
Proceedings of the 1989 International Conference on Supercomputing, Crete, Greece, June
1989.

June 1989 LIDS-P-1888

CONVERGENCE RATE AND TERMINATION
OF ASYNCHRONOUS ITERATIVE ALGORITHMS

D.P. Bertsekas
J.N. Tsitsiklis

Research supported by the NSF under Grants ECS-8519058 and ECS-8552419, with
matching funds from Bellcore and Dupont, and by the ARO under Grant DAAL03-86-K-
0171.

Proceedings of the 1989 International Conference on Supercomputing,
Grete, Greece, June 1989.

CONVERGENCE RATE AND TERMINATION
OF ASYNCHRONOUS ITERATIVE ALGORITHMS

Dimitri P. Bertsekas
John N. Tsitsiklis

Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.

Abstract cations, it is natural to consider distributed exe-
We consider iterative algorithms of the form x := cutions of this iteration whereby the ith processor
f (x), executed by a parallel or distributed comput- updates xi according to the formula
ing system. We focus on asynchronous implemen-
tations whereby each processor iterates on a dif- , := f(xl,.. ,x,'), (1.1)
ferent component of x, at its own pace, using the .
most recently received (but possibly outdated) in- while receiving information from other processors
formation on the remaining components of z. We on the current values of the remaining components.
provide results on the convergence rate of such al- Iteration (1.1) can be executed synchronously
gorithms and make a comparison with the conver- whereby all processors perform an iteration, com-

gencerate of the corresponding synchronous methc - municate their results to the other processors, and
geods in which the computation proceeds in phses. then proceed to the next iteration. It can alsoods in which the computation proceeds in phases.
We also present results on how to terminate asyn- be executed asynchronously, whereby each proces-
chronous iterations in finite time with an approxi- sor computes at its own pace while receiving (pos-
mate solution of the computational problem under sibly outdated) information on the values of the
consideration. components updated by the other processors. In

several circumstances, asynchronous methods can
Keywords: Iterative methods, asynchronous have certain advantages over their synchronous
algorithms, parallel algorithms, distributed counterparts (see Section 2) and can be a desirable
algorithms, termination detection. alternative. On the other hand, the mathemati-

cal properties of asynchronous iterations are quite
1. INTRODUCTION different from those of their synchronous counter-

This paper deals with iterative algorithms of the parts. Even though a fairly comprehensive theory
form x := f (x), where x = (x1, I... Ixn) is a vectr is available [BT21, there are certain issues (per-
in R" and f : R" '- R is an iteration mapping taining to the convergence rate and termination
defining the algorithm. In many interesting appli- of asynchronous iterations), that have not been

sufficiently studied and this is the subject of the

Research supported by the NSF under Grants ECS- present paper.
8519058 and ECS-8552419, with matching funds Outline of the paper.
from Bellcore and Dupont, and by the ARO under
Grant DAAL03-86-K-0171. In Section 2, we present a mathematical model
Permission to copy without fee all or part of this material is granted provided of synchronous and asynchronous iterations, dis-
that the copies are not made or distributed for direct commercial advantage, cuss the possible advantages of asynchronous
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for Com- methods, and present the basic convergence results
puting Machinery. To copy otherwise, or to republish, requires a fee and/or that are available. In Section 3, we concentrate
specific permission. on asynchronous methods in which the iteration
© 1989 ACM 0-89791-309-4/89/006/0461 $1.50

461

mapping f is monotone and compare the conver- In an asynchronous implementation of iteration
gence rates of the synchronous and asynchronous (2.1), processors are not required to wait until they
variants. Section 4 is similar, except that atten- receive all messages generated during the previ-
tion is shifted to the case where the iteration map- ous iteration. Rather, each processor is allowed to
ping f is a contraction with respect to a maximum keep updating its own component at its own pace.
norm. Finally, in Section 5, we consider modifica- If the current value of the component updated by
tions whereby an asynchronous algorithm can be some other processor is not available, then some
made to execute for a finite amount of time and outdated value (received at some time in the past)
terminate with an approximate soulution of the is used instead. Furthermore, processors are not
computational problem under consideration. This required to communicate their results after each
is essentially a problem of detecting the validity iteration but only once in a while. We allow some
of certain termination conditions which is rather processors to compute faster and execute more it-
trivial in the context of synchronous methods. We erations than others, we allow some processors to
indicate that this issue becomes much more diffi- communicate more frequently than others, and we
cult in the context of asynchronous methods and allow the communication delays to be substantial
we identify certain conditions under which our aim and unpredictable. We also allow the communi-
can be accomplished. We note that the literature cation channels to deliver messages out of order,
on the subject is rather large. For this reason, we i. e., in a different order than the one they were
do not provide a comprehensive list of references, transmitted.
and we refer the reader to [BT2]. There are several potential advantages that can

--- 2. THE ALGORITHMIC MODEL mAND be gained from asynchronous execution (see e.g.,
BASIC CONVERGENCE RESULTS. [K], IBT1], [BT2]). On the other hand, a ma-

jor potential drawback is that asynchronous algo-
Let Xi, .-. ., Xp be subsets of Euclidean spaces rithms cannot be described mathematically by an

flit ... , RP;, respectively. Let n = nl + - - + np, equation of the form z(k + 1) = f (x(k)). Thus,
and let X -c R" be the Cartesian product X = even if the latter difference equation is convergent,

:,- 1 Xi. Accordingly, any z E Rn is decomposed the corresponding asynchronous iteration could di-
in the form z = (xl,..., x,), with each z; belong- verge, and indeed this is sometimes the case. Even
ing to Rn'. For i = 1,...,p, let fi : X '-4 Xi be if the asynchronous iteration converges, such a con-
a given function and let f: X - X be the func- clusion often requires rather difficult analysis. Nev-
tion defined by f (x) = (fi (x),.X .* fp (x)) for every ertheless, there is a large number of results stating
x E X. We consider an iteration of the form that certain classes of important algorithms retain

their desirable convergence properties in the face
:= f(), (2.1) of asynchronism [BT2]. A very general result of

this form will be presented soon, following a pre-
cise description of our model of computation.

and we call f the iteration mapping defining the cise description of our model of computation.
algorithm. We assume that there are p processors, Let t be a time variable, representing (global)
with the ith processor assigned the responsibility real time. Even though t should be viewed as a
of updating the ith component zi according to the continuous variable, the presentation, the nota-
rule xi := f,(x) = fi(5X1 ,-,. , zp). We say that an tion, and the proofs are simplified if we introduce
execution of iteration (2.1) is synchronous if it can a small constant A, which is viewed as the unit
be described mathematically by the formula of time, and analyze the behavior of the algorithm

at times that are integer multiples of A. For such
an analysis to be possible, we only need to assume

(k + 1) = f(x(k)), that no processor can execute more than one up-
date during a time interval of length A. Clearly,

where k is an integer-valued variable used to in- such an assumption should be valid in practice if
dex different iterations, not necessarily represent- A is taken very small. Still, even though A is
ing real time. Synchronous execution is certainly supposed to be small, it is notationally convenient
possible if the processors have access to a global to scale the time axis so that we can assume that
clock, if each processor initiates an update at each A = 1. (This entails no loss of generality.) To con-
"tick" of the clock, and if the results of an update clude, our model will be cast in terms of an integer
can be reliably transmitted to other processors be- time variable t, which is proportional to real time.
fore the next "tick". Barring the existence of a Let x (t) be the value of xi residing in the mem-
global clock, synchronous execution can be still ac- ory of the ith processor at time t. We assume that
complished by having each processor perform the there is a set of times T' at which xi is updated.
(k+l1)st update as soon as its kth update has been To account for the possibility that the ith proces-
completed and the results of the kth update of all
other processors have been received. - sor may not have access to the most recent values

462

of the components of x, we assume that is initialized at time 0 with some z(O) E X(O), and

Zi (t + 1) = fi (1 (ir (t)),. .. , p (r(t))), XVt E T',i we have r;(t) > 0 for all t > O. In this case, the
values of x(r), r < 0, have no effect on the algo-

.. . (2.2) rithm, they can be assumed without loss of gen-
where r (t) are integer timest satisfying rf(t) < erality to belong to X(O), and the proposition ap-
t, Vt. At all times t q T', x,(t) is left un- plies. Another possible situation is the following.
changed and Suppose that until some time t' the processors had

been executing some other asynchronous iteration
x,(t + 1) = zi(t), Vt $ T'. (2.3) z := g(x) and that at time t' they start execut-

ing the asynchronous iteration x := f(x) using the
The difference t - r; (t) is related to the communi- values x(r) produced by the iteration x := g(x) as
cation delay of the message xy sent from processor initial conditions. As long as the original iteration
j to processor i, and which is used in an update of was initialized with a vector in the set X(O) and
x, that starts at time t. In a synchronous execu- if the mapping g maps X(0) into X(0), we have
tion, we have t - r (t) = 0. As t - rj(t) increases, X(r) E X(O) for all r < t. We can then replace
we can say that the amount of asynchronism in the time origin by t* and use Prop. 2.1 to establish
the algorithm is larger. Of course, for the algo- convergence.
rithm to make any progress at all, we should not The conditions of Prop. 2.1 can be easily verified
allow r;(t) to remain forever small. Furthermore, in two important cases that are the subjects of
no processor should be allowed to drop out of the Subsections 2.1 and 2.2, respectively.
computation and stop iterating. For this reason, 2.2. Monotone mappings
the following assumption is introduced:
Assumption 2.1. The sets T' are infinite and if Assumption 2.2. The iteration mapping f{ k s ^ ,X .-X X has the following properties:}tk) is a sequence of elements of VT which tends (a) f is continuous.
to infinity, then limko, r;(tk) = oo for every i. b) f is monotone [that is, if z < y then f(x)

Asynchronous convergence under Assumption has a unique fixed point
2.1 has been established by several authors for a d) There exist vectors X such that
large variety of choices of the iteration mapping ()< T (x)< v.

starting with the work of Chazan and Miranker
LCM] (see [BT2] and the references therein). The Let fk be the composition of k copies of f (f0

tollowing result originally given in [B] and refor- is the identity mapping) and let
mulated in [BT2], seems to be the most general
one.
Proposition 2.1. Suppose that for each i E {1, X(k) = {(I fk(u) < x* < fk(v)}.
... ,p), there exists a sequence {Xi (k)} of subsets
of Xi such that: It is easily shown that fk(u) and fk(v) converge
(a) Xi(k + 1) c Xi(k), for all k > 0. to x', as k tends to infinity. As a result, Prop. 2.1
(b) The sets X(k) = nI= 1 X (k) have the prop- applies and establishes asynchronous convergence,
erty f(x) E X(k + 1), for all x E X(k). provided that the algorithm is initialized at some
(c) All limit points of a sequence {x(k)) with the x(0) satisfying u < z(0) < v.
property x(k) E X(k) for all k, are fixed points of Assumption 2.2 can be verified for a variety of
f. algorithms, such as linear iterations involving non-
Furthermore, assume that z(r) E X(O) for all r < negative matrices, the Bellman-Ford algorithm for
0. Then, under Assumption 2.1, all limit points of the shortest path problem, the successive approxi-
a sequence {x(t)} generated by the asynchronous mation algorithm for infinite horizon dynamic pro-
iteration (2.2)-(2.3) are fixed points of f. gramming, and dual relaxation algorithms for lin-

ear and nonlinear network flow problems [BT2].
We discuss briefly the assumption z(r) E X(O)

for r < O0. In the most common case, the algorithm 2.2. Maximum norm contractions.
Let X = A", and consider a norm on R' defined

t The values of the variables r, (t) for t S T/ are by
of no importance. Still, it is sometimes convenient t m xlli
to assume that these variables are defined for all t. 11l- = max,
We interpret xi (r; (t)) as the value of xz available

to processor i at time t, even if t 0 T' and this t Vector inequalities are to be interpreted com-
value is not used in an update. ponentwise throughout the paper.

463

lhere z, E n" ' is the ith component of z, II lli matrix of spectral radius less than 1. In particular
is a norm on Rn', and wi is a positive scalar, for the Stein-Rosenberg Theorem [V] asserts that, in
each i. (We call such a norm a block-maximum a serial computing environment, the Gauss-Seidel
norm.) Suppose that f has the following contrac- iteration converges at least as fast as its Jacobi
tion property: there exists some a E [0,1) such counterpart. The result in the following subsec-
that tion states that exactly the opposite is true in a

parallel computing environment.
Uf(x) x || II < cx-x |, 2v, E ", (2.4)

3.1. Comparison of synchronous Jacobi
where x* is a fixed point of f. Given a vector and Gauss-Seidel methods.
x(O) E X with which the algorithm is initialized, Let us restrict ourselves for the moment to a
let synchronous computing environment. In particu-

lar, we assume that component updates and the
Xi(k) = x, E R"' l li,--21 zi <_ Cllxz(0)-zX*[. delivery of the results to every other processor can

be accomplished within one time unit. A Jacobi
It is easily verified that these sets satisfy the con- iteration is described by the equation
ditions of Prop. 2.1 and asynchronous convergence
to x* follows. :'(t + 1) = f(X(t)). (3.1)

Iteration mappings f with the contraction prop-
erty (2.4) are very common. We list a few exam- In a Gauss-Seidel iteration, components are up-
ples: dated one at a time and the update of a compo-
(a) Linear iterations of the form f(x) = Ax + b, nent zx uses updated values of the preceding com-
where A is an n x n matrix such that p([AI) < 1 ponents xl,... ,zxi. In practice, the mapping f
[CM]. Here, IAI.is the matrix whose entries are the is usually sparse (that is, each function f, depends
absolute values of the corresponding entries of A, only on a few of the components zi) and in this
and p(jlA), the spectral radius of [IA, is the largest case, the Gauss-Seidel iteration can be somewhat
of the magnitudes of the eigenvalues of IAl. As a parallelized by having more than one (but usually
special case, we obtain totally asynchronous con- not all) components being updated simultaneously.
vergence of the iteration 7r := 7rP for computing (This is accomplished by means of the well-known
a row vector 7r with the invariant probabilities of coloring procedure [BT2, Section 1.2.4]). Let U(t)
an irreducible, discrete-time, finite-state Markov be the set of components that are updated at time
chain specified in terms of the stochastic matrix P, t. Then, the Gauss-Seidel iteration is described
provided that one of the components of sr is held by
fixed throughout the algorithm [BT2, p. 435].
(b) Gradient iterations of the form f(z) = x - (t + 1) = z[(t), if i ~ U(t), (3.2)
'VF(x), where 7 is a small positive stepsize pa-

rameter, F: Rn-" R is a twice continuously dif- and
ferentiable cost function whose Hessian matrix is
bounded and diagonally dominant ([B], [BT2, p. x5 (t + 1) = f. (X (t)), if i E U(t). (3.3)
437]).

Other examples are the projection and other al- The following result is proved in [T], generalizing
gorithms for the solution of variational inequalities an earlier result of [SW]:
(under certain diagonal dominance conditions), and Proposition 3.1. If x(0) = (0) = x(0) and
waveform relaxation methods for the solution of the property f (x(O)) x(O) holds, then zx <
ODEs or boundary value problems ([BT2], [M], (t) <xU (t) for all t.
[S]). (t)< U(t) for all t.

3. CONVERGENCE RATE COMPAR- Proposition 3.1 establishes the faster conver-
ISONS: MONOTONE ITERATIONS. gence of the Jacobi iteration, at least for special

Throughout this section,' we assume that As- choices of initial conditions. [A symmetrical re-
sumption 2.1 is in effect and that the iteration sult holds if z(0) satisfies x(0) < f(x(O))]. It can
mapping f satisfies the monotonicity Assumption also be shown [T] that for any initial conditions
2.2. The monotonicity assumption is very conve- satisfying xz < xz(0) or z > x(O), there exists
nient for making convergence rate comparisons be- some constant K [depending on z(0)], such that
tween different variants of the same algorithm. A z* < z J (t + K) < xU (t) for all t. (In words, the
classical example concerns the comparison of the convergence rate of the Jacobi iteration cannot be
Jacobi and Gauss-Seidel variants of the linear iter- worse than the convergence rate of the correspond-
ation x := f(x) = Ax + b when A is a nonnegative ing Gauss-Seidel iteration. A related effect has

464

also been observed experimentally in the context then zi (t + 1) = , (t). If t E T', we first consider
of a specific example [ZL].) In the next subsec- the case where t is the first element of T. Then,
tion, these results are extended to obtain a much zi (t) = z (0). Furthermore,
more general convergence rate comparison result.
In particular, it will be shown that if the num-
ber of components updated at each time step is Zi(t + 1) = fi ((rt)) * (r;(t)))
increased or if the size of the "communication de-
lays" t- r (t) is reduced, then the convergence rate) =

can only improve.
where the first inequality follows from zi (r; (t)) <

3.2. Comparison between alternative zi(0), j = 1,... ,p, which is a consequence of the
asynchronous iterations. induction hypothesis. Finally, let us suppose that

We consider two alternative executions of the t is not the first element of T' and let t' be the
asynchronous iteration z := f(x). We distinguish previous element of T'. Using Assumption 3.1(a),
between them by putting a 'hat on the variables we have rj(t) > r(t'), and the induction hypoth-
associated with the second execution. Thus the
first execution is decsribed by Eqs. (2.2) and (2.3), esis implies that x, (; (t)) < z, (r (t9)* Using the
while the second by monotonicity of f, we obtain

, (t + 1) i= :(t), if t d1, (3.4) zi (t + 1) = fi ((ri (t)),.. .,x (r (t)))

ii (t + 1) f= il ((t)),...Xip (fp (t))), if t E T',
(3.5) _~ fi(xl(r~')),...,Xi(r~(t ' -Xi(t'+l)--xi(t).

Assumption 3.1. (a) For each i,j, and t > 0, we Q.E.D.

have r; (t+1) > r;(t) > 0 and i (t+ 1) > i (t) > 0. We now complete the proof of the proposition.
(b) For each i, we have T' D T7. We proceed again inductively. We have z(0) =
(c) For each i, j, and t E iT, we have . (t) > ' .(t) &(0), by assumption, which starts the induction.

We assume the induction hypothesis that z(s) <
The requirements. £~ > 0 and > 0 b(s) for 8 = 0,1, . . ., t. We consider three cases:

The requirements _ (t) _ and . _(t) __ 0 bsi (i) If t ¢ T7, then Assumption 3.1(b) implies that
cally mean that the algorithm is started at time 0.
Furthermore, Assumption 3.2(a) states that sub- t r. It follows that zi(t + 1) zi(t) < ,i(t) =
sequent iterations by the same processor are based ii (t + 1), where the induction hypothesis was used
on newer information. It is essentially equivalent to obtain the inequality.
to an assumption that messages are received in the (ii) If t E T' and t 1 T' then xz(t + 1) < iz(t) <
order that they are transmitted. Part (b) states z (t) = zi (t + 1), where we have used Lemma 3.1
that in the first execution there are at least as for the first inequality and the induction hypothe-
many variable updates as in the second. Finally, sis for the second.
part (c) states that the communication delays in (iii) If t E T7 and t E 7i, we have rT (t) > fj (t) [As-
the first execution are no larger than those in the sumption 3.1(c)]. We then use Lemma 3.1 and the
firosition 3.2. Suppose that: induction hypothesis to obtain zi (r (t)) < z i (. (t))
Proposition 3.2. Suppose that:

fa) Assumption 3.1 holds. < y(r(t)). The inequality xi(t + 1) _< i(t + 1)b x* < x(0) = x(0). then follows from the monotonicity of f. Q.E.D.

(c) f (z(0)) < x(O). Notice that Prop. 3.1 can be obtained as a corol-
Then, x' < x(t) < x(t) for all t. [A symmetrical lary of Prop. 3.2, by imposing the additional as-
result holds if x(0) = x(0) < x* and f (x(O)) > sumptions that rji(t) = fj(t) = t for all i, j, t, and

(ro)of that T' - {0,1,2,...} for all i. While Prop. 3.2Proof.
Lemma 3.1. There holds x(t + 1) < x(t) for all deals with special choices of the initialization x(0),

it also provides worst case convergence rate com-
parisons for other initial conditions, as we now dis-Proof of Lemma 3.1. We proceed by induction CUSS.

on t. If 0 E T' then zi(1) = fis((0)) < Xz(0); ifonVthenx t=xi .J Thus,) • (0) ifLet us compare three asynchronous executionso0 T' then zi(l) = z,(0). Thus, z(1) < x(0). which are identical except for the choice of ini-
Let us now assume the induction hypothesis tial conditions. These three executions generate

z(t) < z(t - 1) < -. < x(1) < x(0). If t 4 Tp sequences {x(t)}, {((t)}, and {x(t)}, respectively,

465

and are initialized with z(0) = u, Y(O) = v, where fying u < x(O) < v] convergence rate of the asyn-
u and v are the vectors of Assumption 2.2. Fur- chronous variant is better than that of the syn-
thermore, we assume that u < £(0) < v. As a chronous one.
consequence of the monotonicity of f, it is easily Notice that the condition = -- Notice that the condition r. t)= (t) was im-shown (by induction on t) that x(t t t) _(< t) __ xt
for all t. It follows that over all possible choices posed only for t E T'. We now discuss a choice of
of initial conditions z(O) satisfying u < z(O) < v, the variables r,(t), t t 1i, that results in the most
the slowest convergence to z* is obtained by let- fair comparison between the synchronous and the
ting either x(O) = u or x(0) = v. Consequently, asynchronous iteration. In particular, we are go-
if one is interested in the worst case convergence ing to assume that a processor executing the asyn-
rate of two alternative methods, only the initial chronous algorithm sends a message only when the
conditions z(0) = u and x(0) = v need to be corresponding processor executing the synchronous
considered. However, these initial conditions have algorithm sends a message. Furthermore, we shall
the properties f (u) > u and f(v) < v and Prop. assume that the delays suffered by corresponding
3.2 applies. Coming back to the context of Prop. messages are the same in the two algorithms. As
3.2, we conclude that the worst case convergence long as messages are delivered in the order that
rate of i(t) is at least as bad as the worst case they are received, r (t) and f'(t) are nonincreas-
convergence rate of z(t), where the worst case is
taken over all choices of initial conditions satisfy- ing in t and, furthermore, we will certainly have
ing u < z(0) < v. r;(t) = f;(t) for all i, j and t E P'". We are there-

fore dealing with a special case of what was dis-
3.3. Comparison of synchronous and asyn- cussed earlier in this subsection. This shows that

chronous iterations. the superiority of the asynchronous method holds
Let us now compare a synchronous iteration under the most fair comparison, whereby both al-

in which processors wait to receive certain mes- gorithms send the same number of messages and
sages before proceeding to the next update, with the messages have the same delays. We may con-
an asynchronous iteration in which processors per- clude that, in the case of monotone iterations, it
form updates at every time unit. Of course, in is preferable to perform as many updates as pos-
order to make a fair comparison, we have to as- sible even if they are based on outdated informa-
sume that the communication delays in the two tion and, therefore, asynchronous algorithms are
algorithms are the same. advantageous.

We use {z(t)} and ji(t)} to denote the sequence All of the discussion in this subsection has been
generated by the asynchronous and the synchronous based on the premise that an update by some pro-
iteration, respectively. Let the notation r (t) and cessor takes one time unit and that the delays
fi (t) be as in the preceding subsection. As the t - r;'(t) are integer. In particular, if the delays are
asynchronous iteration performs an update at each nonzero, they must be an integer multiple of the

time needed for an update. The analysis extendstime unit, we let Ti be the set of all nonnegative time needed for an update. The analysis extends
integers. In the synchronous iteration, an update without change to the case where the communica-
is performed only when certain conditions are sat- tion delays are noninteger but larger than 1. In ef-is performed only when certain conditions are sat- fet, our analysis captures those cases where com-
isfied (that is, when all the information needed
for the next update is available). So we have munication is more time-consuming than compu-tation (as is often the case in practice). In fact,

i T c V, the inclusion being proper, in general. if the communication delays are smaller than the
The assumption that the communication delays update time, then the synchronous algorithm can
are the same for the two algorithms, translates be slowed down by the communication delays by
to the condition r (t) = f(t) for all t e Ti. Fi- at most a factor of 2, in which case there does
nally, we assume that r; (t) is nondecreasing in t. not seem to be any good reason for considering an

A, .} . asynchronous algorithm.
Thus, Assumption 3.1 is satisfied and Prop. 3.2
applies. It follows that for any common choice The case where the communication delays are
of initial conditions such that :(O) = i;(O) and smaller than the time needed for an update can

also be studied analytically and it can be shown
f (x(O)) • z(O), the convergence of the sequence that the convergence rate of the asynchronous it-
{x((t)} corresponding to the asynchronous iteration eration could be worse than that of its synchronous
is faster than that of the synchronous sequence counterpart. This reinforces our earlier statement
{((t)}. By a symmetrical argument, the same con- that asynchronous iterations should be considered
clusion is reached if x(O) < f (x(O)). We can then primarily when the communication delays are sub-
argue as in the preceding subsection, to conclude stantial.
that the worst case [over all initial conditions satis-

466

added generality, we actually make the assump-
4. CONVERGENCE RATE COMPARI-
SON: CONTRACTING ITERATIONS. tion ri(t) > max{0,t - D}, for j 6 i. Under this

assumption, we have the following result.
Throughout this section we assume that As- Proposition 4.1. Suppose that VT is the set of

sumption 2.1 is in effect, that X = "n, and that all nonnegative integers for each i. Then, the se-
the iteration mapping f : ·in . 8" has the fol- quence {z(t)} of vectors generated by the asyn-
lowing contraction property [cf. Eq. (2.4)1: chronous iteration satisfies

1 1rnmax-I|f,(z)--. . S cam~ax-1=i-A~lli, Vx, Ifx(t) - x*11 < ApAI x(O) - x'[,maax Ifi(x) -xi* _ mx[[- Ili[[i, A,
i Wi i Wi

(4.1) where PA is a nonnegative solution of the equation
where each 1. * ji is a norm on ~i, each wi is a
positive scalar, and 0 < a < 1.

To simplify the discussion, we assume that the
communication delay of any message is equal to D
time units, where D is a positive integer, and that The proof of Prop. 4.1 is an easy inductive ar-
a variable update takes a single time unit. Then, a gument and can be found in [BT2, p. 4411. Notice
synchronous algorithm performs one iteration ev-
ery D + 1 time units and the contraction property that we either have PA = a < al(D = Ps

o BP=P _D Dwhich also yields PA _(4.1) provides us with the estimate < apD which also yields PA <
aCl/(D'+) - PS. 'In either case, the convergence

:z(t) - ff 5I < Aat/(D+1), (4.2) rate of the asynchronous iteration is better.
We now consider two interesting limiting cases:

where 1111 = max, l, 1illi/wi and where A is a con-
stant depending on the initial conditions. We de- (a) Let us keep a and D fixed and suppose that
fine ps = al/(D +) and view ps as the convergence ,is small. (That is, we are considering the case
rate of the synchronous iteration. This is meaning- where the iteration is very weakly coupled.) In
ful if Eq. (4.2) holds with approximate equality at particular, let us suppose that aB • aD+1. If
least for some initial conditions or if Eq. (4.2) is PA = ,p-D, then aD+l > , =- pD+ l. On the
the only available convergence rate estimate. other hand, PA > a, and we conclude that PA = .f

We impose an additional assumption on f: Notice that the asynchronous convergence rate PA
Assumption 4.1. There exists some fB such that is the same as the convergence rate a of the itera-
0 < <I a such that for all z and i, tion z(t+l) = f (z(t)) which is a synchronous iter-

ation without any delays. We conclude that when
the "coupling strength" 6 is sufficiently small, then

Wi HAW - zx I the communication delays have no effect on the
asynchronous convergence rate. In particular, the

< max{- I{ i -zf Ili, max-j Izj - *; li, }. asynchronous algorithm is D + 1 times faster than
Wi Xi i wi its synchronous counterpart.

(b) Let us now consider the case where D tends
Notice that in the case where = ct, Assump- to infinity (very large delays). It is clear that in

tion 4.1 coincides with Eq. (4.1). The case where this case ps and PA converge to 1. It is thus more
/3 is smaller than a can be viewed as a weak cou- m vD+
pling assumption. In particular, when / = 0, then meaningful to concentrate on the values of p V 1

xi can be computed from knowledge of fi alone and p D+l These can be viewed as the error re-
and interprocessor communication is unnecessary. duction factors per phase of the synchronous it-
It is intuitively clear that when / is very small, the eration. For the synchronous iteration, pD+i is
information on the values of the variables updated of course equal to ca. For the asynchronous it-
by other processors is not as crucial and that the eration, PA increases to 1 as D tends to infinity
performance of an asynchronous algorithm should and, therefore, for D large enough, we will have
be comparable to its performance under the as- PA > a. Then, Eq. (4.3) shows that pp-D PA
sumption of zero delays. We now develop some D+
results corroborating this intuition. Aresults corroborating this intuition, equivalently, PA+1 is equal to /. Therefore, theconvergence rate (per synchronous phase) is de-Consistently with our assumption that commu- termined only by the coupling strength P. Once
nication delays are equal to D, we assume that termined only by the coupling strength . Oncenication delays . re *qual .o ., ie assume that more we reach the conclusion that weakly coupled
r7 (t) = max{0, t- D}, for ij i, and that 4r (t) = t. problems favor the asynchronous algorithm.
(The latter equality reflects the fact that proces- All of the above analysis can be carried through
sor t need not send messages to itself and there- A o
^sor r:need not send messages to itself and there- for the case where Assumption 4.1 is replaced by
fore no delay is incurred.) For the sake of some

467

-elated inequality possesses only partial information on the progress
of the algorithm. We address this issue in this

1 . ufisection.
-Wfi (z)-sHi if< Wi cXl iIW While the general model introduced in Section 2

can be used for both shared memory and message-
where a = ,6B -+ < 1. The main difference is that passing parallel architectures [BT2, Section 6.1j,

in this section we need to adopt a more explicit
PA is now a nonnegative solution of the equation message-passing model. In particular, we assume

that each processor j sends messages with the value
P = Y + ip- D, of z i to every other processor i. Processor i keeps

a buffer with the most recently received value of
as opposed to Eq. (4.3). It is easily shown that xi. We denote the value in this buffer at time
PA < Ps, that PA tends to y when] is very small, t by x'.(t). This value was transmitted by pro-
and that pD+1 approaches fl/(1 - 7i) < a = pos cessor j at some earlier time r7 (t) and therefore
as D increases to infinity. Thus, the qualitatitive Thism
conclusions we had derived under Assumption 4.1 h(t) = (r (t)) This model will be in effect
remain valid for this case as well. throughout this section, and is easily seen to con-

We have so far demonstrated the superiority form to the general model of Section 2.
of asynchronous iterations under the contraction 5.1 Finitely terminating iterations
condition. It can be argued, however, that the
comparison is somewhat unfair for the following We first consider asynchronous iterative algo-
reason: we are assuming that communication de- rithms that are guaranteed to terminate. For this
lays are equal to D and that r; (t) = t - D for to happen, we need to impose certain assumptions
all t > D. This is equivalent to assuming that on the way that the algorithm is implemented:
messages are transmitted by the processors exe- Assumption 5.1. (a) If t E T' and zi(t + 1) #
cuting the asynchronous algorithm at each time x; (t), then processor i will eventually send a mes-
step. This corresponds to message transmissions sage to every other processor.
at a rate D + 1 higher than the message transmis- (b) If a processor i has sent a message with the
sion rate in the synchronous algorithm. In order value of xi (t) to some other processor j, then pro-
to make a more fair comparison, let us now con- cessor i will send a new message to processor j
sider an asynchronous iteration in which messages only after the value of x; changes (due to an up-
are transmitted only at integer multiples of D + 1, date by processor i).
that is, at the same times that the synchronous (c) Messages are received in the order that they
iteration is transmitting messages. Notice that are transmitted.
processors will be receiving a message once every (d) Each processor sends at least one message to
D + 1 time units. Thus, at each update, the time every other processor.
elapsed since the last message reception can be at
most D. Furthermore, messages carry information According to Assumption 5.1(b), if the value of
which is outdated by D time units. It follows that x(t) settles to some final value, then there will be

some time t* after which no messages will be sent.t- r (t) < 2D for all t. We are therefore in the situ- some time t after which no messages will be sent..- 7j~t X 20 for all t. .are therefore in theFurthermore, all messages transmitted before t*
ation that was considered in Prop. 4.1, except that will eventually reach their destinations and the
D is replaced by 2D. In particular, if we assume algorithm will eventually reach a quiescent state
that Assumption 4.1 holds, we obtain an asyn- where none of the variables zi changes and no
chronous convergence rate estimate PA, where PA message is in transit. We can then say that the
is a nonnegative solution of p = max{c,Sp-2 D)}. algorithm has terminated.
All of our earlier qualitative conclusions remain
valid and, in particular, we have PA- • Ps, with We still assume that the sets T are infinite for
the difference between Ps - PA being more pro- each i. However, once the algorithm becomes qui-
nounced in the case of weakly coupled iterations. escent any further updates will be inconsequential.

It is not hard to see that the property limt_. T (t)=
5. TERMINATION OF ASYNCHRO- oo (cf. Assumption 2.1) follows from Assumption

NOUS ITERATIONS. 5.1. This is because every processor eventually
In practice, iterative algorithms are executed gets informed of the changes in the variables of the

only for a finite number of iterations, until some other processors [cf. Assumption 5.1(a)]. Also, if
termination condition is satisfied. In the case of a processor i stops sending any messages (because
asynchronous iterations, the problem of determin- xi has stopped changing) then the last message re-
ing whether termination conditions are satisfied is ceived by processor j is the last message that was
a rather difficult problem because each processor sent by processor i [due to Assumption 5.1(c)] and

468

therefore processor j will have up-to-date infor- if z 2 < e/2, and f 2 (z) = z 2 /2. It is clear that
mation on xi. the asynchronous iteration z := f(z) is guaran-

Let us now suppose that there exists a family .teed to converge to z* = (0,0): in particular,
{X(k)} of nested sets with the properties intro- z2 is updated according to 2 := X2 /2 and tends
duced in Prop. 2.1. Furthermore, let us assume to zero; thus, it eventually becomes smaller than
that there exists some k such that the set X(k) c/2. Eventually processor 1 receives a value of z 2
consists of the single element z*. Since we have smaller than e/2 and a subsequent update by the
just verified the validity of Assumption 2.1, it fol- same processor sets x1 to zero.
lows that we will eventually have z(t) = x*; that Let us now consider the iteration x := g(x). If
is, the algorithm terminates in finite time. Notice the algorithm is initialized with z 2 between c/2
that termination is equivalent to the following two and c, then the value of z 2 will never change, and
properties: processor 1 will keep executing the nonconvergent
i) No message is in transit. iteration xl := -x 1. Thus, the asynchronous iter-
il) An update by some processor i causes no ation z :=g9(z) is not guaranteed to terminate.

change in the value of zi.
Property (ii) is really a collection of local termina- The remainder of this section is devoted to the
tion conditions. There are several algorithms for derivation of conditions under which the iteration
termination detection when a termination condi- x := g(z) is guaranteed to terminate. We intro-
tion can be decomposed as above (see [DS], [BT2, duce some notation. Let I be a subset of the set
Section 8.1]). Thus termination detection causes {1,...,p} of all processors. For each i E I, let
no essential difficulties in this case. there be given some value Pi E Xi. We consider

the asynchronous iteration x := fo" (x) which is
5.2. Non-terminating algorithms. the same as the iteration z := f(z) except that
Let us now shift our attention to the more inter- any component xz, with i E I, is set to the value

esting case of iterative algorithms that never ter- Pi. Formally, the mapping f"'9 is defined by let-
minate if left on their own. If we were dealing with ting f,'"(z) = fi(Z), if i 0 I, and f,'(z) = 0,, if
the synchronous iteration z(k + 1) = f (z(k)), it i E I. The main result is the following:
would be natural to terminate the algorithm when Proposition 5.1. Let Assumption 5.1 hold. Sup-
the condition I[x(t+1)-x(t) 11< c is satisfied, where pose that for any I c {1,..., n} and for any choice
E is a small positive constant reflecting the desired of 0, E Xi, i E I, the asynchronous iteration
accuracy of solution, and where jI1 11 is a suitable := f () is guaranteed to converge. Then, the
norm. This suggests the following approach for t erminates in fi-
the context of asynchronous iterations. Given the asynchronous iteration x := g() terminates in fi-
iteration mapping f and the accuracy parameter nite time.iteration mapping f and the accuracy parameter Proof. Consider the asynchronous iteration z:-
b, we define a new iteration mapping g : X 4 X g(x). Let I be the set of all indices i for which
by letting the variable zx (t) changes only a finite number of

times and for each i E I, let Pi be the limiting
gi(z) = f,(z), if Jjf,(x) - Xill > e, value of zi(t). Since f maps X into itself, so does

g. It follows that E8 E Xi for each i. For each
gi (x) = x, otherwise. i E I, processor i sends a positive but finite num-

We will henceforth assume that the processors are ber of messages (Assumptions 5.1(d) and 5.1(b)l.
executing the asynchronous iteration z := g(z) By Assumption 5.1(a), the last message sent by
and communicate according to Assumption 5.1. processor i carries the value 0, and by Assumption 5.1(c} this is also the last message received byOnce more, the termination condition for this iter- tion 5.1(c) thier processor. Thus, for all t large reeived by
ation decomposes into a collection of local termina-
tion conditions and the standard termination de- and for all j, we will have Xi (t) = z, (r (t)) = 8i.
tection methods apply. We will therefore concen- Thus, the iteration z := g(z) eventually becomes
trate on the question of whether eventual termi- identical with the iteration x := f' 9 (z) and there-
nation is guaranteed. One could argue as follows. fore converges. This implies that the difference
Assuming that the original iteration z := f(z) is xi(t + 1) - z(t) converges to zero for any i d I.
guaranteed to converge to a fixed point x', the On the other hand, because of the definition of the
changes in the vector z will eventually become ar- mapping g, the difference zi (t + 1) - i (t) is either
bitrarily small, in which case we will have g(z) = z zero, or its magnitude is bounded below by e > 0.
and the iteration x := g(x) will terminate. Un- It follows that x,(t + 1) - z (t) eventually settles
fortunately, this argument is fallacious, as demon- to zero, for every i 0 I. This shows that i E I for
str.ated by the following example. every i I; we thus obtain a contradiction unless
Example 5.1. Consider the function fu f2R 2 I = {1 ... ,n}, which proves the desired result.
defined by f (z) = -x 1 , if x 2 > c/2, fi (z) = 0, Q.E.D.

469

We now identify certain cases in which the main [BG] D. P. Bertsekas and R. G. Gallager, Data
assumption in Prop. 5.1 is guaranteed to hold. We Networks, Prentice Hall, Englewood Cliffs, NJ, 1987
consider first the case of monotone iterations andl D r
we assume that the iteration mapping f satisfies 1 BT1]D. P. Bertsekas and J. N. Tsitsiklis, "Paral-we assumption 2.2. For anyI and { i E the tetel distributed iterative algorithms: a selective

Assumption 2.2. For any I and (i i E I), he survey," Technical Report LIDS-P-1835, Labora-
mapping f/l, inherits the continuity and mono- tory for Information and Decision Systems, M.I.T.,
tonicity properties of f. Let u and v be as in As- Cambridge, Mass., November 1988.
sumption 2.2 and suppose that X = {x Itu < x <s}mpLtiet 22 andbe suchPthoae < 6t <vi. {since f sat- 1iBT2]D. P. Bertsekas and J. N. Tsitsiklis, Paral-

v)~. Le 8bescthtu .Sic sa- - lel and Distributed Computation: Numerical Meth-
isfies Assumption 2.2(d), we have f 98(u) > u and ods, Prentice Hall, Englewood Cliffs, NJ, 1989.

s" (i < p. We conclude thatarts (a) the mapping f CM D. Chazan and W. Miranker, UChaotic re-satisfies parts (a) (b) and (d) of Assumption 2.2. laxation", Linear Algebra and its Applications, 2,
Assumption 2.2(c) is not automatically true for the 1969, pp. 199-222.
mappings f'l,, in general; however, if it can be in- E. W. Dkstra and C. S. Sholten Termi-
dependently verified, then the asynchronous itera- [DSn E. W. Dijkstra and C. S. Shomten, "Termi-tion:fs guarante to c e nation detection for diffusing computations", Inf.tion x :-= f', is guaranteed to converge, and Prop. Proc. Lett., 11, 1980, pp. 14.
5.1 applies. Let us simply say here that Assump-
tion 2.2(c) can be verified for certain network flow H. T. Kung,
algorithms, as well as for successive approximation parallel algorithms for multiprocessors" in Algo-
algorithms for discounted and (a class of) undis-d Complexitt, J.F. Traub (Ed.), Aca-
counted dynamic programming problems. (These demic, 1976, pp. 153-200.
results will be reported in more detail elsewhere.) [M] D. Mitra, "Asynchronous relaxations for the

Let us now consider the case where f satisfies numerical solution of differential equations by par-
the contraction condition- of Eq. (4.1). Unfortu- allel processors", SIAM J. Scientific and Statisti-
nately, it is not necessarily true that the mappings cal Computing, 8, 1987, pp. s43-s58.
f" e also satisfy the same contraction condition. In [S] P. Spiteri, "Contribution a l'etude de grands
fact, the mappings f "9 are not even guaranteed to systemes non lineaires", Doctoral Dissertation, L'
have a fixed point. Let us strengthen Eq. (4.1) and Universite de Franche-Comte, Besancon, France,
assume that 1984.

ISW]D. Smart and J. White, "Reducing the paral-
If(x) - f(y)II < X - yl, Vx,y E R, (5.1) lel solution time of sparse circuit matrices using

reordered Gaussian elimination and relaxation",
where 11 * I is again a block-maximum norm, as Proceedings of the 1988 ISCAS, Espoo, Finland.
in Eq. (4.1), and a E [0,1). We have f"8 (x) - [T] J. N. Tsitsiklis, "A comparison of Jacobi and
fr, (y) = 'O - 9i = 0 for all i E I. Thus, Gauss-Seidel parallel iterations, to appear in Ap-

plied Mathematics Letters.

~I/f z f"(y) II = max -I/fi(x) - fi(Y)III [V] R. S. Varga, Matrix Iterative Methods. Engle-
ifI wl wood Cliffs, NJ: Prentice-Hall, 1962.

•< Vf(x) - f(y)ll < a/x - yll- [ZL] S. A. Zenios and R. A., Lasken, "Nonlinear
network optimization on a massively parallel con-

Thus, the mappings f"i," inherit the contraction nection machine, Annals of Operations Research,
property (5.1). As discussed in Section 2.2, this 14, 1988.
property guarantees asynchronous convergence and
therefore Prop. 5.1 applies again.

We conclude that the modification x : g(z)
of the asynchronous iteration z := f(z) is often,
but not always, guaranteed to terminate in finite
time. It is an interesting research question to de-
vise economical termination procedures for the it-
eration x := f(x) for those cases where the itera-
tion x := g(z) does not terminate.

REFERENCES

[B] D. P. Bertsekas, "Distributed asynchronous com-
putation of fixed points," Mathematical Program-
ming, 27, 1983, pp. 107-120.

470

