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Abstract

Consider the problem of minimizing a convex essentially smooth function over a polyhedral set.

For the special case where the cost function is strictly convex, we propose a feasible descent

method for this problem that chooses the descent directions from a finite set of vectors. When the

polyhedral set is the non-negative orthant or the entire space, this method reduces to a coordinate

descent method which, when applied to certain dual of linearly constrained convex programs with

strictly convex essentially smooth costs, contains as special cases a number of well-known
methods for quadratic and entropy (either "-logx" or "xlogx") optimization. Moreover,

convergence of these known methods, which (owing to the unboundedness of the dual cost) were

often difficult to establish, can be inferred from a convergence result for the feasible descent
method. We also give two new applications of the coordinate descent method: to "-logx" entropy

optimization with linear inequality constraints and to solving certain resource allocation problems.

When the cost function is not strictly convex, we propose an extension of the feasible descent

method that makes descents along the elementary vectors of a certain subspace associated with the

polyhedral set. The elementary vectors, instead of being stored, are generated using the dual
rectification algorithm of Rockafellar. By introducing an £-complementary slackness mechanism,

we show that this extended method terminates finitely with a solution that is within £ of optimality.

Because it uses the dual rectification algorithm, this method can exploit the combinatorial structure

of the polyhedral set and is well suited for problems with special (e.g. network) structures.
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1. Introduction

Amongst the most important problems in optimization is that of minimizing a strictly
convex cost subject to either linear equality or linear inequality constraints. A classical example is

when the cost is a quadratic function. Such a problem has applications in areas including linear

programming [LiP87], [Man84], [MaD88], image reconstruction [HeL78], [LeC80], and

boundary value problems [CGS78], [DeT84]. Another classical example is when the cost is the
entropy function (either "-log(x)" or "xlog(x)"). This problem has applications in information

theory [Ari72], [Bla72], matrix balancing [Bre67], [EvK74], [Gra71], [Kru37], [LaS81],

[MaG79], [Osb60], [Sin64], [ScZ87], image reconstruction [Cen88], [Len77], speech processing

[Fri75], [Jay82], [JoS84], statistical inference [DaR72], linear/nonlinear programming [Fre88],

[Hua67], [Kar84], [Son88], and many other areas of science and engineering.

A popular approach to solving the above problems is to dualize the linear constraints to

obtain a dual problem of the form

Minimize h(Ep) + (c, p)

subject to pe P,

where h is a strictly convex function that is differentiable wherever it is finite, E is a matrix, c is a

vector, and P is a box; and then apply a coordinate descent method to solve this dual problem. The

resulting method is simple, uses little storage, has fast convergence, and, in certain cases, is highly

parallelizable. Methods that take this approach include the methods of Hildreth [Hi157], Herman

and Lent [HeL78] for quadratic programs, the methods of Kruithof [Kru37], Bachem and Korte

[BaK79] and many others (see [LaS81]) for "xlog(x)" optimization problems, and the method of
Censor, Lakshminarayanan and Lent [CLL79] for "-log(x)" optimization problems. Coordinate

descent methods for minimizing convex functions that are differentiable wherever they are finite

have been well studied, but convergence of these methods typically require either that the function

is strictly convex with bounded level sets [BeT89], [D'Es59], [Lue73], [SaS73] or that the

function is finite everywhere [Pan84], [TsB87b], [Tse88a]. For the above dual problem, because

h need not be finite everywhere and the matrix E need not have full column rank, the cost function
p -* h(Ep) + (c, p) need not satisfy any of the above conditions for convergence. As a

consequence, convergence for the above methods have been quite difficult to show and were

shown only for special problem classes. A principal aim of this paper is to unify and extend these
methods and the convergence results for them. In particular, we propose a method for solving the

above problem when P is any polyhedral set. This method is a feasible descent method that

chooses its descent directions from a finite set of vectors. This finite set of vector in turn is chosen
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to have the property that every contingent cone of P is generated by some subset of it. We show

that this method is convergent, provided that the vectors in the set are chosen in an almost cyclic

manner, and that the coordinate descent methods described in [BaK79], [CeL87], [HeL78],

[Hi157], [Kru37], [LaS81] are all special cases of this method. We also give two new applications
of this method: one to minimizing "-log(x)" entropy costs subject to linear inequality constraints

and the other to solving certain resource allocation problems.

When the cost function h is only convex (not necessarily strictly convex) or when the
contingent cones of P are such that the finite set of vectors cannot be stored in its entirety, we

propose an extension of the above method. In this extended method, each descent direction is an
elementary vector of a certain subspace related to P and, instead of being stored, is generated by
the dual rectification algorithm of Rockafellar [Roc84]. This method also employs a certain -

complementary slackness mechanism to ensure that each descent yields a "large" decrease in the
cost. We show that, for any £ > 0, this method terminates finitely with a feasible solution that is,

in some sense, within e of optimality. A major advantage of this method, inherited from the dual

rectification algorithm, is its ability to exploit the combinatorial structure of the polyhedral set P in

much the same way as, say, the simplex method for linear programming. For example, when P is
given by network flow constraints, this method can be implemented using graphical subroutines.

To the best of our knowledge, the only other method (for minimizing convex differentiable

functions over polyhedral sets) that can exploit the combinatorial structure of the constraint set in

this manner is the convex simplex method of Zangwill [Zan69]. However, unlike our method,

Zangwill's method requires a certain nondegeneracy assumption on the problem to guarantee
convergence. Our method with its finite termination property is also reminiscent of the e-

subgradient methods [BeM73], [NgS84], [Roc84] in nonlinear optimization. However, in general
the e-subgradient methods appear to be more difficult to implement.

This paper is organized as follows: In Sec. 2 we describe our problem and in Sec. 3 we

introduce the notion of a basis for the contingent cones of a polyhedral set. In Sec. 4 we describe

our method for solving problems with strictly convex costs and analyze its convergence. In Sec. 5
we apply this method to solve the dual of, respectively, entropy optimization problems, quadratic
programs, and certain resource allocation problems. We show in the process that a number of

known methods are special cases of this method. In Sec. 6, we describe an extension of this

method to problems with convex (not necessarily strictly convex) costs.

In our notation, all vectors are column vectors and superscript T denotes transpose. For
any vector x, we denote by xj the j-th coordinate of x. We denote by (.,.) the usual Euclidean
inner product and, for any x in an Euclidean space, by Ilxil and Ixillo, respectively, the L2-norm and
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the LOO-norm of x. For any convex function f: 9lm--(-o,oo], we denote dom(f) = { xe 9im I f(x) <

00 ),

Cf = interior of dom(f),

and by f *:9 m-(-oo] the conjugate function of f [Roc70], i.e.

f*(t) = supx[ (t, x) - f(x) 1, V t.

Finally, for any open set C, we denote by bd(C) the set of boundary points of C (possibly empty).

2. Problem Description

Let E be an mxn matrix, c be an n-vector, h:9im-(-oo,oo] be a convex function, and P be

a polyhedral set in 91 n. Consider the follow convex program:

Minimize q(p) (2. l1a)
subject to p E P,

where q:tn-(-oo,oo] is the convex function given by

q(p) = h(Ep) + (c, p), V pe 9gn . (2. ib)

We make the following standing assumptions about E, c, P and h:

Assumption A.
(a) h is closed and differentiable on Ch • 0.

(b) For any te bd(Ch) and any sequence { tk} in Ch converging to t, it holds

mk sup I h(tk)-h(t) =
limk- sup { Iit It }=--

(c) PnCq • 0, infp,,p q(p) > -, and the set { Ep I pE P, q(p) < 5 } is bounded for all Ce R9.

Parts (a)-(b) of Assumption A imply, in the terminology of [Roc70], that h is essentially
smooth (i.e., Ch O0, h is differentiable on Ch, and IIVh(tk)ll - oo for any te bd(Ch) and any

sequence {tk} in Ch converging to t). [To show this, it suffices to verify (see Lemma 26.2 in
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[Roc70]) that (Vh(t+Ov), v) ,1 -0 as 0 J1 0 for any te bd(Ch) and any v such that t+ve Ch. Now,
by Assumption A (b), for any a < 0, we can find a } > 0 such that (h(t+'v) - h(t))/ < t. This

together with the fact (since h is closed) lim0o 0inf {h(t+Ov) } > h(t) implies that there exists a

O6 (0,p) such that (h(t+bv) - h(t+0v))/(~ - 0) < ac2. The left hand side of this inequality, by

the convexity of h, is greater than or equal to (Vh(t+6v), v), so we have (Vh(t+6v), v) ac/2.

Since the choice of a was arbitrary and (Vh(t+0v), v) is monotonically decreasing with 0, this

shows (Vh(t+0v), v) 1 -o as 0 ,1 0.] In fact, in the case where h is separable, i.e.

m

h(t) = I hj(tj), (2.2)
j=l

for some closed convex functions hj:9t1-(-o,oo], parts (a)-(b) of Assumption A is equivalent to

the assumption that h is closed and essentially smooth. [To see this, note that if h is essentially
smooth, then each hj is essentially smooth, so that if C' is a left (right) boundary point of Chj, then

limr,{Vhj( )} = -oolimimg;,{Vhj() )} = oo). This together with the fact (cf. convexity of hj)

hj(C) - hj(~') < Vhj(S)(S - C') for all Ce Chj implies (hj(5) - hj(1'))/l~ - -'1l -oo as C -4 ',

Ce Chj, so that h satisfies Assumption A (b). Since h is closed and essentially smooth, h clearly

satisfies Assumption A (a).] Since h is essentially smooth and q is h composed with a linear

transformation, it is easily seen that q is also essentially smooth.

As we shall see, the essential smoothness of h and q plays a crucial role in our methods and
their convergence analysis. To verify part (b) seems to be difficult, but this is not exactly true.
For example, part (b) trivially holds if h is real-valued (so that Ch has no boundary point) or if

h(t) - oo whenever t approaches a point in bd(Ch) (2.3)

(so that dom(h) equals Ch), which, as we shall see, holds in many important cases. [For example,
consider the problem mint g(t) I At > b, t 2 0 }, where g:9im---9 is a convex differentiable
function, A is a kxm matrix, and b is a k-vector. If we use a penalty method [Ber82] to solve this

problem and if we penalize the constraints t > 0 with a convex essentially smooth function
:9Im--(-oo,ooc] that is finite on (O,oo)m. and tends to oo as t approaches a boundary point of

(O,oo)m, then the penalized problem min{ g(t) + N(t) I At > b I is of the form (2. la)-(2. ib) and the

cost function h = g + f satisfies (2.3). For another example, consider the linear program min{ (c,
p) I Bp > d, Cp > f }, where B, C are respectively kxn, mxn matrices and c, d, f are vectors of

suitable dimensions. If we use a penalty method to solve this problem and if we penalize the
constraints Cp > f with the above Nf, then the penalized problem mint (c, p) + WN(Cp - f) I Bp > d }
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is also of the form (2.1a)-(2. b) and the cost function h given by h(t) = iN(t - f) satisfies (2.3).]

On the other hand, a convex functions that is essentially smooth need not satisfy (2.3). A simple
example of this is the function h:$R--(-oo,oo] given by h(t) = t log(t) if t O0 and h(t) = oo

otherwise. Another example is the function h:91--(-oo,oo] given by h(t) = -ta if t Ž 0 and h(t) = o

otherwise, where a is some fixed scalar in (0,1).

Part (c) of Assumption A, together with the fact that q is closed, implies that (2.1a)-(2.lb)
has an optimal solution. [To see this, note that since PnCq • 0, then infpcp q(p) < o so that
infpEp q(p) is finite. Consider any sequence {pO,pl,... } in P such that {q(pr)} I1 infp,p q(p).

Since { Ep I peP, q(p) < q(p0 ) I is bounded, then {EprI is bounded and, by Lemma 2 in
Appendix B, { (c, p) } is bounded. For every r, let pr denote the least L-norm solution of the

feasible linear system Ep = Epr, (c, p) = (c, p'), pe P. Then q(pr) = q(pr) for all re R and, by

Lemma 1 in Appendix A, {pr} is bounded. Let pO be any limit point of {pr}re R. Then p°e P and
(since q is closed) q(p°) < limrinf{q(pr) = infpEp q(p), so that p° is an optimal solution of

(2.la)-(2. b).] Moreover, since PnrCq 0 and q is essentially smooth, every optimal solution of
(2.1a)-(2.1b) is in PnCq. [To see this, note from Lemma 26.2 in [Roc70] that, for any
pe Pnbd(Cq), it holds that (Vq(p+0(p'-p)), p'-p) , -oo as 0 .1 0, where p' is any point in PnCq,
so that there exists a point p" on the line segment joining p and p' for which q(p") < q(p). Since
both p and p' are in P and P is convex, p" is also in P.] This latter fact is quite useful since it
implies that Vq is continuous near an optimal solution. The assumption in part (c) that the set { Ep

I pe P, q(p) < }I is bounded for every 5 may be difficult to verify in general (except when P is

bounded), but, as we shall see, it holds naturally for many problems of practical interest.

3. Basis for the Contingent Cones of a Polyhedral Set

Central to the development of our methods is the notion of a "basis" for the contingent
cones of the polyhedral set P. For each pe P, let K(p) denote the contingent cone [Roc8 1] of P at

p, i.e.

K(p) = ue I p + 0u E P for some 00 ).

[Loosely speaking, K(p) is the set of directions at p that point into P.] We say that a finite set of

vectors ul , u2, ... , ub in 91n form a basis for the contingent cones of P (abbreviated as "basis for
K(P)") if, for any peP, K(p) is generated by some subset of ±_u1, ... , ±ub}. [We say that a

convex cone is generated by vectors l1, ... , Uk if it is precisely the set { X1U1 + ... + Xkiik I X1 Ž 0,
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... , k 2 0 }.] For example, if P is a box in g9n with its sides parallel to the coordinate axes, then
the coordinate vectors in gin form a basis for K(P). If P is a subspace of 95n spanned by some
linearly independent vectors u l, ... , ub, then these vectors form a basis for K(P) (both in our

sense and in the usual sense of linear algebra).

A property of basis that is most useful to us is the following:

Fact 1. Let {u l, ... , ub} be any basis for K(P). For any pe PhCq, if there exists us K(p)
such that (Vq(p),u) < 0, then there exists ue {±+ul, ...., +ub}nK(p) such that (Vq(p),U) < 0.

Proof. Since u is in the contingent cone of P at p, it can be expressed as a linear convex

combination of the generators of this cone, i.e. there exist i1, ... , ik from the set {+u', ... , ±ub}

and positive scalars Xk, .-. , Xk satisfying

u = XlU + ... + Xku k , (3.1a)

Ui EK(p), V i. (3.b)

Since (Vq(p),u) < 0, (3.la) implies that (Vq(p),ui) < 0 for some i, which together with (3.lb)

establishes our claim. Q.E.D.

Fact 1 states that if we are at a non-optimal feasible solution of (2.1a)-(2. lb), then it is

always possible to find a feasible descent direction from amongst the basis vectors. This motivates

a method for solving (2. la)-(2. b) whereby at each iteration one of the basis vectors is chosen and

q is minimized along this direction. The two key issues related to this method are: (i) which of the

basis vectors should we choose at each iteration and (ii) how should we generate the chosen basis

vector? We will address these two issues in the following sections where we describe the details

of our methods and analyze their convergence.

4. A Basis Descent Method for Problems with Strictly Convex Costs

In this section we consider a special case of the problem (2.1a)-(2.lb) where the cost

function h is furthermore strictly convex. We develop a method for solving this problem based on

descent along basis vectors whereby the basis vectors are chosen in an almost cyclical manner.

Because this method cycles through all of the vectors in a basis, it is only suited for problems for

which the constraint set P has a simple structure (such as a box). Nonetheless, many important
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problems, including the Lagrangian dual of linearly constrained problems with strictly convex

essentially smooth costs, do possess such structures and are well-suited for solution by this

method.

Throughout this section, we make (in addition to Assumption A) the following assumption

about (2. la)-(2. lb):

Assumption B. h is strictly convex on C h.

Assumption B, together with the essentially smooth property of h (cf. Assumption A (a)-(b)),
implies that the pair (Ch,h) is, in the terminology of Rockafellar [Roc70], a convex function of the

Legendre type. A nice property of such a function, which we will use in Sec. 5, is that its

conjugate function is also a convex function of the Legendre type. Assumption B also implies that
the m-vector Ep is the same for all optimal solutions p of (2.1a)-(2.1b). [If both p and p' solve

(2.1a)-(2.1b), then pe Cq, p'E Cq and, by convexity of q, q(p) = q(p') = q((p+p')/2). This implies
tapCh, Ep'e C h and h((Ep+Ep')/2) =h(Ep)+h(Ep)

that Ep Ch, Ep'2 Ch and h((Ep+Ep')/2) = (p2(p) (cf. (2. lb)), so that the strict convexity

of h on Ch implies Ep = Ep'.] We will denote this m-vector by t*.

Under Assumption B, part (c) of Assumption A can be simplified considerably as the

following result shows:

Fact 2. Under Assumption B and parts (a)-(b) of Assumption A, part (c) of Assumption A
holds if and only if PrCq • 0 and (2.1a)-(2. b) has an optimal solution.

The only if part was already argued in Sec. 2. To argue the if part, it suffices to show that if
Pr-CCq • 0 and (2.la)-(2.lb) has an optimal solution, then the set { Ep I pe P, q(p) < 5 } is
bounded for every ec 91. If this were not true, then the convex set i (t,p,C) I t = Ep, pe P, q(p) <

} I in 1m+n+l has a direction of recession (v,u,0) satisfying v • 0. Then v = Eu and, for any

pc P, it holds that p+Oue P and q(p+Ou) < q(p) for all 0 2 0. Let p be an optimal solution of

(2.1a)-(2.1b). Then it furthermore holds that q(p+Ou) = q(p) for all 0 > 0, so that h(Ep+Ov) +

(c,p+0u) = h(Ep) + (c,p) or, equivalently, h(Ep+Ov) = h(Ep) - 8(c,u) for all 0 > 0. Also, since p

is an optimal solution of (2.1a)-(2.lb), p is in Cq (cf. discussion in Sec. 2), so that Ep is in Ch

and, by Theorem 8.3 in [Roc70], Ep+Ov is in Ch for all 0 2 0. Since v • 0, this contradicts the

assumption that h is strictly convex on C h. We will use Fact 2 in the dual applications of Sec. 5.
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We formally state our method for solving (2.1a)-(2.1b) (under Assumptions A and B)

below. This method, at each iteration, chooses a basis vector and performs a line minimization of

q over P along this direction:

Basis Descent Method
Iter. 0. Choose a basis {u1, ... , ub) for K(P) and a p°e Pr'Cq.

Iter. r. Choose a wre {ul,...,ub}. If (Vq(pr),wI) = 0, set 0 r = 0; otherwise compute

Or = argmin{ q(pr + Owr) I pr + wrE P }.

Set pr+l = pr + Orwr.

The line minimization is attained at every iteration r, for otherwise since the set { Ep I pe P, q(p) <

q(pr) } is bounded (cf. Assumption A (c)), either (i) w r is a direction of recession for P and

satisfies Ewr = 0, (c,w r) < 0 or (ii) -w r is a direction of recession for P and satisfies Ew r = 0,

(c,w r) > 0. In case (i), we have pr + OwrE P for all 0 2 0 and q(pr + Owr) = h(Epr) + 0(c,w r) _
as 0 - oo, so the optimal value of (2.1a)-(2.1b) is -o. In case (ii), we also have, by a

symmetric argument, that the optimal value of (2. la)-(2. lb) is -o. Hence Assumption A (c) is

contradicted in either case. Note also that pr is in PrCq for all r. [It is easily seen that each pr is in

P. That pr is also in Cq follows from an argument in Sec. 2 that showed that each optimal solution

of (2.1a)-(2.1b) is in Cq.]

The above method is not convergent in general. To ensure convergence, we will consider

the following restriction on the directions w l, w2 , ... (cf. [SaS73], [HeL78]):

Almost Cyclic Rule. There exists A 2 b such that {ul,...,ub} {wr+l,...,wr+A} for all r.

[Loosely speaking, the above rule requires that each basis vector be used for descent at least once

every A successive iterations. An important special case is when the basis vectors are chosen in a
cyclical manner, i.e. {w°,wl,... } = {ul, ... ,ub,ul,...,ub,... }.] In Sec. 6 we will consider an

alternative strategy that examines only a subset of the basis vectors in the course of the method.

In the special case when P = 9tn , the basis descent method is reminiscent of a method of

Sargent and Sebastian [SaS73] based on descent along directions that are, in their terminology,
uniformly linearly independent. [It can be shown that if the directions w°,wl,... satisfy the

Almost Cyclic rule, then they are uniformly independent in their sense.] It is also reminiscent of a

periodic basis ascent method of Pang [Pan84] (also see [LiP87, §4.2]). Moreover, if we choose
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the basis for K(P) = 91n to comprise the coordinate vectors of 91n, then the basis descent method

reduces to the classical coordinate descent method for minimizing strictly convex differentiable

functions (e.g. [D'Es59], [Lue73], [SaS73]).

Convergence of coordinate descent methods for minimizing strictly convex essentially

smooth functions has been fairly well studied. In particular, it is known that if P is a box and if q

is a strictly convex, continuously differentiable function over P, and has compact level sets over P,

then the coordinate descent method (using cyclic relaxation) applied to minimize q over P is

convergent (e.g. [BeT89, Chap. 3.3.5]). For our problem however, P is any polyhedral set and q

may be neither strictly convex (since E may be row rank deficient) nor continuosly differentiable
over P (since Cq need not contain P). Nonetheless, by using a more delicate argument, we can

show that the basis descent method is convergent in the sense that it always computes t*. This

result is stated below. We discuss its applications in Sec. 5.

Proposition 1. Let {pr} be a sequence of iterates generated by the basis descent method using
the Almost Cyclic rule. Then pre PflCq for all r and {Ep r} - t*.

Proof. We clearly have q(pr) > q(pr+l) for all r and from the earlier discussion we also have
prE PnCq for all r. Since q(pr) is monotonically decreasing with r and q is bounded from below

on P, { q(pr) I must converge to a finite limit, say q-. Let tr = Epr for all r. Then by Lemma 3 in
Appendix C, {trI is bounded and every limit point of {tr} is in Ch. We claim that

t+l - t_ 0.O

To argue this, suppose the contrary. Then there exist e > 0 and subsequence RC { 1,2,... } such

that Iltr+l - trll 2> for all re R. Since {tr} is bounded, we will (passing into a subsequence if

necessary) assume that {tr}rER and {tr+l IrER converge to, say, t' and t" respectively. Then t' • t"

and both t' and t" are in Ch, so that the continuity of h on Ch ([Roc70, Theorem 10.1]) implies

{h(tr) }rR -> h(t') and {h(tr+l) }rER -* h(t") or, equivalently (since q(pr) = h(Epr) + (c, pr)),

{(c, pr)}rER -* q- - h(t'), {(c, pr+l)}reR - q* - h(t"). (4.1)

Also, since pr+l is obtained from pr by performing a line search of q along the direction pr+l _ pr,

the convexity of q yields

q(pr+l) < q((pr + pr+l)/2) < q(pr), V r.
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Upon passing into the limit as r - oo, re R, and using (2. lb), (4.1) and the continuity of h on Ch,

we obtain

qoo < h((t' + t")/2) + qo - (h(t") + h(t'))/2 < qo,

which contradicts the strict convexity of h on Ch, e.g. h((t' + t")/2) < (h(t") + h(t'))/2.

Let t° be any limit point of {tr}. We will show that to = t*. Let P be expressed as { pe 9ln

I Ap > b } for some kxn matrix A and k-vector b. Let R be any subsequence of { 1,2,... } such

that { tr}rR converges to to. Then since pr p, we have Apr > b for all re R. By further passing

into a subsequence if necessary, we can assume that, for each ie { 1,...,k}, either Aipr < bi + 1 for

all re R, or Aipr 2 b i + 1 for all re R, where A i denotes the i-th row of A. Let I = { i I Aipr < bi + 1

for all re R }. For each re R, let pr denote the least L2-norm solution of the following linear

system

Ep = tr, Ap=Aip Vie, Aipb = Aipr +l ViI,

This linear system is feasible since pr is a solution. Furthermore, since the right hand side of this
system is bounded for all re R, the sequence {pr}reR is bounded (cf. Lemma 1 in Appendix A).

Let pa be a limit point of {pr}reR, so that Epi = to and Ap >a b. By further passing into a

subsequence if necessary, we will assume that {pr}reR -4 pa. Also, by the Almost Cyclic rule,

we can (by further passing into a subsequence if necessary) assume that the ordered set
{wr,...,wr+Al } is the same set, say { w ... , for all reR. Since tr + l - tr - 0 and {it}reR

-4 t o, we have

{tri}rR -4 t, j = 0, 1,...,A. (4.2)

Since t-e C h (cf. Lemma 3 (c) in Appendix C) and h is continuous on Ch, this implies h(tr+j )}rER

-4 h(t7) for j = 0, 1,...,A, which, together with the facts

q(pr++l) q(pr+j) = h(f+j+l) - h(tr+j) + 9r+j(c,xj), j = 0,...,A-1, V re R

(cf. (2. lb) and pr+1 _ pr = erwr for all r) and q(pr+l) - q(pr) -4 0, implies { r+j(c,j)}IreR - 0,

forj = 0,...,A-l. Since rEwr = tr+l- tr for all rand tr+l - tr 0, we also have { r+jEj))}reR

- 0, forj = 0,...,A-1. Hence if E ji *0 or if (c,4 j) • 0, then {0r+j}reR - 0. Otherwise Ev j =

0 and (c,wj) = 0 so that, for every re R, (Vq(pr+j),w j) = (ETVh(tr+j) + c, j) = 0, implying that

Or+j = 0. This shows that



{pr+j+l pr+ R 0, j = 0,...,-1. (4.3)

Let I' = { i I Aipo = bi } and 6 = maxi 1 { Aipo - bi} (so 6 > 0). Then Aipr 2 bi + 8/2, for all i I'

and all re R sufficiently large (since for each i, either Aipr 2 bi + 1 for all re R or Ai r = Ai= r -

Aipo for all re R). Eq. (4.3) then implies that

Aipr+J > bi + 5/4, IV ix I', V je { 1,...,A}, V re R sufficiently large. (4.4)

Now, consider any je {0,...,A-1 } such that iJe K(po). Then

Aiwvj 2 0 V ie I', (4.5)

so that, by (4.4) and (4.5), Aje K(pr+j+l), for all re R sufficiently large. This, together with the

fact that, for every re R, pr+j+l is obtained by performing a line search of q over P from pr+j in the

direction wj, implies

(Vq(pr+j+l),j) >2 0, V re R sufficiently large,

or, equivalently (by (2. lb)),

(ETVh(tr+j+l) + c,, j) > 0, V re R sufficiently large.

Since (cf. (4.2)) {tr+j+l }rR -- to, upon passing into the limit as r - o-, rE R, and using the

continuity of Vh on Ch ([Roc70, Theorem 25.5]), we obtain

(ETVh(t-) + c,i j ) 2 0,

or, equivalently (by (2. lb) and the fact Epo = t°),

(Vq(p-),iJ) > 0.

By an analogous argument, we also have that, for any je { 0,...,A-1 I such that -wJe K(p-), it

holds
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Since (by the Almost Cyclic rule) {ul,...,ub}C {,... ,W -}, this then implies

(Vq(p°),uJ) 2 0, V i such that uJ E K(p°),

(Vq(p°),uJ) < 0, V i such that -u- E K(p°°),

or equivalently, (Vq(p),ii) > 0 for all ~u {+ul, ... , +ub}rK(p°). Hence, by Fact 1,

(Vq(p°),u) > 0 for all ue K(p-). Since q is convex, this shows that pa minimizes q over P and

therefore Ep° = t*. Q.E.D.

We remark that the line search stepsizes 0°, 01,... in the basis descent method can be

computed inexactly in the following manner: we fix a scalar ae [0,1) and, at each r-th iteration, we

choose Or to be any scalar 0 for which (Vq(pr + 0wr),wr) is between 0 and ox(Vq(pr), wr) and

choose Or to be the stepsize 0 nearest to Or that is between 0 and Or and satisfies pr + 0wrE P.

[Loosely speaking, Or is a stepsize for which the directional derivative is increased to a fraction a

of its starting value.] For cx = 0, we recover the exact line search procedure. It can be verified that

Proposition 1 still holds for the basis descent method that uses this inexact line search procedure

(in conjunction with the Almost Cyclic rule).

Notice that Proposition 1 does not assert convergence of the sequence {pr}. In general,

convergence of {pr} appears to be very difficult to establish without making additional

assumptions on the problem (such as E has full column rank). Also notice that in the special case
when c is in the row space of E, say c = ETrl for some m-vector rl, the problem (2.1a)-(2.lb) is

equivalent to

Minimizing h(t) + (rl,t) (4.6)

subject to t E T.

where T denotes the polyhedral set { Ep I pe P 1. Now it is easily seen that if {u l , ... , ub) is a

basis for K(P), then {Eu l, ... , Eub} is a basis for K(T). Hence, we can apply the basis descent

method to solve (4.6) (using (Eul, ... , Eub} as the basis), i.e., at each iteration the objective

function h(-) + (rI,.) is minimized over T along a direction chosen from {Eu l, ... ,Eub}. In the

special case where E has full column rank, this method is equivalent to the basis descent method
applied to solve (2. 1a)-(2. lb) (using (ul, ... , ub} as the basis). [By this we mean that if Ew °,

Ew l, ... is the sequence of directions used in the former and w° , w1, ... is the sequence of

directions used in the latter, then the two methods generate identical sequences of iterates in T.] In

general, however, the two methods are not equivalent.
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5. Coordinate Descent Method and Dual Applications

In this section we apply the result developed in Section 4 to problems of minimizing strictly
convex, essentially smooth functions subject to linear constraints. For the special cases of

quadratic programming and entropy optimization, we show that a number of methods for solving

these problems are applications of a coordinate descent method and that convergence of these

methods follows from that for the basis descent method (cf. Proposition 1). We also give two new
applications of this coordinate descent method: one to minimizing the "-log(x)" entropy cost

subject to linear inequality constraints and the other to solving certain resource allocation problems

having separable costs and network constraints.

Let A be an nlxm matrix, B be an n2xm matrix, b be an nl-vector, and d be an n2-vector.
Let f be a convex function on 91

m . Consider the following convex program

Minimize f(x) (P)
subject to Ax = b,

Bx > d.

We make the following standing assumptions about (P):

Assumption C.
(a) f:9m--(-oo,oo] is closed convex and essentially smooth.

(b) For any t in bd(Cf*) and any sequence {tk} in Cf* converging to t, it holds
f*(tk)-f*(t)

limk-,o sup{ iltktll }

(c) f is strictly convex on Cf.

(d) The constraint set X = { xe 91 I Ax = b, Bx > d I has a nonempty intersection with Cf and the

set { xE X I f(x) _< } is bounded for all C.

Since f has nonempty compact level sets over X (cf. parts (a), (d) of Assumption C), (P) has an

optimal solution which (since f is strictly convex) is unique. Let x* denote this optimal solution.
Since f is essentially smooth and CfrcX • 0, it can be seen from Lemma 26.2 in [Roc70] that x*

is in CfrX.

Now, by attaching Lagrange multiplier vectors X and t 2> 0 with, respectively, the

constraints Ax = b and Bx 2 d, we obtain the following dual problem
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Minimize ¢(-,[) (D)
subject to g 2 0,

where 4 :9 -n-(-,oo] (n = n1 + n2) is the dual functional

O(,g,) = maxx{ (Ax - b,)) + (Bx - d,g) - f(x) )

= f(ATXr + BTg) - (b,)) - (d,g). (5.1)

The problem (D) is clearly a special case of the problem (2.1a)-(2. b) with h = f* and

F -b 1
E = [[AT BT], L d P = 9InlX[o,oo)n2 . (5.2)

cL -d Y'

Since f is essentially smooth and strictly convex on Cf, by Theorem 26.3 in [Roc70], its conjugate

function f* is essentially smooth and strictly convex on Cf*. By Theorem 12.2 in [Roc70], f* is

also closed. Hence f* satisfies Assumption B and parts (a), (b) of Assumption A. Also, since (P)
has at least one feasible solution in Cf (cf. Assumption C (d)), Corollary 28.3.1 in [Roc70] shows

that there exists an n-vector (0*,g*) satisfying with x* the Kuhn-Tucker conditions for (P). Since

x*E Cf, so that f is differentiable at x*, the Kuhn-Tucker conditions for (P) imply g* > 0 and ATX,*

+ BTpt* = Vf(x*). This together with the fact Vf is a one-to-one mapping from Cf onto Cf* (see
[Roc70, Theorem 26.5]) implies that ATX* + BTg* is in Cf*. Therefore (X*,g*) is in PnCO', so

that Pr-nCO 0. Also, by Corollary 28.4.1 in [Roc70], (X*,g*) is an optimal solution of (D), so

that, by Fact 2, Assumption A (c) holds.

Since Assumptions A and B hold, we can apply the basis descent method to solve (D), and
since the constraint set is a box, we can choose as basis the set of coordinate vectors in 9tn. This

leads to the following coordinate descent method for solving (D) (let ei denote the i-th coordinate
vector in S9 n):

Dual Coordinate Descent Method
Iter. 0. Choose a pOE C< n nlx[,X[,oo) n2 .

Iter. r. Choose an ire { 1,...,n} and set

pr+l = pr + Oreir

where Or = argmin { 4(pr + Oeir) I pr + OeirE =9nlx[o o)n2 }.
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The order of relaxation {i°,il,.. .} is assumed to be chosen according to the Almost Cyclic rule,

i.e., there exists an integer A such that { 1,...,n} C {ir+l,...,ir+} for all r. [We have given the

coordinate descent method special attention because, as we shall see, it is a very frequently used
method in optimization.]

Since Assumptions A and B hold, it follows from Proposition 1 that the dual coordinate

descent method is convergent in the sense that it generates a sequence of iterates {pr} satisfying Epr
-- Ep*, where p* is any optimal solution of (D). By Theorem 26.5 in [Roc70], Vf*(Ep*) = x*, so

that this convergence result can be restated in the primal space as follows:

Propostion 2. Let {pr) be a sequence of iterates generated by the dual coordinate descent
method. Then EprE Cf* for all r and (Vf*(Epr) } converges to the optimal solution of (P), where E

is given by (5.2).

5.1. "Log(x)" Entropy Optimization

Consider the following entropy program [CeL87], [Fre88], [JoS84], [Hua67], [Son88]

m

Minimize - I log(xj) (EP 1)
J=1

subjectto Ax = b, x > 0,

where A is an nxm matrix, b is an n-vector, and "log" denotes the natural logarithm. We make the

following standing assumption about (EP1 ):

Assumption D. The set X = { xe 91m I Ax = b, x > 0 1 is nonempty and bounded.

Assumption D is both necessary and sufficient for (EP1 ) to have a finite optimal value. [To see

this, note that if X is unbounded, then there exists nonzero z > 0 such that Az = 0, so that the cost
of (EP1 ) tends to -oo in the direction z. Conversely, if the optimal value of (EP1) equals -oo, then

m
there must exist a sequence of vectors {xk} satisfying Axk = b, xk > 0, for all k, and log(xjk)

-- oo. Since log(xj) -> oo only if xj - oo, the latter implies Ilxkll -- oo. Then any limit point y of

the bounded sequence {xk/llxkll} is nonzero and satisfies Ay = 0, y 2 0, so that X is unbounded.]
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The problem (EP1) is clearly a special case of (P) with n1 = n, n2 = 0 and with

f:9 m-- (-oo,oo] given by

m
I -, log(xj) if x > O,

f(x) = (5.3)
[ oo else.

It is easily seen that f is closed strictly convex and essentially smooth, so that parts (a), (c) of
Assumption C hold. Since Cf = (0,oo)m, Assumption D implies that Cf{ xE 91m I Ax = b 1} 0

and f has bounded level sets on X, so that Assumption C (d) holds. Moreover, direct calculation

finds that

m
f*(t) = maxx>o{ (x,t)+ I log(xj) }

= f(-t) - m, V t,

so that f*(t) - oo as t approaches any boundary point of Cf*. Hence Assumption C (b) also holds.

Since Assumption C holds, we immediately obtain from Proposition 2 that if {pr} is a
sequence of iterates generated by applying the dual coordinate descent method to solve (EP1), then

{ Vf*(ATpr) } converges to the optimal solution of (EP1). By using the fact (cf. (5.3) and f*(t) =

f(-t) - m) that af*(t)/tj = -1/tj for all j and t > 0, we immediately obtain the following

convergence result proved by Censor and Lent [CeL87]:

Proposition 3. Let {pr} be a sequence of iterates generated by applying the dual coordinate

descent method to solve (EP1). Then the m-vector whose j-th coordinate is the inverse of the j-th

coordinate of -ATpr converges to the optimal solution of (EP1) as r - oo.

If, instead of the equality constraints Ax = b, we have inequality constraints of the form Bx

> d (or even with both equality and inequality constraints), we can still apply the dual coordinate

descent method to solve this problem. By Proposition 2, the resulting method computes the
(unique) optimal solution to this problem, provided that { xe 91m I Bx > d, x > 0 } is nonempty

and bounded. [To the best of our knowledge, this is the first result showing that the dual
coordinate descent method is convergent for the inequality constrained version of (EP1).]
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5.2. "xLog(x)" Entropy Optimization

Consider the following entropy program [DaR72], [JoS84], [LaS81]

m
Minimize l xj log(xj) (EP2 )

J= 1

subject to Ax = b, x > 0,

where A is an nxm matrix and b is an n-vector. We make the following standing assumption about

(EP2 ):

Assumption E. The set { xe 91m I Ax = b, x > 0 1 is nonempty.

The problem (EP2) is clearly a special case of (P) with n1 = n, n2 = 0 and with

f:9 -m-(-ooo] given by

r A, xj log(xj) if x > 0,
J=1

f(x) = (5.4)
I oo else.

It is easily seen that f is closed strictly convex and essentially smooth, so that parts (a) and (c) of
Assumption C hold. Since f(x) -4 oo as Ilxll -> oo, f has bounded level sets on { xE 91m I Ax = b }.

Since Cf = (0 ,o)m, we also have from Assumption E that Cfc{ xe 9jm I Ax = b } E 0 so that part

(d) of Assumption C holds. Moreover, direct calculation finds that

m
f*(t) = maxx>o{ (x,t) - xj log(xj) }

m t,
= exp(tj-1), Vt,

J=1

so that Cf* has no boundary point and part (c) of Assumption C trivially holds.

Since (EP2) is a special case of (P) and it satisfies Assumption C, we can apply the dual

coordinate descent method to solve this problem. In the special case where A is the node-arc

incidence matrix for a directed bipartite graph and the coordinates are relaxed in a cyclic order, this

gives a balancing method of Kruithof (sometimes called the RAS method) in transportation
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planning. [This method was rediscovered by many others (see [LaS81]) and recently was

rejuvenated for its suitability for parallel computation (e.g. [BeT89], [ZeI88]).] A modification of

Kruithof's method that uses non-cyclic order of relaxation (but still using the Almost Cyclic rule)

was considered by Bachem and Korte [BaK79]. Other methods that are special cases of the dual
coordinate descent method applied to solve (EP2 ) include the methods of Osborne [Osb60] and of

Grad [Gra71] for matrix pre-conditioning and a method of Evans and Kirby [EvK74] for three

dimensional balancing (see [LaS81] for a summary of these methods).

Since Assumption C holds, we immediately obtain from Proposition 2 that if {pr} is the
sequence of iterates generated by applying the dual coordinate descent method to solve (EP2 ), then

{Vf*(ATpr)} converges to the optimal solution of (EP2 ). By using the fact (cf. (5.4)) that af*(t)/tj

= exp(tj-l) for all j and t, we immediately obtain the following convergence result (cf. [BaK79],

[Bre67], [EvK74], [Osb60]):

Proposition 4. Let {pr} be a sequence of iterates generated by applying the dual coordinate
descent method to solve (EP2). Then the m-vector whose j-th coordinate is exp(tjr-l), where tjr

denotes the j-th coordinate of ATpr, converges to the optimal solution of (EP2) as r -- oo.

If instead of the equality constraints Ax = b, we have inequality constraints of the form Bx

> d (or with both equality and inequality constraints), we can still apply the dual coordinate descent

method to solve this problem. By Proposition 2, the resulting method computes the (unique)
optimal solution to this problem, provided that { xe 9lm I Bx > b, x > 0 } is nonempty. A special

case of this method is a balancing type algorithm of Jefferson and Scott [JeS79].

Note. Proposition 4 and the above result for inequality constrained problems can alternatively be

obtained as a special case of Proposition 1 in [Tse88a].

5.3. Quadratic Programming

Consider the convex quadratic problem [CoP82], [Cry71], [LiP87], [Man84], [Tse88a]

Minimize (x-x, Q(x-x))/2 (QP)

subjectto Bx > d,

where Q is an mxm symmetric positive definite matrix, B is an nxm matrix, x is an m-vector, and

d is an n-vector. We make the following standing assumption about (QP):
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Assumption F. The set { xe ~9m I Bx > d I is nonempty.

The problem (QP) is clearly a special case of (P) with n1 = 0, n2 = n, and with f:E9 m-- 9

given by

f(x) = (x-x, Q(x-x))/2, V x.

Since f is quadratic, f is closed and essentially smooth. Since Q is positive definite, f is also
strictly convex, so that parts (a) and (c) of Assumption C hold. Since Cf = 9t m, Assumption F and

the fact f(x) - oo as Ilxll - oo imply that part (d) of Assumption C also holds. By direct calculation

we find that

f*(t) = max x { (x, t) - (x-x, Q(x-x))/2 }

= (t, Q-it)/2 + (x, t), (5.5)

so that Cf* = 9lm has no boundary point and part (c) of Assumption C trivially holds.

For this special case of (P), the corresponding dual problem (D) (cf. (5.1), (5.5)) is exactly

Minimizing (p, BQ-lBTp)/2 + (Bx - d, p) (5.6)

subject to p > 0,

which, in view of the positive semi-definite property of BQ-IBT, is a well-known optimization

problem called the symmetric linear complementarity problem [CGS78], [LiP87], [LuT89],

[Man77], [MaD88], [Pan86]. The general form of this latter problem involves the minimization of
a convex quadratic function (p, Mp)/2 + (w, p) subject to p > 0, where M is an nxn symmetric

positive semi-definite matrix and w is an n-vector. However, by expressing M as M = BBT for
some nxm matrix B and by expressing w as w = -d for some m-vector d (with Q taken to be the

identity matrix and with x = 0), we can always reduce this problem to the form (5.6).

Since (QP) is a special case of (P) and Assumption C holds, we can apply the dual

coordinate descent method to solve (QP). This gives an algorithm proposed by Herman and Lent

[HeL78], which is itself an extension of a method of Hildreth [Hil59] (see [CGS78], [Cry71],

[LiP87], [LuT89], [Man77] for further extensions of these methods to SOR and matrix splitting

methods). By Proposition 2, if {pr} is the sequence of iterates generated by applying the dual
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coordinate descent method to solve (QP), then { Vf*(BTpr) } converges to the optimal solution of

(QP). By using the fact (cf. (5.5)) that Vf*(t) = Q-1 t + 5 for all t, we immediately obtain the

following result proved by Herman and Lent [HeL78]:

Proposition 5. Let {p}) be the sequence of iterates generated by applying the dual coordinate
descent method to solve (QP). Then {Q-lBTpr + x} converges to the optimal solution of (QP).

[In the special case where the coordinates are relaxed in a cyclic manner, it was recently shown that

the sequence {pr} in fact converges [LuT89]. The proof of this however is more difficult since the

optimal solution set for the problem (5.6) may be unbounded.]

5.4. Resource Allocation Problem

In certain areas such as VLSI design, it frequently arise problems of allocating a precious

resource (e.g. budget, labour) to a given set of tasks in order to meet a deadline. Moreover, these

tasks typically need to satisfy some precedence relationship (e.g. one task cannot begin until

another is completed). Below we propose a model, similar to one by Monma, Schrijver, Todd and

Wei [MSTW88], that fits within the framework of (P). Moreover, owing to the network structure

of the precedence constraints, the dual coordinate descent method applied to solve this problem can

be implemented using network data structures.

Consider a directed acvclic graph with node set N = { 1,...,n} and arc set AcNXN. [The

nodes correspond to the tasks and the arcs specify the precedence constraints on the tasks.] With
each node i we associate a variable xi denoting the completion time of task i. If task i is completed

at time ; i and it requires exactly rli time units to complete, then we incur a cost of gi(Qi) + wi(Yli).

The problem is then to minimize the total cost while meeting the task precedence constraints:

n

Minimize 1 g i('i) + wili) (RAP)

subject to j < i+rli, V (i,j)EAI.

[The ordered pair (ij) represents an arc from node i to node j.] We make the following standing

assumptions about the problem (RAP):

Assumption G.
(a) Each gi:9-->(-oo,oo] and wi:91--(-oo,oo] is closed convex and essentially smooth.
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(b) Each gi and w i is strictly convex on, respectively, Cgi and Cwi.

(c) The constraint set { (z,r) I tj < ci + ni, for all (i,j)e A } intersects CgxCw and g(t) + w(rl)
has bounded level sets on this set, where g:9Rn-(-oo,oo] and w:9n--(-oo,oo] are the functions

n n

g(:) = gi(i), W() = Wi(i)

[The essential smoothness and strict convexity assumption on the gi's and the wi's (cf.

Assumption G (a)-(b)) is not as restrictive as it may seem. For example, the function

f 1/(i)a if Tli > 0,

wi(rli) = (5.7)
[ oo else

(a is any positive scalar), which is used in the model of [MSTW88], satisfies Assumption G (a)-

(b). Constraints of the form xi < di , where di is a given deadline for task i, can be modeled by
letting gi be the function

[ 1/(d i -- i)[ if ci < di,

gi(Ti) = 1 (5.8)

t oo else

(3 is any positive scalar), which also satisfies Assumption G (a)-(b). Constraints of the form ;i <

si, where s i is a given earliest starting time for task i, can be modeled similarly.]

The problem (RAP) is clearly a special case of (P) with n1 = 0, n 2 = cardinality of A, m =
2n, and with f:91m-t91 given by

f(z,rl) = g(z)+w(0r), V, V .

Since each gi and wi is closed convex and essentially smooth, so is f. Since each gi and w i is
strictly convex on, respectively, Cgi and Cwi, f is strictly convex on Cf. Therefore parts (a) and

(c) of Assumption C hold. By Assumption G (c), part (d) of Assumption C also hold. Finally, it

is easily seen that f*, the conjugate function of f, is a separable convex function of the form

n

f* (74= ) gi*('i) + wi *(i), V it, V 5, (5.9)
i=l
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and each gi* and wi* is essentially smooth on, respectively, Cgi* and Cwi* (see [Roc70, Theorem

26.5]); therefore, by the discussion immediately following Assumption A (cf. (2.2)), f* satisfies
Assumption C (c).

Since (RAP) is a special case of (P) and Assumption C holds, we can apply the dual
coordinate descent method to solve (RAP) and, by Proposition 2, the resulting method is
convergent (in the sense that it generates a sequence of vectors converging to the (unique) optimal
solution of (RAP)).

We show below that, owing to the separable nature of the cost and the network structure of
the constraints, the dual coordinate descent method for solving (RAP) can be implemented using
network data structure and, in certain cases, is highly parallelizable. To see this, let Pij > 0 denote

the Lagrange multiplier associated with the constraint xj < xi + ri. Straightforward calculation
then finds the dual functional O:9V--(-o,oo] given by (5.1), (5.9) to be

n

¢(P) = 1 gi ( (i,j)E Pi - (j,i)EA pji) + wi*((ij)EA Pij),

where p = (-... ,Pij,.. )(ij)EA, so that the dual problem (D) of minimizing ¢(p) subject to p > 0 can

be written as

n

Minimize = gi*(li) + wi* ((i,j)EA Pij)

subject to X(ij)E A Pij - j,i)E A Pji = ;i i =1,...,n,

Pij > 0, V (i,j)EA,

where ;i, i = 1,...,n, are dummy variables. The above problem we recognize to be a convex cost
network flow problem [BeT89] with Pij as the flow on arc (i,j).

It is easily verified that, for any (i,j)e A,

a4(p)/apij = Vgi*(ai - i) - Vgj *(aj - 3j) + Vwi* (ai),

where ai = X(i,k)EA Pik, Pi = I(k,i)EA Pki, and xaj, Oj are analogously defined. Therefore in the
dual coordinate descent method, the minimization of ¢(p) with respect to each coordinate Pij can be
performed by working with the functions gi*, gj* and wi* only. More precisely, if we let
p:91---(-oo,oo] be the convex function
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P(0) = gi*((i - pi + 0) + gj*((Xj - Pj - 0) + w i*(ai + 0), V 0,

with Xi and Pi defined as before, then the minimization of ¢(p) with respect to Pij reduces to the
following iteration: check whether Vp(0) < 0; if yes, increase 0 from 0 until Vp(O) = 0, otherwise

decrease 0 from 0 until either Vp(0) = 0 or Pij + 0 = 0 (which ever occurs first); replace Pij by Pij

+ 0. This iteration is easy to implement (consider the case where gi, gj are given by (5.8) and w i

is given by (5.7)) and, moreover, if two arcs (i,j) and (k,l) do not share any node in common, then
Pij and Pkl are uncoupled and can be iterated upon simultaneously.

6. An e-Basis Descent Method Based on Elementary Vectors

Consider the base problem (2.1a)-(2.1b). As we noted earlier, the basis descent method

for solving this problem has the drawbacks that it is applicable only when the cost function h is
strictly convex and that it must generate the basis vectors in an almost cyclical manner. The second

drawback is particularly detrimental if the polyhedral constraint set P has a complicated structure so
that the size of a basis for K(P) is large. In this section, we propose an extension of the basis

descent method that avoids the above drawbacks. In particular, we show that the elementary

vectors [Roc69] of a certain linear subspace associated with P form a basis for K(P). By using

the dual rectification algorithm of Rockafellar [Roc84] to generate these elementary vectors and by
introducing an e-complementarv slackness mechanism to ensure that each descent yields a "large"

decrease in the cost, we obtain a basis descent method that terminates finitely with a feasible
solution that is, in some sense, within e of optimality. [We note that, although the notion of

elementary vectors was originally conceived in the context of monotropic programming, i.e.

minimization of convex separable costs subject to linear constraints, it turns out to apply equally

well to our problem, for which the cost is not necessarily separable but essentially smooth.]

We will assume that P is given by

P = { pe9Rnl Ap=b,p>0 }, (6.1)

for some kxn matrix A and some k-vector b. This representation of P allows a more direct

application of the dual rectification algorithm. The case where upper bound constraints on p are

also present can be handled by making minor modifications to the analysis. Let S denote the

subspace
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S = { uSn I Au=0} . (6.2)

We say that a nonzero n-vector u is an elementary vector of S [Roc69], [Roc84] if uE S and there

does not exist a nonzero vector u' in S satisfying (i) the signed support of u' is contained in the

signed support of u, i.e.

Ui t < O > Ui < 0, Ui ' > O > Ui > 0,

and (ii) for at least one i it holds ui ' = 0 and ui • 0. [Loosely speaking, elementary vectors of S are

vectors in S that in some sense have the smallest number of nonzero components.] It is not

difficult to show (using the above definition) that the elementary vectors of S, except for scalar

multiples, are finite in number [Roc84, § 10C]. We claim that they in fact form a basis for K(P).

To show this, we will use the following property of elementary vectors [Roc84, §10C]: Every

nonzero vector ue S can be expressed in the conformal sense by the elementary vectors of S, i.e.

u = ~1 1 + ... +- ~k k, for some Xl > 0,..., k >0, (6.3)

where each Uj is an elementary vector of S whose signed support is contained in the signed support

of u. Since it is easily seen from (6.1)-(6.2) that, for any pe P, an n-vector u is in K(p) if and

only if uE S and

ui > 0 if pi=0,

it follows that, for each u in K(p), there exist elementary vectors ul, ... , Uk of S satisfying (6.3)

and UiJ K(p) for all j. Then the collection of all such elementary vectors of S (taken over all

iue K(p) and all pE P), with scalar multiples excluded, form a basis for K(P).

We now describe a procedure, the dual rectification algorithm of Rockafellar [Roc84,

§ 10J], for generating the elementary vectors of S. We will not go into the details of this algorithm,

which is extensively treated in [Roc84]. For our purpose, it suffices to know that this is an

algorithm that, given S and any set of closed intervals I1, ... , In, finds in a finite number of steps

either (i) a ve S' (S ± denotes the orthogonal complement of S) satisfying

or Il ...eme ntary vector of S satisfying

or (ii) an elementary vector u of S satisfying
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max{ (,u)> 1 : Ilx...xIJ I < 0.

Moreover, each elementary vector of S that this algorithm generates is normalized, so that the

number of distinct elementary vectors of S that it can generate is finite. [In fact, instead of the dual

rectification algorithm, we can use any other algorithm that resolves between the above two

alternatives in the same manner.]

Below we describe a basis descent method for solving (2.1a)-(2.1b) that uses the dual

rectification algorith, together with a fixed scalar e > 0, to generate the descent directions:

c-Basis Descent Method
Iter. 0 Choose a pOE PnCq.

Iter. r Given a prE PnCq, we apply the dual rectification algorithm with

r [-e,E] if pr > e,
Ii = aq(Pr)/api + (6.4a)

L [-oo,E] if 0 < pr < e,

for i = 1,...,n. The algorithm returns either (i) a ve S satisfying

-e < aq(pr)/api-V i < e if pi > E,

-e < aq(pr)/api-V i if O < pir < ,

or (ii) an elementary vector wr of S satisfying

(Vq(pr), wr) + rmax-<<E i Wi + O<pI maXi< .i wir < 0.

In case (i), it can be seen that ve S equivalently satisfies lipr - [pr - Vq(pr) + v]+lLo < E,
where [.]+ denotes the orthogonal projection onto [0 ,oo)n; terminate. In case (ii), it can

be seen that wr satisfies wre S and

wir 0 if 0 i - e, (Vq(pr), wr) < -e llwrll, (6.4b)

so that, by (6.1)-(6.2), wr is a feasible direction of descent at pr; perform a line search of

q over P from pr along the direction wr.
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It can be seen that the e-basis descent method (minus the termination criterion) is a special

case of the basis descent method of Sec. 4 that uses, as the basis for K(P), the elementary vectors
of S. However, the e-basis descent method is not guaranteed to generate the elementary vectors of

S according to the Almost Cyclic rule, so that Proposition 1 cannot be used to establish its
convergence. This is the main motivation for introducing the parameter e > 0 in the method, which

is designed to ensure that a sufficiently large decrease in the cost occurs at each iteration. This in
turn guarantees that the £-basis descent method terminates in a finite number of iterations. We state

this result below:

Proposition 6. For any e > 0, the 8-basis descent method for solving (2.1a)-(2.lb) (with P

given by (6.1)) terminates in a finite number of iterations with a p PrnCq and ave S ± satisfying

lip - [p - Vq(p) + v]11oo < e.

Proof. We will argue by contradiction. Suppose that for some e > 0 the 8-basis descent method

does not terminate. Then at each r-th iteration the dual rectification algorithm must generate an
elementary vector wr of S satisfying (6.4b). Let tr = Epr. Since q(pr) > q(pr+l) and prE PnCq for
all r, we have from Lemma 3 in Appendix C that {tr} is bounded and every limit point of {tr} is in
Ch. Let t°° be any limit point of {tr}, so that toe Ch. Let {tr}rER be a subsequence of {tr}

converging to to. By further passing into a subsequence if necessary, we will assume that, for
each i, either (i) 0 < pir < e for all re R or (ii) pir > E for all re R. Moreover, we can assume that,
for each i, either [pirlreR is bounded or {Pir}rR - oo-

Let I = {i I {pir}IrE is bounded }. Since {pr}reR - oo for all ioI, we will assume that pr
>2 for all re R, ix I. For each re R, let pr be the least L2-norm solution of the following linear

system

Ep = tr Ap = b, =p ViE, p=b> ViI. (6.5)

This linear system is feasible since pr is a solution. Furthermore, since the right hand side of this
system is bounded as r -- , re R, the sequence {Pr}rER is bounded (cf. Lemma 1 in Appendix

A). Let p- be a limit point of this sequence. Then p- belongs to P, satisfies t o = Epo and, for
each i, it holds that 0 < Pi < e only if 0 < pir < e for all re R.

Since the number of distinct wr's is finite, by further passing into a subsequence if
necessary, we can assume that wr = w for all re R, for some w. Then we have from (6.4b) that
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wi > 0 if O<pir<e Vre R, we S, (6.6a)

(Vq(pr), w) < -ellwll, V re R. (6.6b)

Since Vq(pr) = ETVh(tr) + c for all r (cf. (2.lb)), {tr}rR -- too Ch, and Vh is continuous on Ch

(cf. [Roc70, Theorem 25.5]), we have {Vq(pr)}R -- - ETVh(to) + c. This together with the facts

pooe Cq and Vq(po) = ETVh(to ) + c (cf. Epo = toe Ch) implies {Vq(pr)}eR -> Vq(po), so that

(6.6b) yields

(Vq(po), w) < -£llwlloo.

Hence the rate of descent of q at po in the direction w is at least ellwllo. Since Vq is continuous

around po, this implies that there exist a Oe (0,/llwlloo] and a 6 > 0 such that po + Ow E Cq and

q(p° + 0w) < q(po) -68,

or, equivalently (by (2. lb)), t ° + OEw E Ch and

h(t° + OEw) - h(t° ) + (c,Ow) < - 6. (6.7)

Since, for every re R, pr+l is obtained by minimizing q over P along the direction w from pr and

(by (6.6a) and 0 < 0 < £/llwloo) pr + bw is in P, we obtain

q(pr+l) - q(pr) < q(pr + Ow) - q(pr)

= h(t r + OEw) - h(tr) + (c,Ow), V re R.

Since {tr}reR -> toe Ch and to + OEwe Ch, the continuity of h in Ch ([Roc70, Theorem 10.1])

together with (6.7) implies that

q(pr+l) - q(pr) < - 6/2, V re R sufficiently large.

Since q(pr) is monotonically decreasing with r, this shows that q(pr) > -oo as r -- , a

contradiction of Assumption A (c). Q.E.D.
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By Proposition 6, the c-basis descent method terminates finitely with a pe PrCq and a

vc S satisfying

lip - [p - Vq(p) + v]+ll - e. (6.8)

Moreover, q(p) < q(p). If e = 0, then it can be seen from (6.1) and the Kuhn-Tucker conditions.

for (2.1a)-(2.1b) that p is an optimal solution of (2.1a)-(2.1b). Hence, for e • 0 but small, we

would expect p to be nearly optimal. By making a mild assumption on h, we can quantify this
notion of near optimality more precisely:

Proposition 7. Suppose that (in addition to Assumption A) P is given by (6.1) and h(t) - oo
as t approaches a boundary point of Ch. Then, for any 5 2 _*, where r* denotes the optimal value
of (2.1a)-(2.lb), there exists a constant y (depending on C, P and q only) such that

•* < q(p) < • + ?,

for all e > 0 and all pc PnCq satisfying q(p) _< and, together with some ve S , (6.8).

Proof. Fix any C 2 _* and let L denote the nonempty closed set L = { pE P I q(p) _< } (L is
closed since P is closed and q is a closed function). Firstly we claim that Vq is bounded over L.
To see this, note that the set { Ep I pc L } is nonempty closed (since L is closed) and bounded (cf.
Assumption A (c)). Moreover, by Lemma 2 in Appendix B, h(Ep) is bounded for all pe L. Since

h(t) - oo as t approaches a boundary point of C h, this implies that { Ep I pc L} is a compact
subset of Ch. Hence, by the continuity of Vh on Ch ([Roc70, Theorem 25.5]), Vq(p) = EVh(Ep)
+ c is bounded for all pe L. Let Pi be a bound on IIVq(p)ll for all pe L. It can be seen that Pi

depends on q, P and C only.

Next, for any e Ž 0 and any pe L, consider the following linear system

-e < aq(p)/api- v i < , V i I, (6.9a)
-e < aq(P)/@Pi - vi, V ic I, (6.9b)

ve S, (6.9c)

in v, where I = ( i I p0 < Pi < . Whenever this system has a solution, let v8 (p) denote its least

L2-norm solution. Also, for each pe L, denote v(p) = argminvc S± IIVq(p)-vll. Since Vq is
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bounded on L, IIVq(p)-v(p)ll is bounded as p ranges over L. Let g = suppLIVq(p)-v(p)ll (so
that g < oo). Then, for each pe L, v = v(p) satisfies

-g <_ aq(p)/api-v i _< ' V iJ,
-g < aq(p)/api - v i, V is J,

vE S ± ,

for all nonempty subsets J of { 1,...,n . Comparing the above linear system with the

linear system (6.9a)-(6.9c), we see that, for J = I, one system is just the other with each
right hand side perturbed by at most g. By a well-known Lipschitz continuity property of
the solutions of linear systems ([MaS87], [Rob73]), there exists, for each pc L and e > 0

such that (6.9a)-(6.9c) has a solution, a solution v of (6.9a)-(6.9c) satisfying

IIv-v(p)ll < Og,

where 0 is some constant that depends on the matrix A only. Then IIvS(p)ll < Ilvll < IIv-v(p)ll +
Ilv(p)ll < Og + IIv(p)ll. Since IIVq(p)il < Pi for all pe L, we also have IIv(p)11 < IIVq(p)ll + IIVq(p)-
v(p)ll < Pi + pt for all pe L. Hence 1lv'(p)11 < Og + Pi + g for all e > 0 and all pe L such that vS(p)
is well-defined. Let P2 = 0p + P1 + ..- It can be seen that P2 depends on q, P and ( only.

Finally, we claim that p(p) is bounded for all pe L, where p(p) = minp*,p* IIp-p*ll and P*

denotes the set of optimal solutions of (2.1a)-(2.1b). To see this, suppose the contrary. Then
there exists a sequence of n-vectors {p0 , pl,... } in L such that p(pr) - oo. Since pr > 0 for all r,

this implies that there exists a subsequence R of {0,1,... } such that, for each ie { 1,...,n }, either
{Piir}rR - -or {pir}rER is bounded. Let I = { i I {Pr}reR is bounded 1. For each re R, let pr
denote the least L2-norm solution of the following linear system

(c, p) = (c, p), Ep = Epr, Ap = b, Pi = Pir V ieI. (6.10)

This linear system is feasible since pr is a solution. Furthermore, since the right hand side of this
system is bounded for all re R (cf. Assumption A (c) and Lemma 2 in Appendix B), Lemma 1 in
Appendix A shows that {Pr }rR is also bounded. Then since {P{}rER - oo for all ix I, and pr is a
solution of (6.10) for all re R, we obtain that, for any re R sufficiently large, the difference ur = pr
_ $r satisfies

(c, ur ) = 0, Eur = 0, Aur = O, ur 2 0.
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Fix any P*E P*. From the above set of equations we see that, for all re R sufficiently large, it

holds p* + urE P*, so that p(pr) _< lpr - (p* + ur)II = IIpr - p*11. Since {pr}reR is bounded, this

contradicts the hypothesis that p(pr) - oo. Let P3 be a bound on p(p) for all pE L. It can be seen

that P3 depends on q, P and C only.

Let £ be any positive scalar. Consider any pe PrCq that satisfies q(p) < C and, together

with some ve S , (6.8). Then pE L, so that IIVq(p)ll < Pl and there exists an optimal solution p

of (2. la)-(2. lb) satisfying Ilp-p*II < p3- Moreover, it is easily seen that v = v satisfies (6.9a)-

(6.9c) with p = p, so that v (p) is well-defined and IlvE(p)II < P2. To simplify the notation, let v =

vS(p) and J = { i I -£ < aq(p)/api - i < e }. Then 0 satisfies IIlil < P2 and

-£ < aq(P)/Pi - Vi < , V iE J,

£ < aq(P)/api vi, 0 < Pi < V io J,

[This is reminiscent of the e-complementary slackness condition discussed in [TsB87c].] Hence

(Vq(p), p*-p) = (Vq(p) - v, p -p)

- 'iJ (aq(P)/aPi - vi)(Pi* - Pi) + iJ (aq(P)/aPi ~- *i)(pi -)

> -£ XieJ Ipi* - pil + JiLJ,pi*<p i (aq(P)/aPi - vi)(Pi* - Pi)

2 -E ieJ IPi il - Eipi - la- iq(P)/pi - vil

> -enP 3 - £n(p + P2),

where the first equality follows from the facts p*-pe S and Ve S± . Let y = n(pl + P2 + P3) ·. Then

by the convexity of q,

q(p*) > q(p) + (Vq(p), p*-p)

> q(p)-Xw.

On the other hand, since pe P and p* minimizes q over P, we have q(p) > q(p*). Q.E.D.

Propositions 6 and 7 show that, when h satisfies the assumptions of Proposition 7, the e-

basis descent method computes, in a finite number of iterations, a feasible solution of (2.1a)-(2.lb)
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whose value is within e multiplied by some constant (depending on P, q, and the initial iterate p0 )

of the optimal value of (2.1a)-(2. 1b). It should be noted that the assumptions of Proposition 7

(including Assumption A) are met for many problems in practice (for example, when P is a

bounded polyhedral set and h is a convex differentiable function).

One interesting application of the e-basis descent method is to problems for which h is
m

separable, i.e. h(t) =- j hj(tj) for some closed convex essentially smooth functions hj:9--(-
j=1

ooo] (cf. (2.2)). In this case, we obtain a method that is quite similar to the fortified primal

descent algorithm of Rockafellar [Roc84, §11I], with the essential difference being that the latter

algorithm computes, in place of the Ii's given by (6.4a), intervals of the form

hj(4)-hj(tj) + e hj(4)-hi(ti ) + e ,
sp<[ SUpet~2-tritgj , j J = l,...,m,

stJ-tj ' f>t -tj

at each iteration. In general, the above intervals seem to be more difficult to compute than those

given by (6.4a). [On the other hand, the fortified primal descent algorithm has the advantage that

each solution that it produces is guaranteed to come within e in cost of the optimal cost.] Another

interesting application of the e-basis descent method is to network flow problems. In this case, the

constraint matrix A is the node-arc incidence matrix for some directed graph and the dual

rectification algorithm can be implemented by using graphical subroutines. In particular, each

iteration of the dual rectification algorithm can be implemented by using, for example, a breadth-

first search procedure on the graph (see [Roc84, §6]). In general, the dual rectification algorithm

is implemented by means of tableau pivoting techniques similar to that found in the simplex

method. This is a very nice feature of the dual rectification algorithm since it enables the algorithm

to take advantage of, for example, sparse matrix techniques developed for the simplex method. To

the best of our knowledge, the only other method for minimizing convex (possibly non-separable)

essentially smooth functions over polyhedral sets that can exploit the combinatorial structure of the

constraint set P in the same manner is the convex simplex method [Zan69]. However, the convex

simplex method requires h to be real-valued and needs to make a nondegeneracy assumption on the

problem to achieve convergence.

Notice that the e-basis descent method puts a box of length 2e around the gradient Vq

before generating a descent direction (cf. (4.4a)). This technique, designed to ensure that each

descent direction offers a large rate of descent, is very similar to an e-complementary slackness

mechanism employed by the methods in [BHT87], [TsB87c]. The e-basis descent method also

restricts each descent direction to point away from those boundary hyperplanes of P to which the
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current iterate comes within e in distance (cf. (4.4b)). This technique, designed to prevent

jamming, is similar to ones used in e-active set methods [Zan69], [NgS84].

The e-basis descent method is quite closely related to the e-subgradient methods in

nondifferentiable optimization [BeM73], [NgS84], [Roc84]. To see this, consider the special case
where P = 9 in. In this case the problem (2. la) simplifies to minp q(p), and it can be seen that each

iteration of the e-basis descent method involves finding a direction w satisfying

maxUE Vq(p)+eB (w,u) < 0,

where pe Cq is the current iterate and B denotes the unit ball in the LOO-norm, i.e. B = [-1,1] n, and

then performing a line search along w. When applied to solve this same problem minp q(p), each

iteration of the e-subgradient method involves finding a direction w' satisfying

maxuEq(p) (w',u) < 0,

where pe Cq is the current iterate and a.q(p) denotes the c-subdifferential of q evaluated at p

[Roc70, p. 220], i.e. Daq(p) = { u I q*(u) + q(p) - (p,u) < e }, and then performing a line search

along w'. Upon comparing these two iterations, we see that they differ essentially in the way that a

"ball" is constructed around Vq when computing a descent direction. This difference is

nonetheless significant since in general it is much easier to compute the ball Vq(p) + EB and to

minimize linear functions over it than to do the same for the "ball" 9sq(p) (for example, the e-

subgradient method of [NgS84] must solve, at each iteration, a quadratic program whose

dimension grows linearly with the iteration count).

We have thusfar left open the issue of computing an initial point in PrCq. If q is real-

valued, then it suffices to find a point inside the polyhedral set P, which is a well-studied problem

in linear programming. Otherwise, if P is given by a set of linear constraints, then some type of

multiplier method or penalty method [Ber82] can be used to find such a point.

Finally, it should be noted that the parameter e need not be fixed for all iterations of the e-

basis descent method. In certain cases it may be preferable to begin with a large e and to decrease e

gradually until a desired tolerance is reached. [This ensures that cost decreases are large in the

early stages of the method.] Also notice that one can employ different e's for different coordinates.
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Appendix A.

The following lemma characterizes the boundedness of the least L 2-norm solution of

perturbed linear systems:

Lemma 1. Let B be any kxr matrix. For every k-vector d such that the linear system Bx > d

has a solution, let 4(d) denote the least L2-norm solution, i.e. t(d) = argminBx>d Ilxil. Then the

functiona is bounded on any bounded set of points over which it is defined.

Proof. Since the system Bx > 0 has the zero vector as a solution, it follows from a well-

known Lipschitz continuity property of the solutions of linear systems ([MaS87],

[Rob73]) that there exists, for each d such that Bx > d has a solution, a solution y

satisfying By > d and

Ilyll < 011dll,

where 0 is some constant that depends on B only. Since 4(d) is the least L2-norm solution, it

follows that 11I(d)ll < Olldll. Hence 4(d) is bounded for all d lying in a bounded set on which it is

defined. Q.E.D.
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Appendix B.

The following technical lemma characterizes the boundedness of the function h on each

level set of q over P:

Lemma 2. Let 4 be any scalar for which the level set L = ( pe P I q(p) < ! } is nonempty.

Then (under Assumption A) both functions p -- h(Ep) and p -- (c, p) are bounded on L.

Proof. We first show that the function p -4 h(Ep) is bounded on L. Since the set { Ep I pe L }

is bounded (cf. Assumption A (c)), this function is bounded from below on L. Therefore if it is

unbounded on L, it must be unbounded from above, i.e. there exists a sequence of vectors

{p0 ,pl,... in L such that h(Epr) - oo. Since q(p) = h(Ep) + (c, p) (cf. (2.lb)) and q(p) < 4 for

all pe L, this implies that (c, p') -> -oo. Let P be expressed as { pe SRn I Ap > b } for some kxn

matrix A and k-vector b. Then we have Apr > b for all r (since pre P). Choose R to be any

subsequence of {0,1,...} such that, for each ie { 1,...,k}, either {Aipr}reR - oo or {Aipr}reR is

bounded, where A i denotes the i-th row of A. Let I = { i I { Aipr} R is bounded i. For each

re R, let Ar denote the least L 2-norm solution of the following linear system

Ep = Epr, Ap 2 b, Aip = Aipr Vis I. (B. 1)

This linear system is feasible since pr is a solution. Furthermore, since the right hand side of this

system is bounded for all re R, Lemma 1 in Appendix A shows that the sequence {r }rER is also

bounded. Then since {(c,pr) rE R ---> -, {Aipr}rR -> oo for all io I, and pr is a solution of (B.1)

for all re R, we obtain that, for any re R sufficiently large, the difference u = pr _ r satisfies

Eu = 0, Au > 0, (c, u) < 0.

Then, for any pe PnCq, we have p+Oue P for all 0 > 0 and q(p+Ou) = q(p) + O(c, u) - -oo as 0

-- > o, a contradiction of the assumption that infpEp q(p) > -- (cf. Assumption A (c)). This shows

that the function p -- h(Ep) is bounded on L. Since q(p) = h(Ep) + (c, p) for all p and q is

bounded on L, the function p -> (c, p) is also bounded on L. Q.E.D.
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Appendix C.

The following technical lemma characterizes a sequence of vectors in PnCq whose costs

are monotonically decreasing:

Lemma 3. Let {p0, pl, ... } be any sequence of n-vectors in PnCq satisfying q(pr) > q(pr+l)

for all r. Then (under Assumption A) the following hold:

(a) (Epr} is bounded.

(b) {(c, pr)} is bounded.
(c) Every limit point of {Epr} is in Ch.

Proof. We first prove parts (a) and (b). Since q(pr) is monotonically decreasing with r and pre P

for all r, Epr is in the set { Ep I pe P, q(p) < q(p0 ) I for all r. Since by Assumption A (c) this set

is bounded, {Epr} is bounded. Also we have that pr is in the set { pe P I q(p) < q(p0) } for all r,

so that, by Lemma 2, {(c, p')} is bounded.

Now we prove part (c). Suppose the contrary. Then there exist toe bd(Ch) and

subsequence RE { 1,2,... } such that {tr}r-R -- tC. By using the facts {h(tr) + (c, pr)} }- qu and

(since h is closed) limro,,o, R inf{ h(tr) I > h(too), we have from part (b) that h(t-) < oo.

Furthermore, we can find a poe P such that t o = Epo and q(p') < qo. [To see this, we solve, for

each re R, the linear system

pe P, Ep = tr, (c, p) = (c, p),

for the least L2-norm solution, denoted by pr. Then q(pr) = q(pr) for all re R and, since {tr} and

{(c, pr) } are bounded, {pr}reR is bounded (cf. Lemma 1 in Appendix A), so that if po is any limit

point of (pr}re R, then pooe P, Ep-O = to and (since q is closed) q(p') < limr c, reRinf q(pr)} =

qo.] Since q(pr) 1 qo, we have q(p') < q(pr) for all re R, so that

0 < q(pr)- q(pOO)

Ilpr-poll

h(tr) - h(t-) + (c; prpoo)

I pr'-pllI

h(tr) - h(t-) IEII + (c; pr-p) V reR,
Iltr-ttll Ilprf-p Jll



42

which contradicts the fact limr, rER Sup I = -o (cf. Assumption A (b)). Q.E.D.


