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Abstract

The zero error decision feedback capacity for discrete memoryless channels
is found using a constant composition coding argument. Surprisingly, the result
is larger for many channels than the known bounds derived earlier by random
coding arguments. An upper bound for the retransmission probability is also
derived and is hoped to be asymptotically tight for the high rate region. For
erasures and error schemes, we show that the bounds in [For68] are not tight
and we improve these bounds to obtain new exponential error bounds for such
schemes.
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1 Introduction

We will discuss communication systems in which a noiseless feedback link is available from
the decoder to the encoder in addition to a discrete and memoryless forward link (Figure 1).
Notice that the feedback link is from the output of the decoder, this type of feedback is

Encoder Channel, P Decoder

Figure 1: Decision Feedback Communication Model

called "decision feedback," and is weaker than that in which the transmitter is aware of the
channel outputs. In this kind of systems, the decoder is given the option of not decoding
(erasing), and requesting a retransmission. It is clear that if we use a block code of rate R
over the channel and the erasure probability is say E, then we can achieve an effective rate of
(1 - c)R. Thus, if the erasure probability can be made small, one can transmit without any
loss of rate, but with potentially significant improvement on the error probability. Clearly,
allowing more erasures will decrease the number of errors, what one is interested in this case
is the tradeoff between the probabilities of error and erasure events. The first event occurs
when the decoder chooses an incorrect message, and the other is when the decoder rejects all
messages and declares an erasure. The optimal decoding rule and upper bounds on the error
and erasure probabilities were found in [For68]; Csiszar and Korner [CK81] rederived these
bounds using a constant composition coding technique. Forney in [For68] also notes that
for a particular class of channels the erasure probability can be made arbitrarily small while
maintaining zero error probability. For those channels there is a nonzero "zero error decision
feedback capacity." A necessary and sufficient condition for this type of behavior is the
existence of an output which can be reached by some but not all inputs. In [For68], Forney
derives the following lower bound to this capacity through a random coding argument.

Rodf(P) = max- Zwj In vj,

where Q runs over the space of single letter input probability distributions, j runs over
the channel output alphabet, wi denotes the probability of output j and vj denotes the
collective probability of inputs which lead to output j with positive probability.

In this paper we take a second look at zero error decision feedback capacity, and, using
constant composition arguments, derive the actual capacity of the channel. Our approach
will be the following:

* We will choose our codewords such that each has the same composition, i.e., each
codeword is a permutation of every other codeword.
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* A given output sequence will be decoded only if it can be generated from one and only
one of the codewords. Otherwise an erasure will be declared and a repeat request will
be issued.

* We will bound the probability of erasure by carving up the set of possible outputs
from a given codeword into constant composition noise components.

* The largest rate for which the above bound can be made arbitrarily small will be a
lower bound to the zero error decision feedback capacity. We will prove a converse to
show that this lower bound is also an upper bound.

The capacity expression one comes up with after such a derivation is:

CodJ(P) = maxmin I(Q, P'),
Q Pt

where I(Q, P') is the mutual information between the input and output ensembles when
the input distribution is Q and the transition probabilities are P'. P' in the minimization
ranges over all transition probability matrices which impose the same output distribution as
P and also introduce no extra connections from inputs to outputs (i.e., if P(j I k) = 0 then
so is P'(j I k).) The maximization over Q ranges over all single letter input distributions.

1.1 Example

To illustrate the ideas above, and make the rest of the paper more transparent, let us analyze
a simple example: The channel we will consider will be the Z-channel (see Figure 2), the
transition probabilities of which are given by

1 -1

Figure 2: Z-Channel

P(010) =1, P(1 i0) = 0,
P(o I 1) = , P(1 1)= 1- .

Let C(ZE) denote the (ordinary) capacity of this channel, and let xl,... ,xM be the code-
words of a block code of length n, rate R = (In M)/n and maximum error probability A.
Let us classify the codewords according to their "type," in this case according to the num-
ber of l's they have, which is their weight. Note that there can be at most n + 1 classes
(each codeword has 0, 1,..., or n l's), so the largest class contains at least M/(n + 1)
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codewords. Consider eliminating all other codewords. The new code such formed has an
error probability of at most A, and rate at least

1 M = ln(n + 1)
n n+1 n

Thus, for large enough n, we can achieve any rate less than C(ZE) by a constant composition
code, i.e., a code for which all codewords have the same number of O's and l's.

Now consider a constant composition code of rate R and a maximum likelihood decoder,
with maximum probability of error A. For a received sequence y, define Nkj(xm, y) to be
the number of i's such that yi = j and xmi = k. Notice that xm can lead to y with positive
probability if and only if No,l(xm,y) = 0. If this is the case Ni,l(xm,y) is just the weight
of y and Nl,o(xm, y) is given by

(# of 1's in xm) - Nl,l(xm,y) = (weight of xm) - (weight of y),

which is independent of m, since the code is of constant composition. Since

Pr( I f -o( x " y)(( -_ )N,' (xm,' y) if No (Xm,y) = 0,

y I -i=1 I Xm - 0 else,

we see that Pr(y I xm) is either zero, or does not depend on m. Thus, for any y, there is
either a single codeword which can lead to it, or there is a set of equally likely codewords
that the decoder must choose from. Since in the latter case the decoder will commit to an
error with probability at least 1/2, we have

2 Pr(there is more than one candidate) < Pr(Error) < A.

From this we can conclude that a decoder which erases whenever there is a chance of making
an error has erasure probability less than 2A.

The above argument demonstrates that one can achieve an arbitrarily small erasure
probability while making no decoding errors for all rates up to the (ordinary) capacity of
our example channel. Moreover, the exponential rate of decay of the erasure probability
with increasing block length is the same as that of error probability in an ordinary scheme.
For this case there is no need to prove a converse, since it well known [Sha56] that feedback
cannot increase the ordinary capacity of a discrete memoryless channel.

2 Notation and Background

Let us first make the concept of constant composition precise and derive some results that
will be used later. In doing so we will mainly follow the notation of [CK81].

Let p(A) denote the set of probability distributions on a set A. That is, we will write
Q E p(K) to mean Q is a probability distribution on K. Similarly, we will denote the set
of probability transition matrices from a set A to a set B by p(B I A). We will denote
the probability of a symbol k E K by Qk. For j E J and k E K, Pjk will stand for the
conditional probability of j given k.
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Definition. Given a set K = {0,..., K - 1}, and Q E p(K), we say a sequence x E K n

is Q-typical if

Vk N K k = Qk,
n

where Nk(x) is the number of occurrences of k in the sequence x. Conversely, Q is called
the type of such an x. The set of all Q-typical sequences,

{x E Kn:x is Q-typical},

is denoted by T~.

The following lemma states that there is not "too many" types. That is to say, there is
only polynomially many of them.

Lemma 2.1 The number of distinct types Q on K n is bounded by (n + 1)K.

Proof. This follows from the fact that each Nk(x) can take n+ 1 different values (including
zero) for each k. u

Some properties of the Q-typical set are summarized below:

* The Qn probability of an x E T$ is

n

Qn(x) = Q Q(xi) = llQk~' = exp-nH(Q),
i=1 k

where H(Q) = - k Qk In Qk.

* The Qn probability of T$ is then Qn(Tn) = ITl exp-nH(Q). Thus we see that

IT~l < exp nH(Q). The inequality can be expressed as a combinatoric fact:

n !_ < exp nH(Q).
Hk(nQk)!

Definition. Given another set J = {O,... J - 1}, and P E p(J I K), the distribution
induced on J by Q and P is denoted by PQ, i.e.,

(PQ) = E PjkQk.
k

Given x E T$ and P E p(J I K), we denote by Tp(x) the set of all y E J" for which

Nk,j(x,y) = QkPjk,
n

where Nk,j(x,y) is the number of occurrences of the pair (k,j) in the sequence {(Xi, Yi)}=l-.
The sequences in Tp(x) are said to be P-generated from x.

The counting argument of Lemma 2.1 establishes that, for a given x, the number of
distinct sets Tp(x) is bounded by (n + 1)KJ.
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If y is in Tpn(x), then

pn(y i ) II P(Yi I ,zi) = II IPjk - - = exp-nH(P I Q),
i= k j

where H(P I Q) = - kEj QkPjk lnP k. Similarly, for P E p(J I K),

P"(y I x) = exp-n(H(P I Q) + D(PllP I Q)),

where

D(PIIP I Q) = E QkPjk In Ak
k j Pjk

Consequently, we have

Lemma 2.2 Pn(T;p(x) I x) < exp-nD(PI'P I Q).

The following result from [CK81] states the existence of good codes with constant compo-
sition, that is, codes such that every codeword has the same type.

Lemma 2.3 Given R > O and Q E p(K) such that Tgn & 0 and H(Q) > R, then, for all

6 > 0, 3M > exp n(R- 6) and {xl,...,XM} C T8 such that VP, P E p(J I K), and Vm:

T(Xm) (n U Tp(xm)) <IT(xm)lexp-nI(Q,P)- Rl+,

provided n > no(K, J, 6), with jxj+ = max{O, x} and

I(QP) = QI',klik In P
;k j Ei QiPii

Proof. See [CK81, pp. 162-164]. o

3 Zero Error Capacity with Decision Feedback

Given a channel with input alphabet K, output alphabet J and transition probabilities P E
p(J I K), for each x E K", let Rp(x) denote the set of all y E J" such that pn(y I x) > 0.
Notice that

RA(x)= U T;(x).
P:Pk=O0Pik=O

We will write the condition Pjk =0 = ' Pjk = 0 as P < P. In measure theoretic terms, the
condition states that P is absolutely continuous with respect to P. Given Q E p(K) with
T$ 0 and H(Q) > R, choose {x 1,... ,XM} as in Lemma 2.3. Then the following is the
set of outputs y for which an erasure is declared when xm is transmitted:

R(xm) n ( U Rp(Xm.))= U [T;(xm)n (U T;,(Xm,))].
m'Om P:P4Zp m

P':P'<P
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Noticing that Tp(xm)nTP,(x, ) = 0 whenever P'Q £ PQ, the union above can be restricted
to those P, P' such that P'Q = PQ. Using Lemmas 2.2 and 2.3, the probability of erasure
conditional on xm becomes

P {R(xm) n (U R(xm)) xm < e-n(D(PPQ)+I(QP)-R+)
'( MI·( ·:A i-) eiM a~,,,-P:P<P

P,:P'<P, P'Q=PQ

< (n + 1)2KJ exp-nE(Q,P, R),

where
E(Q, P, R)= min [D(PIIP I Q) + II(Q, P ) -RI+].

P':P'<P, P'Q=PQ

Notice that reliable communication is possible whenever the above minimum is positive.
Setting this minimum equal to zero, we see that both terms involved in the expression
above must be zero:

D(PIIP PQ) = O and II(Q,P')-Rl+ = O. (1)

Now, D(PllP I Q) = 0 if and only if QkPjk = QkP/k for all k E K, j E J. In partic-
ular, D(PIIP I Q) = 0 implies PQ = PQ. Recalling the constraints on P', we see that
equation (1) will be satisfied if and only if

R > min I(Q,P'),
P':P'1P
P'Q=PQ

and the largest rate for which the exponent will remain positive is

Codf(P) = max min I(Q,P').
Q P':P'4P

P'Q=PQ

We will show that Codf as defined above is the zero error feedback capacity. In the above
formula for Codf notice that for any given Q, the feasible set

{P'E (JI K):P«<P,P'Q=PQ}

is a convex set and I(Q, P') is convex u in P'. However, the resulting function of Q to be
maximized is not necessarily convex n even though I(Q, PI) is.

3.1 Product Channels

In this section we will present results on channels that are built up from simpler channels via
"products," as defined in [Sha56]. The result is especially important, as it throws some light
on the nature of the optimization which yields the zero error decision feedback capacity,
and it also eventually leads to the converse.

Given two channels with transition probabilities P E Sp(-J K ) and P E Sp(J K), define
the product of these two channels as a channel with the transition matrix P x P E p(J I K),
with

K=Zxk, J=JxJ,
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(P x P)(fl)(ki) = PjkPli-

That is, the product channel is the two channels used simultaneously.
We will need the following dual results for the proof of the third.

Lemma 3.1 Let Q be a probability distribution on K x K and let Q and Q denote its
marginal distributions on K and K. Then

I(QP x P) < I(Q,P)+ I(QP).

Proof. Since I(Q,P x P) = H((P x P)Q) - H(P x P I Q), and since

H(P x P IQ) = H(P I Q) + H(P I Q),

H((P x P)Q) < H(PQ) + H(PQ),

the proof follows. C1

Lemma 3.2 Let P = P x P, Q = Q x Q. Then the minimization min I(Q,P') is
P':P'Q=PQ

P'<P

achieved by some P' = P' x P'.

Proof. Given P' with P'Q = PQ, P' < P, let

Pik= C P(jl)(ki)Qil

iEK,1EJ

APi Z Pbjl)(ki)Qk.
kEK,jEJ

It is easy to check that P'Q = PQ, P'Q = PQ, P' << P and P' < P. Thus, P' x P' << P
and (P' x P')Q = PQ. Then

I(Q,P x P') - I(Q,P') = H(P I Q)- H(P I Q)-H(P ' Q)

-Z QkQiP(jl)(ki) ln p k
kEK iEK jJ jl)(ki)

, QkMiP(ji)(ki)
E Z Zi jJQkQiZii (jl)(ki)kEK iEK jEJ 1E0 ) i) [P

- O.

Hence the product distributions do better than any other distribution. Eo

Theorem 3.1 Codf(P x P) = Codf (P) + Codf (P).
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Proof. By Lemma 3.1 we have

I(Q,P x P) I(Q, P) + I(Q,P).

Then

Co(P x P) = max min I(Q,P')
Q P':P'<PxP

P'Q=PQ

< max min I(Q,x PI )
Q P',P':P'<PP'<P

P1O=POP115=P,5

< max min I(Q,P') + I( PI)

= Cod(P) + Codf(P),

where the first step follows by restricting the range of the minimization. The converse
inequality follows by restricting the maximization to Q's of the form Q = Q x Q and
applying Lemma 3.2 to see that

COd(P x P) > max min I(Q,P)
Q=OxQ P':P'<PxP

P'Q=(PxP)Q

= max min I(m, P) + I( P')
Q,Q P'p':P'<<PP'~p

= COf (P) + COf(P),

thus completing the proof. []

3.2 The Converse

Assume that there exists a block code of length n with M codewords xl,...,xM, which
achieves zero error probability while erasure probability is less than E. Consider the channel
pn and an input distribution

else.

Let us define the sets Dm = R;(x,) \ (Um',m R(xm)), m = 1,...,M. Notice that Dm

is the set of outputs which can be reached only from x,. Also define E = J" \ (U Di).
Note that pn(Dm I x,) > 1 - e and for m' ~- m, pn(D I xm,,) = 0.

Let P' satisfy P' < Pn and PiQ = pnQ. Then for any y E Di,,

(PnQ)(y) = pn(y I Xm)/M = P'(y I x,)/M = (P'Q)(y),

thus P'(y I xm) = pn(y I xm). Also if m' = m, P' < pn implies P'(y I xm,) = 0. Thus for
m :a m',

P`(Dm I Xm) > 1- and P(Dm l Xm) = 0.
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Since partitioning the output space J" into D1, ... , DM and E will not increase the
mutual information,

I(Q,P') >(1 - )lnM.

Since this is true for any P' with pt < pn and P'Q = pnQ, we have

(1- ) ln M < min I(Q,P') < Cofd(P n) = nCOfd(P).
P':P'lP,
pQ=pnQ

Thus R = In M/n < (1 - E)-'Codf(P), establishing the converse.

3.3 Comparison with Single Letter Random Coding

As mentioned earlier, a lower bound to zero error decision feedback capacity of a discrete
memoryless channel with transition probabilities P E p(J I K) using (single letter) random
coding is given by Rodf(P) = maxqEp(K) Z(Q, P), where

Z(Q, P) =- (PQ)j lnV(Q, P)j,

with V(Q, P)i = E Qk. This expression gives the best possible performance of a system
k:Pik>O

where each letter of each codeword is chosen independently with identical distribution.

Remark 3.1 Z(Q,P) < I(Q,P).

Proof. Upon noting

Z(Q, P)- I(Q, P) = QkPk ln (PQ)J
= Qknk V(Q, P).Pjk

- QkPjkl n (PQ)j
i k:PA>O V(Q , P)iPjk

< - -E QkPjk[ (Q)j

- (PQ)j - 1 = 0,

we see that Z(Q,P) < I(Q,P). E

Remark 3.2 If/Q, P and P' satisfy PQ = P'Q and P' << P, then Z(Q, P) < Z(Q, P').

Proof. Since P' < P implies V(Q, P')j V(Q, P)j, we have

Z(Q,P) = -E(PQ)j lnV(Q,P)j < - (PYQ)i lnV(Q,P')j = Z(Q,P).
i j
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Theorem 3.2 Rodf(P) < Codf(P).

Proof. By the above two remarks, for Q, P and P' such that PQ = P'Q and P' < P,

Z(Q,P) < Z(Q,P') < I(Q,P').

Thus
Z(Q, P) < min I(Q,P),

P'Q=PQ

and hence
Rodf(P) = maxZ(Q,P) < max min I(Q, P) = Codf(P).

Q Q pt:pt~p
P'Q=PQ

Therefore, the constant composition argument never leads to a capacity worse than that
obtained via random coding. There are cases for which the inequality in the theorem is
strict. A simple example is the Z-channel shown in Figure 2. For this channel, the set

{P: PI <<P, PQ = PQ}

contains only P for nontrivial Q's. Thus, the decision feedback zero error capacity is equal
to the ordinary capacity of the channel. The random coding argument however, gives an
inferior answer of (1- -)/e.

A simple observation about Rodf(P) is that

Rodf(P x P) > Rodf(P) + Rodf(P),

rather than equality. So the natural thing to do would be to define

Roadb(P) = lim Rodf(P")
n--00 n

as the random coding zero error capacity. Theorems 3.1 and 3.2 show that

Rodf b(P) < COd (P) 

The next section will show that ROdfb(P) is in fact equal to Cod (P).

4 Generalization to Erasures and Errors Schemes

In the previous sections, we considered a decoder with a rather limited freedom. Namely,
our decoder had to erase whenever it was not absolutely sure about the transmitted message.
This is one extreme of the more general problem of erasures and errors decoding, our special
case resulting from forcing the tradeoff between the erasures and errors in the direction of
no errors. The other extreme of no erasures is the well studied classical communication
problem.
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In [For68] Forney studies erasures and errors decoding and the list decoding techniques,
the latter allowing the decoder to produce more than one estimate. Forney shows that the
optimal decoding rule is to decode m if

Pf(y I xm)
pm' (y PI xm) > exp(nT),

where T is an arbitrary parameter. If there is no m satisfying the above then the decoder
declares an erasure. Note that for T > 0, at most one m can satisfy the decoding criterion,
so this corresponds to erasures and errors decoding, and, for T < 0, there is at least one
such m, corresponding to list decoding schemes.

Consider the above decoding rule with T > 0, so that we are considering erasures and
errors decoding. If E1 denotes the event of an erasure of error and E2 denotes the event of
an error, Forney shows for this decoding scheme

Pr[E1] < exp-nEl(R,T), and Pr[E 2] < exp-nE2(R,T),

where

E1(R, T) = max [Eo(s, p, Q, P) - pR- sT] (2)
QO~sfp•1

E2(R,T) = E 1 (R,T) +T (3)

and

Eo(s,p,Q,P) = -lnFo(s,p,Q,P)

Fo(s,p,Q,P) = [ZQ(k)P(j Ik)' ] [ZQ(k')P(i Ik')/]-

With T < 0, exp -nE 2 (R, T) is an upper bound to the average number of incorrect symbols
on the list, and exp -nE 2 (R,T) is an upper bound to the average number of incorrect
symbols on the list.

We will improve on these bounds by applying this formula to the channel representing
the n-fold use of the original one: The input alphabet is K n , whose elements we denote
by x = (xl, ... , x,), the output alphabet is Jn with elements y = (yl, ... ,yn), and the
probability transitions are given by

n

p"(y I x) = II P(Yi I xi)
i=l

Let Q E p(K) and let Q E p(K n ) be the distribution

Q1/I7 l for x E T$,
~0 else.

Then Fo(s, p, Q, pn) becomes

Fo(s,p,Q,Pn) = L ITl-lPn(y I x)l-] L[ IT$-lpn(y I x,)8/P].
yEJ

r'
n IS~f~T~ i, 12
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Interchanging the sum over y and x, partitioning the output space Jn into U Tp (x),
PEp(JIK)

ITl-(i'M Z Z pn(y I x)1-L pn(yI Xt)a/P],
xET8 PEp(JIK)yET/,(x) 'ET8

and since

pn(y I ) { exp -n(H(P I Q) + D(PlIP I Q)) y E Tp(x),P P,
0 y E Tp(x), P P,

=ITI -( 1+p) S S e- n(1- s)(H(PIQ)+D(p jPlQ)) S L, pn(yI x')/ypP.
xET8 P<<p yETp(x) 'ET

To evaluate the innermost summation for any given y E Tp (x), let us partition T~ as
follows:

Tn = UW(Q, Py)
P'

where W(Q,P',y) = {x' E Tgn:y E Tpn,(x')}. Notice that the size of W(Q,P',y) depends
on y only through the type of y, in our case PQ, and if P'Q : PQ then this size is zero.
Otherwise, P'Q = PQ, and then

IW(Q, P',y) (n(PQ)!
I Hk(nQkPjk)!
I (n(P'Q)j)!

I Ik(nQkPjk)!
< en(H(Q)-I(Q,P'))

Also note that if P' 5z P, P(y I x') = 0 for all x' E W(Q, P',y).
With these considerations, and noting that ITp;(x)l < enH(P IQ), we get

Fo(s,p,Q,P) < (n+ 1)2KJexp- n min {D(PfIP] Q)+pI(Q,Pt)

+ s(H(P I Q)- H(P I Q) + D(P'IIP Q) - D(PIIP I Q))}

and thus,

Eob(s,p,Q,P) = lim lnFo(spQpn)
n--~oo

> min P{s (H(P |IQ)- H(P Q) + D(P'IIP IQ)-D(PIIP IQ))
P'Q=PcQ

+ pI(Q,P') + D(PIIP I Q)}.

On examining the bounding technique, we see that all the bounds we have used are expo-
nentially tight, and thus the inequality above is in fact an equality. Now one can use Eob
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instead of E0 in Forney's formulas (2) and (3), and get better upper bounds on Pr[E1] and
Pr[E2].

Note that the parameter T governs the tradeoff between erasures and errors. Letting
T -- oo corresponds to the case of no errors. In this case the optimal s in calculating E 1(R)
and E 2(R) is zero, and one can see that the highest rate for which E1 (R) remains positive
is COdf(P).
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