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ABSTRACT

This paper deals with problems of quantitative organizational design. We

endorse the development of a Normative Decision Theory for the quantitative study

of distributed organizations. We suggest that Hypothesis Testing is an appropriate

paradigm for this framework. To demonstrate this, we present numerical results for

a team consisting of two decision makers (DMs) which performs binary hypothesis

testing and study the effects of different communication protocols; we show that

near-optimal performance can be achieved with few communication bits. We

summarize some other organizational design problems we have studied and present

some tentative conclusions and suggestions for future research.

1. INTRODUCTION

This paper is an informal progress report on research we have been

conducting during the past few years. Our main research goal is to develop basic

understanding of the decision making process in distributed organizations. To

complement empirical studies, we need to develop a normative decision theory for

designing superior organizations. The development of such a theory can be used as

a tool to assist decision makers into improving the quality of their decisions, and to

provide performance benchmarks in empirical studies that capture the bounded

rationality of human decision makers and the often chaotic behavior of human

organizations.
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To achieve our goals we need a specific paradigm which represents simple

decision making, and whose centralized version is easy to formulate, solve and

compute; for this we employ the problem of hypothesis testing. We want to design

a team to perform binary hypothesis testing (e.g. target detection) using several

DMs. Each DM has his own private sensor and computational capability to process

his own data. The performance of the DM operating in isolation can be quantified in

terms of his Receiver Operating Characteristic (ROC) curve; we remark that ROC

curves can be derived using empirical data on human decision makers. To improve

performance DMs should not operate in isolation; it is desirable to have many DMs

operate as a team. For this we have to define the architecture of the team, establish

communication protocols, and design the decision protocols which will achieve

near-optimal performance.

We employ a binary hypothesis testing model, which can be generalized to

more general hypothesis problems. These are indeed generic in the situation

assessment C2 function. We would like to develop a quantitative methodology to

deal with them.

In Section 2 we present the motivation for and the guidelines to a Normative

Decision Theory and we explain why the Decentralized Hypothesis Testing

Framework was chosen. In Section 3 we examine a particular problem in which we

examine the effects of different communication protocols on team performance. In

Section 4 we summarize other results we have derived recently and finally in

Section 5 we present some thoughts on where research should focus on next.

2. THE NORMATIVE DECISION THEORY

2.1 General Remarks

Decision making research has been the meeting point of psychologists,

philosophers, sociologists, economists, organizational theorists, statisticians and,

more recently of operational researches and engineers. They all work together

trying to develop a theory which will improve the quality of decision making both

for an individual and for an organization. Gaining a better understanding of how

good decisions are made is an essential prerequisite to the goal of increased

productivity and improved allocation of resources.
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There are two distinct points of view in modeling decision making, which are

reflected in the two schools of thought which have been developed: the

organizational decision theory and the behavioral decision theory, [18]. Behavioral

decision theory is essentially cognitive and generally uses experimental methods

while organizational decision theory is primarily theoretical and naturalistically

oriented, examining rather conspicuous individual and social phenomena.

The need for the development of a Normative Decision Theory emanates from

both organizational and behavioral decision theories. This normative decision

theory should be seen as a tool which will assist DMs in improving the quality of

their decisions. We first need to develop these normative decision models and then

test them in practice to obtain descriptive models which fully reflect the so-called

"human bounded rationality.". We then need to combine both into

normative/descriptive models which will be more accurate and realistic in predicting

the actions of DMs. Hopefully, similar results can be obtained for teams of DMs,

although the problems will be much more complex.

In our view, the normative decision theory (among other things) should capture the

following two processes:

1. the development of a DM to an expert DM and,

2. the development of a team of expert DMs to an expert team of expert DMs

[15].

2.2 The Meaning of Expert

The word expert is often associated with two disjoint, but complementary

meanings. The first meaning is a relative meaning which is very close to the

everyday use of the word. When there are several DMs to perform a certain task,

the DM (DMs) who can best perform the task is (are) considered to be experts for

that particular task. Thus, we need if at all possible, to compare two DMs capable

of doing the same task and state that one is "better" than the other. In the problem of

binary hypothesis testing the dominance of one ROC curve over another can be

used to quantify such a comparison.
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The second meaning which we associate with the word expert is absolute and

could be surprising. We consider a DM who has to perform a certain task to be an

expert if he performs the task to the best of his ability; that is we consider a DM be

an expert in this sense if he performs at his potential. Every organization has many

DMs who are inherently different and who cannot perform the same tasks with the

same degree of success. Simon [14,p.36] asserts that "what a person cannot do he

will not do, no matter how hard he wants to do it." Thus, an organization should be

overly satisfied by having him perform at his level best.

The normative decision theory should first address the issues of developing

decision makers to experts in the absolute sense (i.e. performing at their potential);

determining optimal training protocols would fall in this category. Second, it should

address the issues of organizing, given certain exogenous constraints, the decision

makers as the best possible (expert) team; thus developing the decision makers to

experts in the relative sense with respect to the tasks which need to be performed

within the team. It should capture the fact that the behavior of a DM can be different

in isolation vis-a-vis the participation in a cooperating team. The exogenous

constraints could and should not only be quantitative constraints (i.e. constraints

on the number and the quality of the decision makers, on the available

communication links and technology), but also constraints which take the form of

issues of resiliency in cases of failures of decision makers and of failures because

of enemy interactions.

Both goals are extremely difficult and complex, but it seems to us that the

second is even more difficult than the first because of the large number of different

ways in which an organization can be set up. Each domain of the normative

decision theory can be researched independently, but only development in both will

bring together a complete theory which will in turn result in an optimal

organization, that is a true expert team of experts.

In our research we deal with the second goal of the proposed theory: the

design of an organization. We assume that the decision makers are experts in the

absolute sense and try to develop them into an expert team. We study elementary

problems which need to be analyzed, solved and understood if a theory is ever to be

developed. We try to construct organizational 'building blocks' to be used in the

design of bigger organizations. Unfortunately, some of the results that we reported
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last year, [11], show that it is very difficult to derive general results on how to

organize even small teams of DMs with differing expertise. For example, we

showed in [11] that in the context of distributed hypothesis testing, that the

conjecture of using the "best" DM (the one with the dominant ROC curve) make the

final decision in a tandem team is false. There are special problems in which it is

better (by a very small amount as measured by the probability of error) to have the

"worse" DM carry out the team decision.

2.3 The Hypothesis Testing Framework

There are two major reasons for choosing the decentralized hypothesis testing

framework for this research. First, problems in this framework are very simple to

describe so that decision scientists without great mathematical sophistication can

understand them and draw conclusions from analyzing their solutions. In fact, we

should emphasize that problems in this framework look deceptively simple.

Moreover these problems have trivial centralized counterparts which implies that all

the difficulties and the deterioration in performance occurred because of the

decentralization. We began our research by trying to formally prove the most basic

and 'obvious' results which existed in the literature as conjectures and we were

surprised by the degree of difficulty for their solution, their inherent complexity and

the counterexamples we derived.

The second major reason for employing the decentralized hypothesis testing

framework for the development of a normative decision theory is that decentralized

hypothesis testing is in itself a very interesting subject which has several

applications, especially in the area of target detection, classification, and

discrimination in the surveillance function.

We know that problems of this type have been shown to be NP-complete

[5],[6]. This result identifies the difficulties we are faced with. But, like in the case

of the Travelling Salesman Problem (TSP), these problems have so many important

practical applications so that merely identifying the difficulties associated with them

is not enough. We have to develop new mathematical techniques to solve them or to

at least obtain satisfactory heuristics. As Simon [16] said: "...because of the

complexity of the environment, one has but two alternatives: to build optimal

5



models by making simplifying assumptions or to build heuristic models that

maintain greater environmental realism."

The purpose of this research is not to demonstrate the difficulties which arise

because of the combinatorial explosion; the NP-completeness is a testament to

these. In most well known NP-complete problems the difficulties arise only

because of the combinatorial explosion. For example it is trivial to optimally solve

the TSP for up to four or five nodes. But distributed hypothesis testing problems

are different because difficulties arise even in the simplest versions. Hence in order

to keep the combinatorial explosion under control we test only a small number of

hypotheses (two or three), employ a small number of decision makers (up to three)

and use limited communications, so that we concentrate on the difficulties which

arise because of the inherent complexity of optimizing the decision rules. Only by

understanding these difficulties and overcoming them, we will be able to make

educated generalizations in order to build good heuristics and eventually achieve a

truly optimal solution.

We do not deal with problems of developing decision makers to experts in the

absolute sense. We assume throughout that the decision makers perform at their

potential which is fixed and cannot be improved. Following Simon's advice we

make great simplifications. In this context the decision makers can be seen as

'perfect decision robots.' That is they do not experience conflicts, defensive

avoidance, regrets, anchoring, recency, hopes, aspirations, emotions, coercion,

confrontations or any of the conditions which make modeling human decision

making so difficult. The decision makers behave like computer processors who

follow a code and strive to make decision to minimize the expected team cost. The

negative of this expected team cost can be seen as the complete team utility function.

This cost/utility function describes completely the whole persona of the decision

makers since this is the only thing that influences their decision.

3. IMPACT OF COMMUNICATION ON TEAM PERFORMANCE

3.1 Introduction

The coordination of distributed DMs requires a certain amount of
communication. In military problems the amount of communication resources can
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be costly (due to limited bandwidth, jamming, enemy intercepts, covert operations

etc). Thus, limited and costly communications must be considered as an essential

ingredient of organizational design and performance.

Many problems have been studied in a framework similar to the one we are

going to employ ([2]-[12]) and many results were obtained and conjectures

(generalizations) drawn. We consider problems in which the decision makers are

given and the optimum architecture for the organization satisfying certain

requirements is requested. The environment consists of discrete hypotheses which

occur with prior probabilities known to all the decision makers. The decision

makers receive noisy observations of the environment. Then preliminary decisions

are made and communications take place until a final team decision is reached. The

team incurs a cost which depends on the final team decision and on the true

hypothesis. The costs are known a priori by all the team members.

3.2 Problem Formulation

A team consisting of two DMs has to distinguish between two hypotheses

based upon uncertain measurements (Figure 1). The objective of the team is to

minimize the probabilitity of error associated with the final team decision.

Each DM receives one noisy observation; these are assumed to be

conditionally independent. Each DM has his own capability described by his ROC

curve [11]. DM A, the consulting DM, makes a decision based on his own

measurement and transmits it to DM B, the primary DM. Then DM B makes the

final team decision based on his own measurement and on the communication from

DM A. In the general case DM A can transmit one of K messages. In the simplest

case K=2 and only one bit is required; this can be interpreted as the tentative binary

decision of DMA. The next simplest case is K=3 which corresponds to 1.5 bits,

and so on. The optimal decision rules of the DMs are given by likelihood ratio tests

with constant thresholds. All equations for the general case, as well as their

specialization for Gaussian statistics can be found in [12]; these are not included

here due to space limitations.

We wanted to investigate the effect that different communication protocols,

i.e. increasing the number of messages K, have on the performance of the team.



Empirical studies on human organizations seem to suggest that a large amount of

communications is required to properly coordinate distributed DMs (there is a lot of

anectodal evidence in the naval CWC doctrine which has been criticized for being

communications intensive). In our study, we used an example where the

observations of the DMs have Gaussian distributions with different means. In order

to boost our intuition and understanding we performed numerical sensitivity

analyses and studied the two limiting cases (in one DM B decides in isolation and in

the other, the centralized case, DM B receives both observations) as well as two
intermediate cases (the two-message and the three-message case).

3.3 Numerical Results

The baseline parameters for the Gaussian example are presented in Table 1.

We can also see that as expected the three-message case is better than the two-

message case, as measured by the probability of error. Notice however that the

incremental improvement can be quite modest, suggesting that in this specific

example one bit communication may be quite adequate. In Figure 2 we present the

ROC curves of the individual DMs and in Figure 3 we compare the team ROC

curves for the two and the three-message case for the organization. Notice that since

the team makes a binary decision, no matter what is the number, K, of messages

from A to B, the team performance can be summarized by an ROC curve. In this

manner, we can directly compare the global performance of different organizations

or of the same organization with different communication protocols.

In Figure 4 we see the probability of error of the team as a function of the

prior probability of the null hypothesis HO for different variances of the consulting

DM and of the primary DM. The curves are symmetric and the worst performance

occurs at P(HO)=0.5 since at this point prior uncertainty is maximized. These

results suggest that the primary DM should be the "better" one; but this is not a

general conclusion since counterexamples to this exist [11].

In Figure 5 we present the team probability of error as a function of the

variance of the consulting DM and of the primary DM. In this manner, we can

study the team contribution of DMs that become progressively less "capable", since

we can associate increased variances of measurement noise with degraded capability

of the corresponding DM (reflected for example by a degraded ROC curve.) In both

8



cases as the variances increase the team probability of error levels off because a

point is reached where the "better" DM makes the team decision alone. This is

another case where the coupling between the decision rules of the two DMs is

clearly demonstrated since the better DM realizes the shortcomings of the other and

takes control of the team decision.

In Figure 6 we compare the centralized case, the three-message case, the two-

message case and the isolation case. The improvement between the isolation case

and the two-message case is 17%. The improvement between the two-message case

and the three-message case was 4% and the improvement between the three-

message case and the centralized case was 3%. These results suggest that for this

numerical example, three messages are enough to achieve performance very close to

the centralized optimal. Thus, for this team to achieve excellent results, all

information does not have to be processed by a single DM. It would be nice if

similar results are true for more complex decision problems, and more research is

necessary along these directions.

In Figure 7 we compare the probability of error for the centralized, the three-

message and the two-message cases. These results seems to re-enforce our

previous conclusions since we see a bigger improvement from the two-message

case to the three-message case than from the three-message case to the centralized

case. Moreover, the improvement in performance from the two-message to the

three-message case is greater if the primary DM is the "better" DM. Thus there is no

point in giving more communication resources to a DM who is not sufficiently
"smart."

3.4 Conclusions

We summarize the conclusions of the discussion above. The optimal decision

rules of the two DMs are coupled and are different from the individual ones.

Increased communication results to improved team performance; there is not much

potential for improvement beyond the use of two bits. It is better for the team to

have the smarter DM as the primary and it is not beneficial for the team to increase

the communication capacity of a dumb DM. Finally, we repeat that the DMs operate
as a team and make decisions in a manner that benefits the team.
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4. SUMMARY OF SOME OTHER RESULTS

In the same framework, we have also examined several other problems which

we shall mention only briefly because of space constraints. We have extensively

worked on determining the optimal architecture of small team problems. Our results

relating to teams with few DMs indicate that because of the inherent complexity of
the problems no generalizations can be made; that is we need to know exactly the

team members and the detailed team goal in order to determine the optimal team

architecture. In general, one cannot make global statements that a particular way of

organizing DMs is always better than another. There appear to be special problems

in which a particular architecture is better; however, it can be inferior in other cases.

These results suggest that we must abandon strict team optimality considerations if

we want to obtain guidelines for designing organizations that are generally, but not

always, superior.

We also examined the problem of a team of infinite identical DMs in tandem

and determined necessary and sufficient conditions for the probability of error of

the team to go to zero. This result, which complements the results in [8],

demonstrates that it is possible for a team which consists of an infinite number of

DMs to err. It also indicates that in general the architecture of a large decision-

making organization should be closer to a parallel one than to a tandem one.

We also examined what we call 'recruiting' problems. In these we are given a

DM and specifications which the team has to meet and we are required to find the

optimal consulting DM who, when recruited to the team, will enable the team to

meet predefined specifications. By optimal we mean the DM who has the smallest

area under his ROC curve. We discovered that, except in some very restricted

versions, these problems are extremely difficult, if not impossible, to solve. This

seems to indicate that organizations should be satisfied to recruit DMs which will be

performing a 'good enough' job for them and should not try to recruit the 'optimal'

DM.

5. CONCLUDING REMARKS

During the past few years there has been considerable research interest in the
field of decentralized hypothesis testing and significant results have been obtained.
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We thus know that these type of problems are NP-complete [6]; this implies that as

the number of the DMs, or of the hypotheses or of the messages increases these

problems cannot be solved in any efficient manner because they become

computationally intractable due to combinatorial explotion. Moreover, other results

as in [11] show that even very small and restricted examples of these team

problems (2 DMs, binary hypothesis and single bit communications) are also very

hard to solve. Hence it has become evident that theseorganizational design problems

exhibit not only great computational complexity, but also great inherent complexity.

Our original objective was to analyze and understand decentralized hypothesis

testing problems, draw conclusions and then use the conclusions to achieve

improved decision making while striving for global optimality. We feel that,

although we have a good understanding of the difficulties associated with these

problems, our conclusions thus far do not lead to improved decision making in a

practical setting. Perhaps we should abandon optimality. Also, we need to develop

new tools that aggregate complex organizations and represent them by simpler

"equivalent" ones. Such organization aggregation methodology would be very

beneficial; however, it seems that it cannot be derived in a straight-forward way. To

be specific, in our paradigm of binary hypothesis testing problem, there does not

appear to exist a simple computational way of deriving, say, upper and lower

bounds (or other reasonable approximations) to the team ROC curve so that we can

easily compare alternate organizations; see also [11]. Since real life organizations

face much more complicated problems (continuous hypotheses, huge amount of

data, several specializations, dynamic deadlines, limited resources etc etc.) more

approximate, but computationally feasible, approaches need to be developed.
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Parameters used : O = 0 gL1 = 10

c 2 = 100 o2 = 100

P(HO) No. of messages PR(E)

0.5 2 0.25758
3 0.24778

0.8 2 0.16629
3 0.16194

TABLE 1:

14



Phenomenon
Ho or H1

Ya Yp
M1

UOL U

DMA DMB

M2

(a) Two-message (K=2) Tandem Distributed Detection Network, (u. = {M1, M2 ))

Phenomenon
Ho or H1
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M1

H M2 U u

DMA DMB

MK

(b) K-message Tandem Distributed Detection Network, (ua = {M 1, M2, ..., MK))

Figure 1: Problem Formulation
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(b) ROC curve for DMB (c2 = 1000)

Figure 2: Individual DM's ROC Curves
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Figure 4: Pr(E) vs. P(Ho ) (K = 3)
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Figure 5: Pr(E) vs. a 2, 2 (K = 3)
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Figure 7: Effect of Increasing Communication
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