be used to provide
the following counterpart of formula (2.22) for the stationary case:
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Theorem 5 If S is stationary and causal, it can be expressed as follows:

S = E k,l TkS[] (4.10)
k,1>0

Obviously the matrix coefficients ski, are different in formulae (4.7) and (4.10).

4.3 Realization of stationary transfer functions

Both formulae (4.7) and (4.10) may be interpreted as standard 2D-transfer
functions that are causal in the two variables. Hence standard 2D realization
theories may be applied to both cases. We shall briefly investigate the two
cases.

Non causal transfer functions. If we interpret y as the row operator
and a as the column operator, then it is natural to consider the row-by-row
scanning to define a total ordering on the 2D index space. This corresponds
to decomposing the transfer function S according to the following two steps:

1. a bottom-up (i.e. fine-to-coarse) smoothing, followed by

2. a top-down (i.e. coarse-to-fine) propagation.

2D-system theory for systems having separable denominator [3] may be ap-
plied here. Rational transfer functions in this latter case are of the following
form [26]

S = C (I -aA4) - 1 P (I - yA.) - ' B (4.11)

which yields the following state space form

t = A, (v+t) +tBu

Zt = P2 Vt

xta = A-xt + Plzt, (4.12)
xto = At-xt + Plztp

Yt = Cxt

where P = P1 P2 . The first two equations define a purely "anticausal" process,
whereas the last third equations define a causal zero depth process.

16



Causal transfer functions. Here we interpret the sequence 6 [k] as the pow-
ers of the row operator and a as the column operator. Then again we consider
the row-by-row scanning to define a total ordering of the 2D index space.
This corresponds to decomposing the transfer function S according to the
following two steps:

1. a smoothing along the considered horocycle (i.e. constant scale smooth-
ing), followed by

2. a top-down (i.e. coarse-to-fine) propagation.

2D-system theory for systems having separable denominator [3] may again be
applied here. Rational transfer functions in this latter case are of the following
form [26]

S = C(I - 7A) -1 P (I - 6A6) - ' B (4.13)

where it is understood that, in expanding such a formula into a power series,
6 k should be replaced by 6[k]. This latter unusual feature has for consequence
that no tractable time domain translation of the "frequency domain" formula
(4.13) is available. The finite depth case however yields{ta = Axt +B (1, 6, ... ,6 [k ) uto,

xt: = Axt+B (1,5,...,6[k ])
U

t (4.14)

Yt = Cxt

where B (1, 6, ... , 6 [k]) is a linear combination of the listed operators. This
corresponds to the case where A 6 is nilpotent.

It can be shown that stationary finite depth scalar transfer functions may
be equivalently expressed in the following ARMA form

S = A-'B (4.15)

where A is a causal transfer function of finite support and B = B (1, 6, ... , 6[k])
is as in (4.14). This ARMA form includes as a special case the AR modeling
filters for "isotropic" processes studied in [7, 6, 5].

4.4 Stationary stochastic processes

To simplify the presentation, we concentrate here on scalar processes.
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Definition 4 A zero mean stochastic process y is said to be stationary if its
covariance function is translation-invariant, i.e.

E (ysYt) = E (YT(s)Yr(t)

for any primitive translation r.

The following theorem shows that this definition of stationarity for processes
is consistent with that of stationarity for transfer functions:

Theorem 6 1. The process y is stationary if and only if

E (YsYt) = r[d(s, s A t), d(t, s A t)]

where s A t is defined in (2.12).

2. If the process u and the transfer function S are both stationary, so is the
process Su.

Note that the second statement is an immediate consequence of the first one.
More generally, x and y are said to be jointly stationary if we have

E (x,Yt) = rYZ[d(s, s A t), d(t, s A t)] (4.16)

We define the cross-spectrum of x and y as the following power series:

RxY = rxYI[k, 1] -I
k,I>O

where r=Y[k, 1] is the cross-covariance sequence of x and y, cf. (4.16).
Given a stationary transfer function of the form S = E skjl ' (cf. (4.7)),

we set

S* A s,k 7kIl

Then the following formula yields the cross-spectrum of two stationary pro-
cesses Su and Tu where S and T are stationary transfer functions and u is a

stationary process:
R(Su)(TU) = SRUUT*

This formula generalizes a well-known result of the case of standard station-
ary time series. Finally, Theorem 6 has the following interesting result as a

consequence. Pick a point to E T and order the words w E {a, )}*' 4 of length

4the language of the words on the alphabet {a, i3}
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n according to lexicographic order with priority to ac: the corresponding set
of nodes tow is exactly the left-to-right ordered horocycle "segment" in the
figure 2, collect the -alues t,ow into a vector Y. Then the covariance matrix
,y of Y has the following recursively defined structure:

(ro) = ro

E_ (ro,..., rm() [ (ro,...,rm -I rmUm-1
rmUm_1 (0 ro ... , rml)

Ey = E (ro0, ,nrn)

where Ur is a 2m x 2m-matrix whose entries are 1. It is then easy to show
that the eigenvectors of Ey are the discrete Haar basis, cf. [5, 13] for more
details.
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5 Conclusion

In this paper we developed a system theory on the homogeneous dyadic tree
as a possible foundation for a multiscale system theory. We have shown that
the homogeneous tree possesses strange geometric properties that have the
following consequences: the double role played by the classical z-transform,
namely 1- encoding transfer function and 2- defining stationarity, is split over
two different objects -the shifts to encode transfer functions (these are not
isometries), and the translations to define stationarity (these are not easily
expressed via shifts)-. We sketched two system theories that emphasized on
each of these two different objects. Finally a notion of stationary stochastic
processes has been introduced.

The major results of this paper may be stated as follows.

1. There is a unique natural way to encode moves on the homogeneous
tree, and the corresponding elementary shifts may be used to define
and encode transfer functions and develop an associated system and
realization theory.

2. There is a unique natural way to define stationarity for both transfer
functions and stochastic processes on the homogeneous tree. Such a
notion emphasizes "stochastic fractalness ", as lengthily discussed in [6,
5]. Note that isotropic processes analyzed in the latter references are a
subclass of the stationary processes presented in this paper.

3. Stationary system theory on the dyadic tree is tightly related to the
Haar transform (which is the crudest multiscale analysis technique) as
expressed by the involvement of the "Haar smoothing" operator 7 = `2
and the fact that the restriction of any stationary process at a given
scale possesses a covariance function with the discrete Haar basis as
eigenvectors.

These results immediately generalize to homogeneous trees with more than 3
branches originating from each node, for instance, multiscale system theory
for images would require an homogeneous tree with 5 branches at each node
(1 to the coarser scale, and 4 for the pyramid going to finer scale). Proofs of
these results will be presented in a full paper, and further results and devel-
opments are in progress.
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Figure 1: The dyadic homogeneous tree
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to coarser scales to finer scales

t

translational shift

Figure 2: Showing scales and shifts: very thick lines show the moves on the
tree, thick lines show the operators on signals (the value at the origin of each
arrow is picked at the corresponding end)
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Figure 3: Translations: we show how the T.+ (in grey) are succesively mapped
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-00

Figure 4: The support of a finite depth transfer function (in grey)

[3]

Figure 5: Shifts for stationary transfer functions: the value at the origin of
each arrow is picked at the corresponding end and the grey cigare replaces
each value by the corresponding average
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