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Abstract The work described in this paper is motivated by the need for a probabilistic theory for multiresolution stochastic
models which can then provide the basis for optimal multiscale signal processing algorithms. As we develop in this paper,
wavelet transforms and multiscale representations lead naturally to the study of stochastic processes indexed by nodes on
lattices and trees, where different depths in the tree or lattice correspond to different spatial scales or resolutions in represent-
ing the signal. This modeling paradigm also has close ties to self-similar stochastic processes, fractals, and renormalization
concepts. Using this framework we introduce several classes of dynamic models for multiscale stochastic processes in which
the direction of recursion is from coarse-to-fine resolution. This leads to a theory of optimal estimation for multiresolution
stochastic models. Some of the algorithms that arise in this context have a multigrid relaxation structure while others lead
to new classes of Riccati equations involving the usual predict and update steps and a new "merge" step as information is
propagated from fine-to-coarse scales. This framework also allows us to solve problems of the optimal fusion of multispec-
tral(and hence multiresolution) data. In addition a theory of modeling for multiscale processing is in the process of being
developed. Generalizations will be described of methods such as Levinson's algorithm for recursive generation of multiscale
models of increasing order.

Keywords. Multi-scale systems; trees; smoothing; multidimensional systems; signal processing; optimal estimation; lattice
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example of such a b, h pair is the Haar approximation with

1 MULTISCALE REPRESENTATIONS
AND SYSTEMS ON TREES = { otherwise

and

iIn the past few years there has been a renewed interest in multiscale h(n) = I 0 (1.4)otherwise
· representations of signals in one or several dimensions, thanks, in large
part to the emerging theory of wavelet transforms (see, for example, Multiscale representions are closely related to wavelet transforms.

Daubechies(1988), Mallat(1987)). The development of optimal multi- Such a transform is based on a single function +,(z) that has the prop-

scale signal processing algorithms -e.g. for the reconstruction of noise- erty that the full set of its scaled translates {2m/2sb(2mz - n)} form

degraded signals or for the detection and localization of transient signals a complete orthonormal basis for L
2
. Daubechies(1988) shows that 4

of different durations - requires the development of a corresponding the- and 0 are related via an equation of the form

ory of stochastic processes and their estimation. The research presented

l in this and several other papers and reports(Chou,1990;Basseville,1989)
· has the development of this theory as its objective.

where g(n) and h(n) form a conjugate mirror filter pair, and that
-- The multi-scale representation of a continuous signal f(z) consists of
. a sequence of approximations of that signal at finer and finer scales fm+i(x) = fm(z)+ E d(m, n)0(2mz - n) (1.6)

where the approximation of f(x) at the mth scale is given by n

+o° fm(z) is simply the partial orthonormal expansion of f(x), up to scale
f(z) = A f(m, n)4(2mz - n) (1.1) m, with respect to the basis defined by b. For example if X and h are

as in eq. (1.3), eq. (1.4), then

As m -r oo the approximation consists of a sum of many highly corm- 1 0 < z <1/2
pressed, weighted, and shifted versions of the function +(z) whose +(z) = -1 1/2 < z < 1 (1.7)
choice is far from arbitrary. In particular in order for the (m + 1)st 0 otherwise
approximation to be a refinement of the mth, we require that +(z) be
exactly representable at the next scale: and {2m/

2
(2mz - n)} is the Haar basis.

(x) = ) h(n)0(2x- n) (1.2) From the preceding remarks we see that we have a dynamical rela-

" tionship between the coefficients f(m, n) at one scale and those at the

Furthermore in order for (1.1) to be an orthogonal series, 4(z) and its next. Indeed this relationship defines a lattice on the points (m, n),

integer translates must form an orthogonal set. As shown in Daube- where (m+ 1, k) is connected to (m, n) if f(m, n) influences f(m+ 1, k).
chies(1988), h(n) must satisfy several conditions for this and several In particular the IHaar representation naturally defines a dyadic tree

other properties of the representation to hold. In particular h(n) must structure on the points (m,n) in which each point has two descen-

be the impulse response of a quadrature mirror filter. The simplest dents corresponding to the two subdivisions of the support interval of
-.~_____ .. . . . . (2mz - n), namely those of 4(2(m+l)z - 2n) and d(2(m+i)z - 2n - 1).

'The work of these authors was supported in part by the Air Force Office of Scien- This observation provides our motivation for the development of mod-
tific Research under Grant AFOSR-88-0032, in part by the National Science Foun- -
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et Systemes Aleatoires(IRISA), Rennes, France during which time A.S.W. received the elements of the estimation and system theory for these models. In
partial support from Institut National de Recherche en lnformatique et en Automa-
tique(lNRIA). Section 3 we describe our research on models for the class of isotropic
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2 DYNAMIC STATE MODELS ON Specifically, let xk denote the vector constructed by stacking the state
values z(t) for all i for which mr(t) = k. The ordering of these val-TREES ues is given by the dyadic representation of the points at this scale.
That is, the order is of the form t, bt, b(l)t,6bb(2)t,b(s)t, ..., where I isTo begin, let us define some notation needed to describe dynamic sys- That is, the order is of the form ,6,6

2
)t,66(

2
),6),..., where is

tems on trees. Let T denote the index set of the tree and we use the sin- any point at the kt scale. Let Ph denot he covariance of z andlet~'.kl Ez~~'l] Thlese matrices have very special structure:gle symbol t for nodes on the tree. The scale associated with t is denoted k+ Te h r ieby m(l), and we write s s ) im(s) < m()((s < (t)). e off-diagonal blocks of geometrically increasing size consist of matrices
all of whose block-elements are identical. For example, the value ofalso let d(s, l) denote the distance between s and i, and sAt the common Ef(t)x(wt)] is the same for ) and () and similarly

''prett''nod ofa a~dt i~g.(2-?,, itil preI~ o 1?L"+!,2r! Efx(t.)xT(wt) ] is the same for w = 5
(2 )

and w! = 66
(2)

and· similarly."parent" node of . and t (e.g. (2-r,u) is the parent of (2-lm 4i'',2n1 X
this quantity' has a single value for tw = a and uw = . Titus, forand (2-(m+1),2n + 1). in analogy with the shift operator :

- 1
used as ti quantity has a single value for ad = P. Thus, for

examplethe basis for describing discrete-time dynarmcs we also define several
shift operators on the tree: 0, the identity operator (no move): , P(2) N : N

-
N,

the fine-to-coarse shift (e.g. from (2-`m+ :
), 2n or 2n + 1) to (2- m

, n)): P(2) 2
ca, the left coarse-to-fine shift ((2-", n) to (2-tm+1),2n)); P, the right P(2) '2
coarse-to-fine shift ((2- m

, n) to (2-(m+
l)
, 2n + 1)); amid 6, the exchange 2 ... ... ... (2.9)

operator ((2-('+'), 2n) - (2-("+'), 2,u + 1)). Note that 0 and 6 are N N2 : P,(2) N1
isometries in that they are one-to-one, onto maps of T that preserve
distances. Also we have the relations L N2 IV P.(2)

b62 I`#
1

o ~ = 0,7 -16 = I-1,6 =6 (2.1) where all blocks are of size equal to the dimension of z(t). Similarly,

We also define for convenience tihe move 6(") which exchanges the nth P P 12 112 : Al M3 M1 M3
bit:

In 2 M2 P P i13 M3 Ms M13
If t = aT,-it, then/5(n)t = a..("-L-..t 's...3............. (2.10)
If = -3y-1't, then 5(")t = P61 "n')-'t (2.2) 13 M3 A 

Al Ms M s Ma : P P M2 M2

1113 13 .1 1113 M2 1112 P P

As in the synthesis description of multi-scale representations, we con- where
sider the following class of state-space models on trees, evolving from P = P.(2) (2.11)
coarse-to-fine scales.

x(t) = A(m(t))z(y-'t) + B(rm(t))w(t) (2.3)
An important fact is that these matrices can be block-diagonalized by

where w(t) is a vector white noise process with covariance I. The model the discrete Haar transform. For simplicity let us first describe this
(2.3) describes a process that is Markov scale-to-scale and, because of for the case in which z and y are scalar processes. The discrete Haar
this we can readily calculate its second order statistics. In particular basis is an orthonormal basis for .ZN where N = 2k. The matrix Vk

the covariance of z(t) depends only on scale and satisfies the Lyapunov whose columns form this basis consists of vectors representing "dilated,
equation translated, and scaled" versions of the vector [1, -1]

T
. For example for

P,,(m+ 1) = A(m)P,(m)A
T

(m) + B(m)BT(m) (2.4) k = 3,

and its correlation function is given by

KssCL~~~,e~(ts) '~ I 3 0 0 0 0 o

E[xn()m(s) ] = m s tP,)T(m(s),r(s),t)) 2 0 0 0 0 -- 72

1 0 O-_1 ~ Ii ~(2.5) 0 0
:72 ~ ~ 2 2 7 2v

where 0(m,p) is the state transition matrix associated with A(m). 0 - 0 0 - 0 2"2 2 "2.2
Note that if A and B are constant and A is stable, (2.4) has a steady- 0I (2.12)
state solution satisfying the algebraic Lyapunov equation 0 0 2 2 2½ 2/-2

0 ' 0 0 0 1 1
P = AP,AT + BBT (2.6) 12 2 

0 0 0 7' 0 2,r1 1,
and in this case 

o o
72 ~~~2./v2 2 72

K,,(t,s) = Ad( "^ )P,(AT)d(" ^
.At)

= Kr_(d(t, sAt), d(s, s A 1)) (2.7) As shown in Chou(1990),

p'P = VvA~VkT (2.13)

Note that (2.7) is different from the case of dynamic systems evolv- s5,k+tlVt+l = [0 I Vkt] (2.14)
ing in time, thanks to the tree structure of the index set. In particular
the dependence on d(t, s A t) and d(s, s A t) captures the fact that the where As and Ak are diagonal matrices of dimension 2. In the vec-
correlation between two samples of our multiresolution process depends tor case we use "dilated, translated, and scaled" versions of the blocktor case we use "dilated, translated, and scaled" versions of the block
both on the temporal displacement between these points and the rela- matrix [I - T instead of the vector [1, ]T. It is important to note
tion between the scales of the samples. Note also that if AP _ = PuA

T
n be

(e.g. this is true in the scalar case), then K_ (t, s) depends only upon performed in an extremely efficient manner(in the block case as well),
d(t, s). Such processes are referred to as isotropic processes which by successive additions and subtractions of pairs of elements.
we discuss in the next.

Because of this structure we can obtain an extremely efficient algorith-
Consider now the estimation of z() based on measurements mic structure: by taking scale-by-scale block-11aar transforms of theiConsider now the estimation of x:(t) based on measurements

observations we obtain a sequence of decoupled estimation problems
y(t) = C(m(i))x(t) + v(t) (2.8) for the estimation of each Itaar component of zX based on correspond-

ing components of the y's. As an illustration, consider the scalar case
where v(t) is white noise of covariance R(m(t)), independent of z. In and the problem of predicting xk based on an estimate ik+l of xk+1 (it
many problems we may only have data at the finest level; however in is this prediction step that is the key to the decoupling; the measure-

! some applications such as geophysical signal processing or the fusion of mcnt incorporation step at any scale is readily seen to be decoupled).
multispectral data, data at multiple scales are collected and must be Let -i = 1',s+lP ~

+k k+l denote the desired estimate and let
combined.

Z5 = Vr : (2.15)
We now briefly describe three algorithms for computing the optimal 'From (2.13) and (2.14), we see that the fine scale components of ik are
estimate of zx based on Y = {y(i))(see Chou(1990) for details). The unneeded at the coarser scale; i.e. only the lower half, of +,
first of these relies heavily on tile structure of the covariance of 2.



which depends only on pairwise sums of the elements of Zk, enters in Suppose now that we have computed i(atcja) and i(Btlt) and their

the computation. So, if we let common error covariance P(m(t) + 1 m(t) + 1). Note that Yt and Yet,
are disjoint and these estimates can be calculated in parallel. We then

Ak+i = diag(Mk+l, Dk+1) (2.16) compute i(tlat) and i(tl/t) via identical formulas. For example

where Mk+ 1 and Dk+l each have 2
' x 2

k
blocks, we see that z(tjat) = F(m(t) + 1)i(atcrat) (2.33)

ik = AD,- t i-+l (217) - with corresponding error covariance

P(tn(i)]n(t) + 1) = F(in(t) + 1)P(m(t) + ljm(t) + 1)FT(m() + I)
The tree structure of our problem also provides us with an itera-
tive algorithm that has the structure of multigrid methods for solving + Q(m(t) + 1) (2.34)

boundary-value problems(Briggs,1987). In particular thanks to Marko- Q(m(t) + 1) = *Qtm(t) + 1)T (2.35)

vianity we have the following: = A-'(m(t) + 1)B(m(t) + 1)

E[z(t)lY] = E {E[z(t)lz(7-1t),z(ot),z(~t),Y]lY}

These two steps of the processing are identical to the usual Kalman

Assuming that A(m) is invertible for all m we can directly apply the filter. The difference arises because we must now merge the two es-

results of Verghese(1979): timates i(tlat) and i(tl/t) to obtain (tlit+) and its covariance. As
shown in Chou(1990) we have the following:

z( 7-lt) = F(m(t))z(t) - A-l(m(t))B(m(t))ti(t) (2.19) _

i(tlt+) = P(m(t)m(t)+)Pl(m(t)imm())P'( m (t) + l)[(tlat) + i(tlift)]
with (2.36)

F(m(t)) = A-'(m(t))[ - B(m(t))B
T

(m(t))P?-'(m(t))] (2.20) P(m(t)lm(t)+) = [2P-1(m(t)lm(t) + 1)-P,;'(t)]-' (2.37)

and where sv(t) is a white noise process with covariance

E[i-(t)wT(t)] = I - B(m(t))P;'(m(t))B
T

(m(t)) (2.21) Once we have reached the coarsest scale(consisting of a single node),
we have the best smoothed estimate i, at that node, and we can begin

= Q(m(t)) our coarse-to-fine propagation. As shown in Chou(1990), the coarse-
to-fine recursion has the following form analogous to that in the RTS

Using these computations and our model (2.3) we can show(Chou,1990) algorithm:
that

+ K3(m(t))[&(at) + &(/t)I) (2.22) + P(m(t)lm(t))F(m(t))P- l(m(t) - llm(t)) [I,( 7-'t)-- :(r-'tlt)]
(2.38)

where

Kl(m) = CT(m)Ri1(m) (2.23) Note that i(tlt) and i(y-l'tt) were calculated during the fine-to-coarse

K2(m) = FT(m)R-l(m) (2.24)

RI(m) = A-'(m)B(m)Q(m)B
T

(m)A-T(m)
Ka(m) = AT~m + 1)R~l (m + 1) (2.25) 3 MODELING O F ISOTROP IC

R2(m + 1) = B(m + 1)BT(m + 1) PROCESSES ON TREES
P(m) = P; (m) + K(m)C(m) + K2(m)F(m)

+ 2K3 (m)A(m + 1) (2.26) i A zero-mean process Yt, t E T is isotropic if

Eq.(2.22) specifies an implicit set of equations for {&(t)lt E T}. Note E[YtY,] = rd(t,,) (3.1)

that the computation involved at each point on the tree involves only
its three nearesest neighbors and the measurement at that point. This i.e. if its second-order statistics are invariant under any isometry of T.

suggests the use of a Gauss-Seidel relaxation algorithm for solving this These processes have been the subject of some study. However, many

set of equations. Note that the computations of all the points along questions remain including an explicit criterion for a sequence r, to be

a particular scale are independent of each other, allowing these corn- the covariance of such a process and the representations of isotropic

putations to be performed in parallel. One can then imagine a variety processes as outputs of systems driven by white noise. Note first that

of ways to organize the Gauss-Seidel computations. For example, we " the sequence I{Y,-t) is an ordinary time series so that r, must be

can initialize all i with zero, solve (2.22) first for the finest scale and positive semidefinite; however, the constraints of isotropy require even

then for sequentially coarser scales, followed by sequential computation more. To uncover this structure we seek here the characterization of

back down to the finest scale. In multigrid terminology(Briggs,1987) the class of autoregressive (AR) models and to do this we need a bit

this is a V-cycle, which can be iterated until convergence is obtained more notation to define dynamics on trees. In particular, it is possible

or augmented to form so-called W-cycles. , to code all points on the tree via shifts from an arbitrary origin node,
i.e. as wto, where w is a word consisting of appropriate concatenations

A third algorithm is a generalization of the well-known Rauch-Tung- of our basic shift operators(Basseville,1989). The length of a word w

Striebel(RTS) smoothing algorithm for causal state models. The algo- is denoted lwl and equals d(wt,t) (e.g. 1y-1' = 1, 161 = 2). Also, since

rithm once again involves a pyramidal set of steps and a considerable we will be interested in coarse-to-fine dynamic models, we define some

level of parallelism, with an initial fine-to-coarse sweep followed by notation for causal moves:

coarse-to-fine. To begin let us define some notation:
w -< 0 (w -< 0) if wt t (wtt) (3.2)

Yt = {y(s)Js -}) (2.27)
The AR model of order p for processes on trees has the form

¥,+ = {y(s)ls~t} (2.28)

and let i(-lt) and (-lit+) denote the best estimates of z() based on W (33)

Yt and Yt+, respectively. Suppose that we have computed i(tlt+) and It-l<p
the corresponding error covariance, P(m(t)lm(t)+); then, standard es-
timation results yield where Wt is a white noise with unit variance. Note that this model is

"causal" - i.e. it has a coarse-to-fine direction of propagation - since

&(tlt) = (itJt+) + K(m(t))[y(t)- C(m(t))i(m(t))] (2.29) w -4 0.

K'(m(t)) = P(m(t)lm(t)+)CT(m(t))V-'(m(t)) (2.30)
V(m(t)) = C(m(t))P(m(t)jm(t)+)CT(m(t))+ R(-(t))(2.31) The geometry of the tree and the constraints of isotropy make the

V(m()) = C(m())P(m(t)m(t)+)C
T

(m()) +R(m(t))(2.31) parametrization of AR models as in (3.3) unsatisfactory. As we now

and the resulting error covariance is given by describe a better representation is provided by the generalization of
lattice structures which involves only one new parameter as p increases

P(m(I)lm(t)) = [I - K(m(t))C(m(t))]P(m(1)Im(t)+) (2.32)

"2



by one. Let {-·. -} denote the Gaussian linear space spanned by the I 0 k"U
variables in braces and define the (nth order) past of the node t: s (k.) 

-
- I (k)- kn) U. (3.26)

[ -kU. 0 (I-knU.)
y ,,. =a{Y,: w _ 0, jwl < n) (3.4) -. nU. 0 (I-k. u.)

For n odd, n > 1:
As for time series, the development of models of increasing order in-
volves recursions for the forward and backward prediction errors. Specif- Et,. 
ically, define the backward residual space: t,- ) ( EE(kn) (3.27)

(3.5) t,

where t,,n is spanned by the backward prediction errors (k) [ -knU (I-k .) (3.28)

Ft,,(uw) =
-
Y.t - E(Y.tIYIt..- 1) (3.6) while for n = 1:

where w < 0, jwl = n. These variables are collected into a 2[1I- ( E, = ( 1 k E, Il (3.29)
dimensional vector (see Basseville(1989) for the order), Ft,n. For Iwl < F, -k} 1 - J .- ,, ,
n and w O(i.e. m(wt) = m(t)) define the forward prediction errors:

El,. (w) & Yt - E (Y,,tlY -,t,.n-) (3.7)

and let Et, denote the span of these residuals and Es,, the 2 [l]- 4 DISCUSSION OF FURTHER WORK
dimensional vector of these variables (see Basseville(1989)).

A key result(Basseville,1989) is that we can develop Levinson-like re- The results described so far in this paper represent our initial efforts
cursions for the local averages or barycenters of the residuals: in developing a system and estimation theory for multi-scale processes.

There are a number of additional results presently under development.
eo~n = 2-~[;] E El,(w) (3.8) First, we are in the process of developing a complete system theory for

wlI<n,wxo0 the models described in Section 2. In particular in order to understand

ftn = 2
- [
'
] F,(w)(3) the estimation problem better and to develop a theory for our new

3-step Riccati equation on trees(update, predict, and merge) we have,
Ivwl=n,tw Ho developed the dual system to (2.3) and the associated complementary

Note first that et,0 = Et,o = Yt = Ft,o = ft,o; that etl, = Et,1, ftl = processes and Hamiltonian form of the estimator. In addition reacha-
Ft,1; and that a straightforward calculation yields bility and observability results are being developed in order to develop

kft, = f.y-'io -klet1 o (3.10) an asymptotic theory for the Riccati equation. Secondly, we are explor-
f, = (10) ing the development of a theory as in Section 3 but for a weaker notion

et,- = et,o - klf.-,o (3.11) ofstationarity when E(Y1 Y1) depends only on d(t,sAt) and d(s,sAt).
_ r = 1 1 (3.12) Note that from (2.7) we see that the model (2.3) with constant param-

-1 < k1 = < 1 (3.12) eters is of this form so that we expect very strong ties between our

For n even we find that work in Sections 2 and 3. In particular the transform theory we are
developing for our models leads us to a notion of rationality or finite-

et,n = e -,nl -knf.y-t,n-I (3.13) dimensionality for systems on trees and we expect the resulting tests on
1 (C i _ \ L ^ Hankel matrices to be closely tied to our system theory for the models

f=tn = fy-,t,n-1 + e6(t)t,,n-1 - ket,- (3.14) of Section 2. Finally, we are also exploring the generalization of the
results described here to more general weighted lattices, with weights

where the reflection coefficients kn and the variances of the residuals
and structure determined by quadrature mirror filters other than thesatisfy
one that generates the Haar wavelet basis.

kn = cor(e,_lf- l) =cor (e(f)t n- etn1)

= cor (e6(<.t._lf 7r-,,,.i) (3.15) References

cor(r, y) = E(xy)/ [E(
2
)E(y

2
)] 1/2 (3.16)
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Note that the constraints on the reflection coefficients are slightly dif- pp.121-124.
ferent than for time series, and these conditions are precisely those for
a sequence r, to be the covariance of an isotropic process. In addition,
there exists a generalization of the Schur recursions that allows us to
calculate the k, efficiently. Further results in Basseville(1989) include
a complete characterization of AR models, a stability result analogous
to the time series result that k, must not achieve its extreme values,
and whitening and modeling filter structures for Yt = Et,o. We limit
ourselves here to stating the last of these results. Let 1. denote a unit
vector all of whose components are the same, and let U. = 1.IT. The
modeling filter for Y, is given by the following. For n even

) - (kn) ( (3.25)
E, n-l 


