
March 7, 1990 LIDS-P-1943

ON COMPUTING THE NESTED SUMS AND INFIMAL

CONVOLUTIONS OF CONVEX PIECEWISE-LINEAR FUNCTIONS*

by

Paul Tsengtand Zhi-Quan Luot

ABSTRACT

We consider the problem of evaluating a functional expression comprising the nested sums and

infimal convolutions of convex piecewise-linear functions defined on the reals. For the special case

where the nesting is serial, we give an O(NlogN) time algorithm, where N is the total nunber

of breakpoints of the functions. We also prove a lower bound of fl(N log N) on the number of

comparisons needed to solve this problem, thus showing that our algorithm is essentially optimal.

For the general case, we give an O(Nlog2 N) time algorithm. We apply this latter algorithm

to the linear cost network flow problem on series-parallel networks to obtain an O(m log2 m) time

algorithm for this problem, where in is the number of arcs in the network. This result improves upon

the previous algorithm of Bein, Brucker, and Tailir which has a time complexity of O(nm+m log m),

where n is the number of nodes.

KEY WORDS: Convex program, balanced binary search tree, infimal convolution, series-parallel

graphs, linear cost network flow.

* This research is partially supported by the U.S. Army Research Office, contract DAAL03-86-K-

0171 (Center for Intelligent Control Systems), and by a grant from the Science and Engineering

Research Board of McMaster University.

tLaboratory for Information and Decision Systems, Massachusetts Institute of Technoology, Cam-

bridge, MA 02139.

tRoom 225/CRL, Department of Electrical and Computer Engineering, McMaster University,

Hamilton, Ontario, L8S 4L7, Canada.

1 Introduction

A classical problem in logic is that of the evaluation of Boolean expressions comprising the
nested AND and OR of Boolean variables. A problem entirely analogous to this, except being
defined on the space of convex piecewise-linear functions instead of {true, false}, is that of the eval-
uation of functional expressions comprising the nested "pointwise sum" and "infimal convolution"
of convex piecewise-linear functions on the reals. Just as AND and OR are dual to each other
through negation, the operations of pointwise sum and infimal convolution are dual to each other
through conjugation (see Section 2 for the definition). This functional expression evaluation prob-
lem, apart from possessing the interesting analogy to the evaluation of Boolean expressions, also
has a number of practical applications, particularly to problems defined on series-parallel networks
[Duf65]. As an example. consider the following system identification problem that is fundamental
in the study of monotone networks [Min60], [Dol79]: determine the characteristic function of a
monotone network, given its topology and the characteristic function of its elements. [Roughly
speaking, a monotone network is a mathematical model of an interconnection of physically lumped
elements, whose variables obey Kirchoff's laws and satisfy certain monotone relations associated
with the elements.] It can be shown that in the special case where the characteristic function
of the elements are step functions and the network is series-parallel, this problem is reducible to

our functional expression evaluation problem. Another example, closely related to the previous

example, is the linear cost network flow problem on series-parallel networks (see Subsection 6.1).

In this paper, we propose a number of highly efficient algorithmns for solving the above functional
expression evaluation problem. In particular, we give an O(Nlog N) time algorithm, where N is
the total number of breakpoints of the component functions, for solving the special case where the

nesting is serial. We also prove a lower time bound of Qf(NlogN), thus demonstrating that our
algorithm is optimal to within a constant multiplicative factor. For the general case of arbitrary

nesting, we give an almost optimal algorithm with a time complexity of O(Nlog2 N). We then
apply this latter algorithm to the linear cost network flow problem on series-parallel networks to
obtain an O(mlog2 m) time algorithm for this problem, where m is the number of arcs in the
network. This result significantly improves upon the O(nm + m log m) time bound obtained by
Bein, Brucker and Tamir [BBT85], where n denotes the number of nodes in the network.

The key to our results lies in the data structure that we use for storing each convex piecewise-
linear function. In particular, we reduce the problem of computing the sum (respectively, infimal
convolution) of two convex piecewise-linear functions to that of sequentially inserting the break-
points (respectively, slopes) of one function amongst those of the other function. To perform the
insertions efficiently, we store the breakpoints and the slopes of the functions in sorted order using
a balanced binary search tree (see, e.g., [Bay72], [Tar83]). Moreover, rather than storing the actual
value of the breakpoints and the slopes, we store the difference between neighboring (with respect
to the binary search tree) breakpoints and slopes.

~~' -~-~ -- ~ a~~-"~"""l""~ Pls"-~ 1----- ----- ----1

2 Problem Description

We say that a function f : R - (-oo, +oo] is convex piecewise-linear (c. p. 1. for short) if it has

the following form

P(x) { bjz + dj if aj < z < aj+l for some j E {1,..., m - 1}; (2.1)
+ +00 otherwise,

where al,...,am, bl,...,bm_l (m > 2) are scalar constants satisfying -oo < al < ... < am < +oo,

-oo00 < bl < ... < bmi_ < +oo, and dl,...,dm_l are scalar constants satisfying bj_laj + djl =

bjaj + dj for j = 2, ..., m - 1. The closed interval [al, am] is the effective domain of f (i.e., the

set of points at which f is finite), the finite-valued aj's are the breakpoints of f, and the finite-

valued bj's are the slopes of f. [We allow the possibility -oo < al = am < +oo, in which case

al is, by convention, the unique breakpoint of f.] For any x E [aj,aj +l), j E {1,..., m - 1}, we

say that bj is the right slope of f at x. The function f is closed proper and, since its right slope

is monotonically increasing within its effective domain, also convex. [For convenience, if x < al

(respectively, x > am), then we define the right slope of f at x to be -oo (respectively, +oo).] The

left slope of f is defined analogously. A fundamental property of c. p. 1. functions is that each of

them is determined, up to an additive constant, by its breakpoints and slopes (see [Roc84, Sec.

8B]). This, as we shall see, allows us to work with the breakpoints and slopes only.

We say that a c. p. 1. function h: R - (-oo00, +oo] is simple if h has exactly one breakpoint, i.e.,

h()= {b(x: - a)+d ifx<a; (2.2)
h (x) = c(x - a) + d otherwise, (2.2)

where a, b, c and d are some scalar constants satisfying -oo < a < oo, -oo < d < oo, -oo < b <

c < oo. [We use the convention (+oo)O = 0.] Notice that the effective domain of h is either ? or

[a, +oo00) or (-oo, a] or {a}, depending on whether b = -oo and whether c = +oo.

An important property of simple c. p. 1. funimctions is that any c. p. 1. function f with, say, n

breakpoints (n > 1) can be decomposed into the sum of n simple c. p. 1. functions. To see this,

simply note that if el < ... < e, are the breakpoints of f, sj is the right slope of f at ej for all j,

and so is the left slope of f at el, then

f = hi + ... + hn, (2.3)

where hi, h2 , ..., h, are simple c. p. I. functions given by, respectively,

h() = {so(- el) + d if x < el; (2.4)
· h (I· 1sl(x - el) + d otherwise. (2.4)

for somie scalar d, and

0 if x < e;2
j W f 0 ife j = 2,., n. (2.5)

{ (sj - sj-1)(x - ej) otherwise,

2

For any closed proper convex function f : R - (-oo, +oo], we denote by f* the conjugate

function (or the Legendre transfornation) of f, i.e.,

f*(X) = sutp{Y - f(y)}, Vxa E R.
yER

It is well-known that f* is also closed proper convex, maps R into (-oo, +oo], and satisfies

= (f*)*. (2.6)

Moreover, the following hold (see [Roc84, Sec. 8E]):

Observation 1.1. A closed proper convex function f: R - (-oo, +oo] is c. p. 1. if and only if
f* is c. p. 1. If in addition the effective domain of f is bounded and el < e2 < ... < em are the
breakpoints of f and sj is the right slope of f at ej, j = 1, ... , m - 1, then the effective domain of
f* is all of R, the breakpoints of f* are sl < ... < sm-l, and ej+l is the right slope of f* at sj (the

left slope of f* at sl is el). [If the effective domain of f comprises a single point, say, a, then f* is

simply a linear function with slope a.] The converse of this also holds.

Consider any two c. p. 1. functions f and g. We denote by f + g the pointwise sum (or simply
"sum") of f and g, i.e.,

(f + g)(z) = f() + g(x), VX E R, (2.7)

and by f og the infimal convolution of f and g (see [Roc70, p. 34]), i.e.,

(f g)(z) = inf{f(y) + g(x - y)}, Vz E R. (2.8)
yER

It is well-known that the operators + and o are dual to each other through conjugation (see

[Roc70, p. 145]), i.e.,

f g = (f* + g*)*. (2.9)

Notice that if the effective domain of f and of g are both unbounded, then f o g may take the

extended value -oo everywhere. To avoid dealing with such a function, we will assume that both

f and g have bounded effective domains. [This assumption is not restrictive since one can always
impose an arbitrarily large artificial bound without changing the problem characteristics.] Then,
it can be seen from the respective definitions that f[l g is also a c. p. 1. function with bounded
effective domain, and the same holds for f + g, except when the respective effective domain of f and

of g do not intersect, in which case f + g is improper (i.e., has the extended value +oo everywhere).
Moreover, by Observation 1.1, f* is a real-valued c. p. 1. function with n - 1 breakpoints, where
n denotes the number of breakpoints of f, so f* can be expressed as the sum of n - 1 real-valued

simple c. p. 1. functions hl,...h,_l [cf. (2.3)-(2.5)]. Then, if n > 2, it follows from (2.9) that

for'g = (f* + g*)* = (hl + ... + h,_l + g*)* = (hl)*o...[(hn_l)* lg, (2.10)

3

so that f og can be obtained by successively convolving the (hi)*'s onto g. If n = 1, then f is finite

at exactly one point, say a, and it is easily seen from the definition (2.8) that f og is simply a shift

of g to the right by a, i.e.,

(f g)(x) = g(x - a), Vx E R. (2.11)

Hence, the problem of computing the sum (respectively, infimal convolution) of two c. p. 1. functions

having bounded effective domain can be reduced to a sequence of simpler problems, each involving
the summation of a simple c. p. 1. function (respectively, the infimal convolution of the conjugate

of a real-valued simple c. p. 1. function) with a c. p. 1. function having bounded effective domain.

We study these simpler problems [and the shifting operation (2.11)] in more depth below.

For any c. p. 1. function g with bounded effective domain, we say that a set of scalars el < ... <
em (taking values in (-co, +oo)) is a set of extended breakpoints for g if those ej's in the effective

domain of g are precisely the breakpoints of g. Notice that then, for any scalar a,

el + a,...,em + a (2.12)

is a set of extended breakpoints for the function obtained by shifting g to the right by a [cf. (2.11)].

An important fact that we use is that, for any simple c. p. 1. function h, we can obtain a set of

extended breakpoints for h + g (respectively, h* Og) essentially by inserting the unique breakpoint

of h amongst a set of extended breakpoints for g (respectively, the slopes of g). To make this notion

precise, let el < ... < em be a set of extended breakpoints for g, let sj be the right slope of g at

ej. Also, let a, b and c be, respectively, the breakpoint of h, the right slope of h at a, and the left

slope of h at b [cf. (2.2)].

Case 1 h + g. If ej = a for some j, then it is easily seen that

el < ... < e, (2.13)

is a set of extended breakpoints for h + g and the corresponding right slopes are

Sl + b, ... , sj_l + b, sj + c, ... , s,M + c. (2.14)

Otherwise, there exists an index j C {1,..., m + 1} for which ej_l < a < ej (with the convention

eo = -oo,em+l = oc), in which case

el < ... < ej-_l < a < ej < ... <em (2.15)

is a set of extended breakpoints for h + g and the corresponding right slopes are

sl + b,..., s-jl , 1+ b s + C, S + C....,m, + c (2.16)

(with the convention so = -oo). If either sj_l = +oo, b = -oo or sj = -oo, c = +oo, then h + g is

improper.

4

Case 2 h* o g. We further assume that h is real-valued (i.e., b and c are finite). It can be seen by
using the duality relation (2.9) and (2.15)-(2.16) that if sj = a for some j, then

el + b < ... < ej + b < ej+l + c < ... < em + c (2.17)

is a set of extended breakpoints for h* l g and the corresponding right slopes are

s1, S2, *..,S,. (2.18)

Otherwise, there exists an index j E {1, ..., m + 1} for which sj_l < a < sj (we use the convention

so = -oo and sm+l = oo),

el + b, ... , ej_l + b, ej + b, ej + c, ..., em + c (2.19)

is a set of extended breakpoints for h* El g and the corresponding right slopes are

sl,-, ... , s , a, s j , ..., am. (2.20)

Eqs. (2.13)-(2.20) immediately suggest the following insertion procedure for computing a set of

extended breakpoints, together with the respective right slopes, for h + g (or h* E g):

Naive Insertion Procedure: We maintain the extended breakpoints el < ... < em for g and the

corresponding right slopes sl < ... < sm in a sorted linked list L. Then, we scan L in the order

(el, si), (e2, S2), .., (em, sm). In the case of h + g, we add b to sj for every (ej, sj) encountered until

we find an index j for which either ej = a or ej_l < a < ej, in the latter case of which we insert

(a, sjl + c) inmmediately following (ej-l, sj-1 + b). From then on, we add c to sj for every (ej, sj)

encountered. The case of h* El g is treated synmietrically: We add b to ej until we find an index j
for which either sj = a or sj-1 < a < sj, in the latter case of which we insert (ej + b, a) immediately

following (ej-1 + b, sj-_l). From then on, we add c to ej for every (ej, sj) encountered.

The time for the above insertion procedure is clearly O(m). We will demonstrate in the next

two sections that, by using a more sophisticated data structure, we can reduce the time for insertion

to O(logm). [In this paper, "log" denotes the logarithm of base 2.]

5

3 Data Structure

In this section, we describe the data structure that we use to store each c. p. 1. function g. More
precisely, we use a data structure called the balanced binary search tree due to Bayer [Bay72] (also
see [Tar83]) to store a set of extended breakpoints of g and their respective right slopes. In addition,

we do not always store the actual value of an extended breakpoint (respectively, its right slope), but
sometimes the difference between it and the extended breakpoint (respectively, their right slopes)
represented by its "parent" in the binary search tree. We will show in the next section that, by

storing g in this manner, we can compute the sum or the infimal convolution of g with any simple
c. p. 1. function in O(log in) time, where mn is the number of extended breakpoints representing g.

3.1 Balanced Binary Search Tree

We first review the notion of a full binary tree (see [AHU83], [Tar83]). A full binary tree T is a
finite rooted tree where each node has either two direct descendants called children or no children.

[For convenience, we will number the nodes in T from 1 to n, where n is the number of nodes in
T.] A node with two children is internal and a node with no children is external. A node and all its
descendants form a subtree of T and the node is called the root of that subtree. If i is an internal
node, then one of its children is distinguished as a left child, denoted by left(i), and the other child

is a right child, denoted by right(i). The subtree rooted at left(i) (respectively, right(i)) is the
left subtree (respectively, the right subtree) of i. If a node i is not the root of T, then the unique
immediate predecessor of i, denoted by p(i), is the parent of i. [We use the convention p(i) = i if i
is the root of T.] We denote by pk(i) (k > 0) the node obtained by applying p(-) to i a total of k

times (with the convention p°(i) = i).

Suppose that we are given a finite set of distinct values from a totally ordered universe. We
can represent such a set by a full binary tree containing one value per internal node, with values
arranged in symmetric order: if i is an internal node, then the value stored in i is greater than

every value stored in the left subtree of i, and less than every value stored in the right subtree of
i. Such a data structure is called a binary search tree (or BS tree for short) (see [Tar83, Sec. 4]).

An important feature of BS tree is that a new value, say v, can be inserted into it by simply

moving down the path from the root of the tree to an external node. This is done as follows: We
start at the root of the tree; whenever we are at an internal node, say j. we compare v with the
value stored in j; if v is equal to this value, then we stop (v is already stored in the tree). otherwise
we move to the left child (respectively, right child) of j if v is less (respectively, greater) than this
value. When we reach an external node j, we store v in j and create two children for j.

Another important feature of BS tree is that the values stored in it can be extracted in sorted

6

order in O(n) time, where n is the number of nodes in the tree. [This is done by using the following

recursive procedure: Let r denote the root of the tree. First extract (in sorted order) the values

stored in the left subtree of r, then the value store in r, and finally the values stored in the right

subtree of r.]

A drawback of BS tree T is that its height (i.e., the maximum length of any path from the root

of T to an external node) can be as large as n, the number of nodes in T. Since the time required

to insert one piece of data is proportional to the height of the tree, we see that insertion has a

worst case time of O(n). To improve on this bound, we will use a balanced version of the BS tree,
called balanced BS tree, as invented by Bayer [Bay72] (also see [Tar83, Sec. 4.2]). This is a BS tree
in which each node i is colored either red or black such that the following hold:

1. Every red node has a black parent.

2. Every external node is black and all paths from a given node to an external node contains

the same number of black nodes.

To represent a balanced BS tree, we store with each internal node a bit to indicate its color. It

can be seen (cf. [Tar83, p. 50]) that the height of a balanced binary search tree with n nodes is

at most 2 log(n + 1)J, so that the operation of inserting a value into a balanced BS tree takes at

niost O(log n) time.

After a value is inserted, the BS tree may no longer be balanced, in which case a sequence of

color flipping and rotation operations involving the predecessors of the node containing the inserted

value, called the rebalancing phase, is performed to rebalance the tree. We will not go into the

details of these operations here (see, e.g., [Tar83, Sec. 4.2]). It suffices for our purpose to make the
following observations about them:

Observation 3.1. The color flipping operations do not change the structure of the tree.

Observation 3.2. The rotation operations restructure the tree only by interchanging the children

of those nodes that are predecessors of the node containing the inserted value.

Observation 3.3. The color flipping and the rotation operations, which comprise the rebalancing

phase, require only 0(log n) time in total, where n is the number of nodes in the tree.

The above observations will be used in Subsections 4.1 and 4.2 to obtain an O(logm) algorithm for
computing, respectively, f + g and f* D g, for any simple c. p. 1. function f and any c. p. 1. function
g with bounded effective domain, where m is the number of extended breakpoints representing g.

7

3.2 Partial Sum Representation of Extended Breakpoints and Slopes

Let g be a c. p. 1. function with bounded effective domain. Let e1 < ... < e, be a set of
extended breakpoints for g and let sj be the right slope of g at ej for all j. Of course, there holds

sl < ... < sm [cf. convexity of g], so that (el, si) - ... - (em, s,), where "-<" is the usual coordinate
partial ordering.

We assume that the (ej, sj)'s are stored using a balanced BS tree T. For convenience, we give
the label j to the node containing (ej, sj) and call (ej, sj) the value of node j. Then, these values
are stored in the symmetric order, i.e.,

if k is a node in the right (left) subtree of a node j, then (ej, sj) -< (ek, sk) ((ek, sk) -< (ej, sj)).

With respect to T, we say that a set of 4-tuples (Aacj, aj, A/j, pj), j = 1, ... ,m, is a partial
sum representation of the (ej, sj)'s (in short, of g) if these 4-tuples satisfy

ej = aj + A j1, ...,m, (3.1)
z=pk(j)

for some k>O

and
sj = Oj + E A , j = 1, .. ,m. (3.2)

l=pk(j)
for some k>O

Roughly speaking, each ej can be obtained by summing Aai over all predecessors 1 of j and then
adding the sum to cj. Analogous interpretation holds for the A/31's and the /3's. We will call m

the size of the partial sun representation.

A simple example of (Aaj, aj, A/3j,, j)'s that satisfy (3.1)-(3.2) is

aj = ej, /Sj = sj, Aaj = A,/j = O, j = 1,...,m.

Another simple example is

atj = /j = 0, Aaj = ej - ep(j), A/ 3j =j - sp(j),

for all j E {1, ..., m} with j f r, and

ca, = er, ,. = s,, aXr = /3 r = O.

where r denotes the root of T.

8

4 Computing the Sum or the Infimal Convolution of a Simple
Convex Piecewise-Linear Function with a Convex Piecewise-
Linear Function

We have the following key result:

Proposition 4.1 Let g be any c. p. 1. function with bounded effective domain and suppose that
we are given a size m partial sum representation of g stored in a balanced BS tree T. Then, the
following hold:

(a) For any c. p. 1. function f that is finite at exactly one point, we can compute in 0(1) time a
size in partial sum representation of f Cig stored in T.

(b) For any simple c. p. i. function h, we can, in O(log m) time, determine whether h + g is proper

and, if yes, compute a size rn or size m + 1 partial sum representation of h + g stored in some

balanced BS tree.

(c) For any real-valued simple c. p. 1. function h, we can compute in O(logm) time a size m or

size in + 1 partial sum representation of h* m] g stored in some balanced BS tree.

The proof of Proposition 4.1 begins below and it continues in the following two subsections.

Let el < ... < em denote the set of extended breakpoints for g and let sj denote the right
slope of g at ej, for all j. Let p(j) denote the parent of node j in the balanced BS tree T and let
(Aaj, aj, A/j,3j), j = 1, ..., m, denote the partial sum representation of the (ej, sj)'s with respect

to T [cf. (3.1), (3.2)].

The proof of part (a) is very easy. We simply add the point at which f is finite, say a, to Aar,
where r denotes the root of T. By (3.1), the resulting (Aaj, aj, A, 1j,,3j)'s together with T form a
partial sum representation of (el + a, sl), ... , (em + a, sm) or, equivalently [cf. (2.12)], of f[g.

Now we prove parts (b) and (c). Let a denote the unique breakpoint of h and let b, c denote,
respectively, the left and right slope of h at a [cf. (2.2)].

4.1 Computing h + g in O(log m) Time

We now describe how to compute h + g using the formulas (2.13)-(2.16) and the data structure
described above. Roughly speaking, we insert the breakpoint a into the sorted list el,...,em as
described in Subsection 3.1. As we move downward from the root of T to an external node, we set
aj (respectively, 3j) to ej (respectively, sj + b or sj + c, depending on whether ej < a or ej > a)

9

for each node j visited and, if j has two children, we update Aal and A,31 for the children I of j
that we do not visit next. After insertion, we rebalance the BS tree as described in Subsection 3.1.

Inserting Phase

We insert the value a into T by moving down the path from the root of T to an external
node. As we move downward, we accumulate the sum of Aal and the sum of A,31 over all nodes I
encountered, so that when visiting some node j we have already accumulated the sums

Aj = E A, (4.1)
t=pk(j)

for some k>O

and

ABj = E A/31. (4.2)
I=pk(j)

for some k>o

Thus, upon arriving at node j, we can compute ej by adding aj to AAj [see Eq. (3.1)]. We
then compare the value of a with ej and decide which child of j to visit next. More precisely, we
perform the following operations at node j:

1. If a > ej, then we move to right(j) and update

(Aanew nanew A new /fnew) = (O, AAj + aj, O, ABj + 3j + b), (4.3)

(iAenew, ,ew, A3,ew,3kew) = (AAj + Aak, k, ABj + A/k + b, 3k), (4.4)

where k = left(j).

2. If a < ej, then we move to left(j) and update

(new aj ew ttew, jnew) = (0, AAj + aj, O, Bj +/3j + c), (4.5)

1(Aanew aew /° /ew, te w) = (AAj + Aat, at, ABj + A31 + c,/ P), (4.6)

where I = right(j).

3. If a = ej, then we stop moving and we update (Aacj, aj, Af3j, pj), (Aak, k, ak , 3k), and

(Aai, ac, A/3,,/31) according to, respectively, (4.5), (4.4) and (4.6), where k = left(j) and I =

right(j).

We continue moving down T until either we stop at a node j with ej = a or we reach an external

node. In the latter case, we let the external node, denoted by i, represent the extended breakpoint

a of h + g and store in i the 4-tuple

(O, a, O, 83 + c), (4.7)

10

where j is the last predecessor j of i for which there holds ej < a. [e3 can be seen to be the

extended breakpoint of g to the immediate left of a.] Also, if b = -oo, AB; + /3 = +oo or if

c = +oo, AB3 + p3 = -oo, where j is the last predecessor j of i for which there holds ej > a, then

h + g is improper. [By (3.2) and (4.2), B3 + /3 and B3 + P3 are equal to, respectively, s 3 and s,.

e3 can be seen to be the extended breakpoint of g to the immediate right of a.]

Rebalancing Phase

We rebalance the new BS tree as described in Subsection 3.1. No change is made to the new

(/Aaj, aj ,,/f3j)'s.

Correctness Proof

Since the (ej, sj)'s are correctly computed during the inserting phase, then the value a must be

inserted in the correct location. It only remains to verify that the new (Aaj, aj, A/3j, /3j)'s form a

partial sum representation of h + g after the inserting phase and after the rebalancing phase.

First consider the inserting phase. We claim that, with respect to the new BS tree, the new

(Aaj, cj, A,3j, 3j), j = 1. ... ,m, [given by (4.3)-(4.6)] together with (O, a, 0, s3 + c) [cf. (4.7)] form

a partial stun representation for h + g or, more precisely, a partial suni representation for the pairs

of extended breakpoint and right slope given by either (2.13)-(2.14) or (2.15)-(2.16). This is very

straightforward to show using Eqs. (3.1)-(3.2) and (4.1)-(4.6). For example, if j is a node visited

for which ej < a, then we have from (4.3), (4.1), (3.1) that

1 =?e =Jne u + E/Ads ew = AAj + cj
t=pk(j)

for some k>O

-= E Aal oSj
l=pl (j)

for some k>o
ej,

and from (4.3), (4.2), (3.2) that

new + E A/flw = ABj + j + b

=pk(j)i
for some k>O

-= E /531 + 3j + b
l=pk(j)

for some k>o

= j+ b.

The other j's can be checked in an analogous manner.

Now consider the rebalancing phase. Recall that the rebalancing phase comprises a sequence

of color flipping and rotation operations. Clearly the new (Aaj, aj, A3j, 3j)'s remain a partial

sum representation of h + g during the color flipping operations (since, according to Observation

3.1, there is no structural change in the tree during these operations). By Observation 3.2, the

rotation operations restructure the tree only by interchanging the children of those nodes which are

predecessors of the newly inserted node. Since Actaew = A3, ew = 0 for all predecessors j of i [cf.

(4.3), (4.5)], it then follows that the right hand side quantities in, respectively, (3.1) and (3.2) (with

respect to the new (Aaj, , t 3j , A j,)'s) remain unchanged during the rotation operations, so that

the new (Aaj, aj, A/ 3j, /3j)'s remain a partial sum representation of h + g during these operations.

Time Complexity

Clearly, the updating of each (Aaj, acj, A,3j,,3j) during the inserting phase requires only 0(1)

time [see the updating rules (4.3)-(4.6)] and this has to be done only for those nodes I that are either

predecessors of the external node i or children of such predecessors. Hence, the total time for the

inserting phase is proportional to the number of predecessors of i, which is at most O(log m). Since

the rebalancing phase clearly requires O(log in) time also (see Observation 3.3), it follows that the

total time for computing the new balanced BS tree and a corresponding partial sum representation

of h + g is O(log m) x 0(1) = O(log m). The size of this partial sum representation is clearly either

m or n + 1.

4.2 Computing h* lg in O(logm) Time

Suppose that h is real-valued (i.e., both b and c are finite). We show below how to compute

h* lg using the formulas (2.17)-(2.20) and the data structure described immediately prior to

Subsection 4.1. The procedure is entirely analogous to that for computing h + g and hence we

describe it only briefly.

Inserting Phase

We insert the value a into T by moving down the path from the root of T to an external node.

As we move downward, we accumulate the sum of Aalu and the stun of A/l, over all nodes I visited,

so that when we visit some node j we have already accumulated the sums [cf. (4.1), (4.2)]

AAj = Aoq,
l=pk(j)

for some k>o

and

A Bj = 1.

for some k>0

Thus, at node j, we can compute sj by adding 3j to ABj (see Eq. (3.2)) and then perform the

following operations:

12

1. If a > sj, then we move to right(j) and update

(_etow Cnew, ^fnew, new) = (0, AAj + caj + b, 0, ABj + pj)

(At"e'", cew, nA3lewv, fn ew) = (AA j + Aak + b, ak, ABj + ±Afki/3), (4.9)

where k = left(j).

2. If a < sj, then we move to left(j) and update

(Aew new Aewnew) = (0, AAj + aj + c, 0, ABj +/3j), (4.10)
3 '(~J '- -"J

(Aoanew r ew , / 3 ew , 3
e'w) = (AAj + Aal + c, al, ABj + AP, Pi), (4.11)

where I = right(j).

3. If a = sj, then we stop moving and we update (Aayj,aj, A/3j,/3j), (Aak, ak, A4k, Ok), and
(Actl,i , A13l,pi) according to, respectively, (4.8), (4.9) and (4.11), where k = left(j) and I =
right(j).

We continue moving down the tree until either we stop at a node j with sj = a or we reach
an external node. In the latter case, we let the external node, denoted by i, represent the new

breakpoint of h* Og and store in it the 4-tuple (0, ej + b, O, a), where 3 is the last predecessor j of
i for which there holds sj > a. [s; can be seen to be the smallest slope of g that exceeds a and it
can be easily obtained when traversing down the BS tree.]

Rebalancing Phase

We rebalance the new BS tree as described in Subsection 3.1. No change is made to the new

(/Xaj, jj, Aj, Oj)'s.

By an argument analogous to that given in Subsection 4.1, we can show that the above procedure
correctly computes, in O(log m) time, a size m or size m + 1 partial sun representation of h* r--g
stored in some balanced BS tree.

13

5 Computing Serially Nested Sums and Infimal Convolutions

Let fi, f2,..., ft n : -4 (-oo, +00] (rn > 1) be a collection of c. p. 1. functions with bounded

effective domain. Let Ni denote the number of breakpoints of fi and let N = N1 + ... + Nm. We

are interested in computing the c. p. 1. function f: R -+ (-oo, +o00] given by

f_ fm+ (fm-l (fm-2 + (+ (f30(f2 + f)) "))) if m is even;

fn , (m (f -i + (fn _2 (+ (f3 (f2 + fi)) '.))) otherwise.

This problem is a special case of our functional expression evaluation problem in which the operators

+ and o are serially nested.

Let gl = fl and, for i = 2, ... , m, let

={ fi + g9i-1 if i > 2 and i is even; (5.2)
fi[Ogi-1 ifi >3andiisodd.

Clearly, g, = f by the above definition. Since the sum (or the infimal convolution) of two c. p.

1. functions with bounded effective domain is either improper or a c. p. 1. function with bounded

effective domain, then (5.2) shows that each gi is either improper or a c. p. 1. function with bounded

effective domain. [Notice that if gi is improper for some i, then gj is improper for all j > i.]

The formulas (2.3), (2.10), (2.11) suggest the following natural approach to computing gi ac-

cording to (5.2), given gil: For i > 2 even, we decompose fi into the sum of simple c. p. 1.

functions hj,...,hN, and we successively add hl,...,hN, to gi-1. For i > 3 odd, we decompose

(fi)* into the sum of real-valued simple c. p. 1. functions hl, ... , hNi_l and we successively convolve

(ht)*,..., (hNil)* onto gi-l. [If N i - 1, then we shift gi-_ according to (2.11)].

If we use the naive insertion procedure described in Section 2 to perform each siun or infimal

convolution operation (with the breakpoints of fi chosen to be the set of extended breakpoints for

gl), then it can be shown that the total time for computing f is O(N 2). We show below that, by

using the data structure and the insertion procedures described in Sections 3 and 4, respectively,

we can reduce this time to O(N log N). Furthermore, we show that Of(N log N) is a lower bound on

the number of comparisons needed to compute f, so that our time is essentially optimal (within a

multiplicative constant). We formally state these results in the following proposition. Their proofs

are given in the next three subsections.

Proposition 5.1 Given a collection of c. p. I. functions fl, f,, (m > 2) Eclhl uwith bounded

effective domain, the function f given by (5.1) is computable in O(NlogN) time. u!here N is the

total number of breakpoints of the fi 's, and this time is within a constant multiplicative factor of

the optimal time.

14

5.1 An O(NlogN) Time Algorithm

Below we describe our (essentially) optimal algorithm for computing f given by (5.1).

Algorithm 1.

Input: C. p. 1. functions fl, ..., fm (mn > 1) each with bounded effective domain.

Output: Either a declaration that f given by (5.1) is improper or else a partial sum representation

of f, of size at most N 1 + ... + N,, stored in some balanced BS tree. [Ni denotes the number of

breakpoints of fi.]

Step 0. If m = 1, then we store the breakpoints of fi, paired with the corresponding right slopes,

in some balanced BS tree and exit. Otherwise we go to Step 1.

Step 1. We call recursively Algorithm 1 to obtain a partial sun representation of g,- 1 given by

(5.2), of size at most N 1 + ... + N,,_l, stored in some balanced BS tree. If gm-1 is improper, then

we declare gm to be improper and exit. Otherwise we go to Step 2 if rn is even and go to Step 3 if

m is odd.

Step 2. We decompose fm into the sum of simple c. p. 1. functions h1 , ... , hNm, and successively

add these functions to gm- using the procedure described in Subsection 4.1. If during one of the

addition operations, the procedure outputs an improper function, then we declare f to be improper.

Exit.

Step 3. If Nm = 1, then we convolve f with gm-1 as described in the proof of Proposition 4.1

(a) and exit. Otherwise, we decompose (fm)* into the sum of real-valued simple c. p. 1. func-

tions hi, ... , hN -l and successively convolve the conjugate of these functions onto gm-l using the

procedure described in Subsection 4.2. Exit.

We now prove that Algorithm 1 operates correctly and has a time complexity of at most

cNlogN, for some constant c > 0. The proof is by induction on m. If m = 1, then we se-

quentially insert the breakpoints of fi, paired with their right slopes, into a null BS tree and

rebalance after each insertion. This requires at most clog N time per insertion, where c > 0 is

some constant, for a total time of cN 1 log N 1 . Hence the claim holds for m = 1. Now, suppose that

the claim holds for m = p - 1, for some p > 2. We show below that the claim also holds for m = p,

thus completing the induction. By the inductive hypothesis, Step 1 operates correctly and requires

c(N - Nm) log(N - Nm) time, where N = N1 + ... + Nm. In Step 2. the time for decomposing f,, is

clearly O(N,,) [cf. (2.3)-(2.5)] and the time to add each hk, by Proposition 4.1. is O(log N). Thus,

the total time for Step 2 is O(N,, log N). The correctness of Step 2 follows from the correctness

of the insertion procedure in Subsection 4.1. Similarly, we have that Step 3 operates correctly and

requires a total time of O(N,, log N). Hence, Algorithmn 1 operates correctly and requires a total

15

time of

c(N - Nm)log(N - N,) + O(NmlogN)

which, for c sufficiently large (independent of m or the Ni's), is less than cN log N.

5.2 Extracting the Breakpoints and the Slopes in O(N) Time

We saw in the previous subsection that, provided that f is proper, we can compute in O(N log N)
time a partial sum representation of f, of size at most N, stored in some balanced BS tree. We
show below that we can extract from this representation the actual value of the breakpoints and the

slopes of f in sorted order inl O(N) time, thus demonstrating that f is computable in O(N log N)
time.

We extract the actual value of the breakpoints and the slopes of f as follows: Let {((Aaj, aj, A3j, /3j)}j
denote the given partial suml representation of f and let T denote the balanced BS tree in which it

is stored. We first perform a breadth first search on T, during which we sum the value (Aal, A/3i)
over all nodes I along each search path. In this way, we can compute, by way of Eqs. (3.1)-(3.2),
the value (ej, sj) for each node j in T. The time for performing this search is only O(N). Then, we
output the values stored in T in sorted order, i.e., the "-<" order on the (ej, sj)'s. This can be done
in O(N) time also, as was discussed in Subsection 3.1. As we output the values, we remove those
that do not correspond to a breakpoint of f, i.e., those (ej, sj) for which sj is not finite. [We can
improve the efficiency of the above procedure, although not in the worst case sense, by modifying
the breadth first search routine so that whenever we visit a node I with A/S3 equal to either +oo or
-oo, we do not search the subtree rooted at I (since all extended breakpoints stored in that subtree
are necessarily outside the effective domain of f).]

5.3 An Q(N log N) Lower Bound

In this section, we prove an fl(N log N) lower bound on the time to compute, in sorted order,
the breakpoints and the slopes of f given by (5.1). Our approach is based on reducing the problem
of computing f to that of sorting N numbers.

Let al, a2 ,..., aay be N numbers which we wish to sort. Let M be any upper bound on the
magnitude of the ai's, i.e., MA > maxi jail. [M requires only O(N) time to compute.] We construct
the following c. p. 1. functions with bounded effective domain:

ai -x, if -Al < z < ai;

f 2 i(X) = - a, if ai < x < A; = 1 ,..N, (5.3)
+oo, else,

16

and

f2i-1() = { , if z = ; i = 2,...,N. (5.4)

Furthermore, we let fi be the c. p. 1. function that is zero within [-M, M] and +oo everywhere
else.

From (2.11) and (5.4) we have that f2i-l Og = g for all c. p. 1. functions g and all i E {2, ... , N},

so that

f = f 2 N + (f 2N-1El (f 2N-2 + (f 2N- 3 .('''f30(f2 + fi)'))))

= f2N + f2N-2 +''' - f2

This and (5.3) show that -M, al, ..., aN, M are the breakpoints of f, so that the problem of com-

puting, in sorted order, the breakpoints of f is equivalent to that of sorting al, ... , aN. Then, by
applying the well-known fi(N log N) lower bound on the number of comparisons required to sort

N numbers (see, for example, [AHU83, Sec. 8.61), we obtain that the time required to compute

the breakpoints of f in sorted order is fI(Nlog N) in the worst case. Since the total number of
breakpoints of the fk's given by (5.3), (5.4) is clearly at most 4N (and fi has only two breakpoints),
this then establishes our lower bound.

17

6 An O(Nlog2 N) Algorithm for the Arbitrarily Nested Case

Consider the following generalization of the problem studied in the previous section. We are
given m (m > 1) c. p. 1. functions fi, f2,..., f m : R F- (-oo, +oo] with bounded effective domain,
and we construct a function f from the fi's in the following iterative manner. We begin with the

functions fi, ... , fm and whenever we have two or more functions, we select any two and replace
them by either their sum or their infimal convolution. After m - 1 such replacement steps, we are

left with a single function, which is the function f of interest. Notice that since the sum or the
infimal convolution of two c. p. 1. functions with bounded effective domain is either improper or a

c. p. 1. function with bounded effective domain, then f is either improper or a c. p. 1. function with
bounded effective domain.

Let H denote the space of c. p. 1. functions with bounded effective domain. For convenience,
we also include in H the improper function which takes the extended value +oo everywhere. Then,
it is easily seen that f can be expressed as

f = C(fi,..., fm),

where C : H m - H is some functional operator which, by reindexing the functions f, ..., fm if

necessary, has the following recursive form

C(fi,*-, fm) = Cl(fl, f.,k) f C2(fk+, ., fm), (6.1)

for some k E {1,...,m - 1}, some ED E {+, E}, and some functional operators C1 : Hk - H,

C 2 : Hm-k " H each of which has the same recursive form as C.

Our problem is to compute this function f, given the component functions f, ... , fm and the
functional operator C: H m - H of the form (6.1). We describe our algorithm for solving this
problem below.

Algorithm 2.

Input: C. p. 1. functions fl, ... , fm each with bounded effective domain, and a functional operator

C: H m ~ H of the form (6.1).

Output: Either a declaration that f = C(fl, ... , fm) is improper or else a partial sum representation

of f, of size at most N 1 + ... + Nm, stored in some balanced BS tree. [Ni denotes the number of
breakpoints of fi.]

Step 0. If m = 1, then we store the breakpoints of fi, paired with the corresponding right slopes,
in some balanced BS tree and exit. Otherwise we go to Step 1.

Step 1. Let C1 and C 2 be any two functional operators, of the same form as (6.1), which satisfy

C(fl, L.. f,) = Cf(f 1, ... , fk) C2(fk+1, ... , fm), (6.2)

18

for some k E {1, ..., m - 1} and some i E {+, a }. [We reindex the functions fi, ..., fm if necessary

to put C into this form.] We call recursively Algorithm 2 to obtain a partial sum representation of

Cl(fl, ... , fk) and of C2(fk+l, ... fm) (of size at most N 1 +... + Nk and Nk+l + ... + Nm, respectively),

each stored in some balanced BS tree. If either Cl(f1,..., fk) or C2(fk+l,...fm) is declared to be
improper, then we declare f to be improper and exit. Otherwise, we go to Step 2 if $ = + and go

to Step 3 if $ = i.

Step 2. If N1 + ... + Nk > Nk+l + ... + Nm, then we extract the breakpoints and the slopes of

C2(fk+l,..., fim) from its partial sum representation (using the procedure in Subsection 5.2) and
use them to decompose C 2(fk+l, ..., fn) into the sum of simple c. p. 1. functions hl, ... , hi for some

I < Nk+1 + ... + Nm. Then, we successively add these functions to Cl(fi, ... , fk) using the procedure

described in Subsection 4.1, and if during one of the addition operations, the procedure outputs

an improper function, then we declare f to be improper. In the case when N1 + ... + Nk <

Nk+l + ... + Nm, we perform the same operations as above but with the role of Cl(fl, ..., fk) and

of C2(fk+l,..., fm) reversed. Exit

Step 3. If N 1 + ... + Nk > Nk+l + ... + Nm, then we extract the breakpoints and the slopes of

C2(fk+l, ..., fm) from its partial sun representation (using the procedure in Subsection 5.2) and
use them to decompose the conjugate of C2(fk+l, ..., fn) into the sum of real-valued simple c. p.
1. functions hi,..., hi for some I < Nk+1 + ... + N,. Then, we successively convolve the conju-

gate of each of these functions onto Cl(fl, ... , fk) using the procedure described in Subsection 4.2.

[If C2(fk+l,..., fm) has exactly one breakpoint, then we instead convolve C2(fk+l,..., fm) with

Cl(f, ... , fk) as described in the proof of Proposition 4.1 (a) and exit.] Otherwise, we perform the
same operations as above but with the role of Cl(fl, ... , fk) and of C2(fk+l, ... , fmo) reversed. Exit

It is easily argued using induction on m that Algorithm 2 operates correctly. [Notice that there

holds I < Nk+l + ... + N, in both Steps 2 and 3 because the number of breakpoints of a c. p. 1.

function is never more than the size of any partial sum representation of that function.] Hence, our

analysis below will focus on its time complexity. We have the following main result of this section:

Proposition 6.1 Given any c. p. 1. functions fi, ... , fm with bounded effective domain and any

functional operator C: H'm '- H of the form (6.1), Algorithm 2 either determines that C(fi, ..., f,n)

is improper or else computes a partial sum representation of C(fi, ..., f,i), of size at most N, stored

in some balanced BS tree, where N is the total number of breakpoints of fi,..., fi. The running

time of Algorithm 2 is at most O(N log2 N).

Proof: Our proof is by induction on in. If ?n = 1, then the claim holds by the same argument as

that used in the analysis of Algorithm 1. Now suppose that, for some p > 2, the claim holds for
m = p - 1. We show below that the claim also holds for m = p.

Let Ml = N1 + ... + Nk and M2 = Nk+l + ... + N,,, where k is as given in Step 1 of Algorithm

19

2. Then, M1 + M2 = N. By the inductive hypothesis, Step 1 takes at most clli(logl) 2 +

cM 2(log M2)2 + 0(1) time, for some c > 0. If All > M 2, then the total amount of time for Step 2

is O(M 2) (for extracting the breakpoints and the slopes of C2(fk+l, ..., fm) and then decomposing

C2(fk+l, C... fm) into the stun of simple c. p. 1. functions) plus O(M 2 log M1) (for adding the simple
c. p. 1. functions to Cl(fi,..., fik) [cf. Proposition 4.1]), for a total time of at most O(M2 log M 1).

Otherwise, we have M1 < M2 so that, by an analogous argument, the total time for Step 2 is at

most O(M1 log M 2). Since Step 3 clearly has the same time complexity as Step 2, it then follows,

upon collecting the above time bounds, that the total time for Algorithm 2 is

cM,(log M1)2 + cM2(log M2)2 + O(M 2 logM)

if Al1 > A,12, and is
chA1i(log Ml)2 + cM2(logM2)2 + O(Ml log M2)

otherwise. By symmetry, it suffices to consider only the second case, i.e., it suffices to show that

there exists some constant c > 0 (independent of m and the Ni's) such that

cM1(logM 1)2 + cM2(log M2)2 + O(M1 log M2) < c(Ml + M 2)(log(Mi + M 2)) 2, (6.3)

whenever M1 < M2 .

Suppose that M1 < M 2. Since log(/lL + M 2)/logM 2 = 1 + log(1 + Ml/M 2)/logM2 , we have
from the inequality (1 + 6)2 > 1 + 26 for all 6 > 0, that

(log(M + M 2)/ logM 2)2 = (1+ log(1 + M 1 /M 2)/ logAl2) 2

> 1 + 2log(1 + Ml/M 2)/logM 2,

so that

(1 + Mi/M2)(log(Mi + AI2)/logM 2)2 > (1 + M 1/M 2)(1 + 21og(1 + Ml/M 2)/logM2)

> 1 + M1/M2 + 21og(1 + Ml/M2) /logM2

= 1 + M 1 /M 2 + (2 loge) In(1 + M1 /A 2)/logM2

> 1 + M 1 /M 2 + (loge)(Ml/M2)/ logM2,

where In(.) denotes the natural logarithm and the last inequality follows from the property of ln(.)

that In(1 + 6) > 6/2 for all 6 E [0, 1]. The above relation can be used to lower bound the right hand

side of (6.3) as follows:

c(M/li + -i 2)(log(i'l1 + A112)) 2 = CAI 2 (logA`I 2)2(1 + i/1/31 2)(log(ill + lI2) / log i12)2

> cAM2(logMA' 2)2(1 + A.1/:n2 + (loge)(M1 /Ml 2)/logAM2)

= cM2(log M2)2 + cM (log llA) 2 + (clog e)Ml log M2

> cAM2l(logM 2)2 + CM1(logAl)2 + (cloge)Ml logM 2,

20

where the last inequality follows from M 2 > M1 and the monotone property of the log function.

Comparing the right hand side of the above relation with the left hand side of (6.3) and we see
that indeed (6.3) holds for some scalar constant c > 0. Q.E.D.

Once we have computed a partial sum representation of C(fl, ..., f,,) stored in some balanced

BS tree, we extract the breakpoints and the corresponding right slopes of C(fi, ...,f) in the
manner described in Subsection 5.2. This requires only O(N) additional time. Notice that a lower
bound on time is fZ(N log N) [cf. Subsection 5.3], so Algorithm 2 is within a multiplicative factor
of O(log N) of achieving the optimal time.

6.1 Application to Linear Cost Network Flow on Series-Parallel Networks

Consider a strongly connected directed graph 5 with node set NA and arc set A. We associate
with every arc (i, j) E A a flow xij, a per unit flow cost cij, and bounds -oo < lij < uij < oo.

The corresponding linear cost network flow problem is to minimize the total cost of the arc flows,
subject to flow conservation and capacity constraints on the arc flows, i.e.,

minimize (i,j)EA Cijzij

subject to (i,j)EA xij - (ij,i)EA ji = 0, Vi E Ar, (6.4)
Iij < zij < uij, V(i,j) E A.

The linear cost network flow problem is very important in combinatorial optimization (see for

example [BeT89], [Roc84], [PaS82], [Tar83]). We remark that our results also extend to problems

for which the right hand side in (6.4) is nonzero, but for simplicity we do not treat this more general

problem here.

We will consider a special case of the problem (6.4) where the underlying graph is series-parallel.

A series-parallel graph is a undirected graph which contains two distinct nodes, called terminals,

and can be constructed recursively as follows: (i) any graph comprising an arc joining two nodes

is series-parallel (the two nodes are its terminals) and (ii) given any two series-parallel graphs

91 and g2, with respective terminals s1, tl and S2 , t 2, the graph obtained by joining t1 with s2 (a
"serial" join) is also series-parallel with terminals sl, t 2, and the graph obtained by joining sl, tl

with, respectively, s2, t 2 (a "parallel" join) is also series-parallel with terminals sl, t1 (see [Duf65]).

Series-parallel graphs have received much attention because hard problems on networks tend to
become "easy" when restricted to them (see [Hof88], [TNS82], [VTL82], [Win86]).

The fastest known algorithm for solving the linear cost network flow problem on series-parallel

graphs is that due to Bein, Brucker and Tannir [BBT85] with a time bound of O(nm + m log m),
where n is the number of nodes and m is the number of arcs. Below, we will apply Algorithm 2 to
obtain an algorithm for this problem with a faster time of O(mlog2 m).

21

For each arc (i, j), we denote by fij : R - (-oo, oo] the c. p. 1. function with bounded effective
domain

= { CijX if lij < z < uij; (6.5)
+oo otherwise

(i.e., fij is the cost of arc (i, j) with the bounds incorporated into the objective). For each series-
parallel subgraph H7 of Q with terminals p, q, we denote by ft,p,q: R : (-oo, oo] the perturbation
function

fp,q(C) = minimize (ij)Ee fij(Tij)
subject to (i,j)E£ ii - E(j,i)E£ Zji = 0, Vi E V with i p, q; (6.6)

E(p,j)EE Xpj - (j,p)Ee Xjp = C;

E(q,j)E Xqj - E(j,q)Ee zjq =

where V C Kf and £ C A denote, respectively, the node set and the arc set for 'H.

With the above definitions, we see that if g with terminals s, t is constructed by joining two
series-parallel graphs l1 and Q2 with respective terminals sl, tl and s2, t 2, then

fg,s,t = fl, 1sl,tl + fg21, 2,t 2 (6.7)

if s = s_, t = t2 , t1 = 32 (i.e., a serial join), and

fJ,,,t = f ol sd1 ,t1 ° f02,2t22 (6.8)

if S = sl = S2, t = t1 = t2 (i.e., a parallel join). It then follows that fg,,,t can be expressed as

fo,',t = C(..., fij, ...)(i,j)EA

for some functional operator C: H m - H of the form (6.1), where m denotes the cardinality of A.
We remark that this C can be determined in O(m) time by reversing the construction procedure

for series-parallel graphs (such a procedure is called decomposition [Duf65]). Then, since each fij

has exactly two breakpoints [cf. (6.5)], it follows from Proposition 6.1 that, provided that fg,s,t
is proper (e.g., when (6.4) is feasible), we can compute in 0(2mlog2 (2m)) = O(mlog2 m) time
a partial sum representation of fg,e,t, of size at most 2m, stored in some balanced BS tree. We

then extract the breakpoints and the slopes of fg,a,t using the O(m) time procedure described in
Subsection 5.2.

Once we have computed fg,s,t using Algorithm 2, we can, by using the intermediate results
generated by Algorithm 2, compute in O(mlog2 m) time an optimal solution of the linear cost
network flow problem associated with fh,s,t(() [cf. (6.6)], for any real scalar < (or determine that
fa,s,t(() = +oo). The procedure for doing this, like Algorithm 2, is recursive and is based on the
relations (6.7) or (6.8). For simplicity, we onlit its description here.

We state the main result of this subsection below:

22

Proposition 6.2 The linear cost network flow problem (6.4) defined on series-parallel graphs is

solvable in O(m log2 m) time, where m is the number of arcs in the graph.

An obvious lower bound on the time to solve (6.4) is g(m), so the time given in Proposition 6.2
is within a multiplicative factor of O(log 2 m) of the optimal time.

23

References

[AHU83] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., Data Structures and Algorithms, Addison-

Wesley, Reading, MA (1983).

[Bay72] Bayer, R., "Symmetric binary B-trees: Data structure and maintenance algorithms," Acta

Inform. 1 (1972), 290-306.

[BBT85] Bein, W. W., Brucker, P. and Tamnir, A., "Minimum cost flow algorithm for series-parallel
networks," Discrete Applied Mathematics 10 (1985), 117-124.

[BeT89] Bertsekas, D. P. and Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical

Methods, Prentice-Hall, Englewood Cliffs, NJ (1989).

[Dol79] Dolezal, Monotone Operators and Applications in Control and Network Theory, American
Elsevier, Amsterdam (1979).

[Duf65] Duffin, R. J., "Topology of series-parallel networks," J. Math. Applic. 10 (1965), 303-318.

[Hof88] Hoffman, A. J., "Greedy packing and series-parallel graphs," J. Comb. Theory, Series A

47 (1988), 6-15.

[Min60] Minty, G. J., "Monotone networks," Proc. Roy. Soc. London A 257 (1960), 194-212.

[PaS82] Papadimitriou, C. H. and Stieglitz, K., Combinatorial Optimization: Algorithms and

Complezity, Prentice-Hall, Englewood Cliffs, NJ (1982).

[Roc70] Rockafellar, R. T., Convez Analysis, Princeton University Press, Princeton, NJ (1970).

[Roc84] Rockafellar, R. T., Network Flow and Monotropic Optimization, Wiley-Interscience, New

York, NY (1984).

[Tar83] Tarjan, R. E., Data Structures and Network Algorithms, SIAM, Philadelphia, PA (1983).

[TNS82] Takamizawa, K., Nishizeki, T. and Saito, N., "Linear- time computability of combinatorial

problems on series-parallel graphs," Journal of A. C. M. 29 (1982), 623-641.

[VTL82] Valdes, J., Tarjan, R. E., and Lawler, E. L., "The recognition of series parallel digraphs,"

SIAM J. Comput. 11 (1982), 298-313.

[Win86] Winter, P., "Generalized steiner problem in series-parallel networks." J. Algorithms 7

(1986), 549-566.

24

