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Abstract

We consider a path following algorithm for solving linear complementarity problems with

positive semi-definite matrices. This algorithm can start from any interior solution and attain a linear

rate of convergence. Moreover, if the starting solution is appropriately chosen, this algorithm

achieves a complexity of O(j--mL) iterations, where m is the number of variables and L is the size of

the problem encoding in binary. We present a simple complexity analysis for this algorithm, which

is based on a new Lyapunov function for measuring the nearness to optimality. This Lyapunov

function has itself interesting properties that can be used in a line search to accelerate convergence.

We also develop an inexact line search procedure in which the line search stepsize is obtainable in a

closed form. Finally, we extended this algorithm to handle directly variables which are

unconstrained in sign and whose corresponding matrix is positive definite. The rate of convergence

of this extended algorithm is shown to be independent of the number of such variables.
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1. Introduction

Let Q be an mxm matrix, c be an m-vector, A be an nxm matrix, and b be an n-vector. Consider

the following problem, known as the linear complementaritv problem (abbreviated by LCP), of

finding an (x,u)e 9jmx39n satisfying

x 2 0, Qx + c - ATu > 0, (x,Qx + c - A T u) = 0, (1.la)

Ax = b. (1. b)

[Here 91m (%9 n ) denotes the m-dimensional (n-dimensional) Euclidean space and (.,.) is the usual

Euclidean inner product.] This problem has important applications in linear and convex quadratic

programs, bimatrix games, and some other areas of engineering (see [1], [3], [17], [20], [21]). In

our notation, all vectors are column vectors and superscript T denotes the transpose. "Log" will

denote the natural log and 11-111, 11-11 will denote, respectively the L 1-norm and the L2 -norm. For any

xe 9m, we will denote by xj the j-th component of x and by X the mxm diagonal matrix whose j-th

diagonal entry is xj.

We make the following standing assumptions about (LCP):

Assumption A:

(a) Q is positive semi-definite.

(b) There exists an (x,u)ER 9mx9I n satisfying (1.la)-(1.lb) with all inequalities strictly satisfied.

(c) A has full row rank.

Assumption A (b) is quite standard for interior point methods. Assumption A (c) is made to simplify

the analysis and can be removed without affecting either the algorithm or the convergence results.

Let
= { xe (0,oo)m I Ax = b }

(E is nonempty by Assumption A (b)) and, for each we (0 ,oo)m, let gw:(0,oo)m-9t denote the

function

gw(x) = Qx + c - X-w, V x > 0. (1.2)
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Consider the problem of finding an (x,u)E .x9tn satisfying the following system of nonlinear

equations:

gw(x) - ATu = 0. (Pw)

It is easily seen that a solution (x,u) to this problem satisfies x > 0, Qx + c - ATu > 0, Ax = b and

X(Qx + c - ATu) = w; hence (x,u) is an approximate solution of (LCP), with an error of O(llwll).

Our approach to solving (LCP) will be based on solving (approximately) equations of the form (Pw)

over Exgtn, with w tending to the zero vector.

We remark that in the case where Q is symmetric, the problem (LCP) reduces to the convex

quadratic program

Minimize (x,Qx)/2 + (c,x) (QP)

subject to Ax = b, x 2 0.

In this case, an (x,u)e =x91n satisfies (Pw) if and only if it is an optimal primal dual solution pair of

the convex program min{ (x,Qx)/2 + (c,x) - 2j wj log(xj) I Ax = b }.

The first polynomial-time algorithm for solving (LCP) was given by Kojima, Mizuno and

Yoshise [12], based on path following. Subsequently, Kojima, Megiddo, Yoshise [13] and Kojima,

Mizuno, Ye [14] developed polynomial-time algorithms for solving (LCP), using a different notion

of potential reduction. [Some of these papers treated only the special case of (LCP) where A = 0, b

= 0. Although (LCP) can be transformed to this special case by adding artificial variables, the

nonempty interior assumption (i.e. Assumption A (b)) would no longer hold.] For the special case

of convex quadratic programs (QP), the first polynomial-time algorithm was given by Kozlov,

Tarasov and Khachiyan [15] based on the ellipsoid method [23], [27]. This was followed by a

number of algorithms of the interior point variety (see [9], [12], [18], [19], [26]). In this paper we

consider a polynomial-time algorithm for solving (LCP) that is motivated by Karmarkar's method

[11] and its interpretation as a projected Newton method based on the logarithmic barrier function

[8]. Our approach, which is similar to that taken in [9], [12], [18], [19], [26] is to solve
approximately a sequence of nonlinear equations ((PWt) } over Ex9in, where {wt} is a geometrically

decreasing sequence of positive vectors. Each (Pwt) is solved (approximately) by taking a Newton

step for (Pwt-1) starting at the previous solution. This algorithm scales using only primal solutions

and, in this respect, it is closely related to the algorithms of [9], [26]. However, apart from the fact

that it solves the more general linear complementarity problem, it differs from the latter in that it does
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not restrict w t to be scalar multiples of e. This difference is significant since, as we shall see, it

permits this algorithm to start with any interior solution and attain a linear rate of convergence.

Moreover, the complexity proof, which is based on a certain Lyapunov function that measures the

violation of complementary slackness in (1. la), is simpler and reveals more of the algorithmic

structure than existing proofs. The Lyapunov function has itself interesting properties that can be

used in a line search procedure to accelerate convergence. For the special case where Q is a diagonal

matrix, this line search is particularly simple. For general Q, we propose an inexact version of this

line search that gives the stepsize in a closed form. Finally, we extend this algorithm to handle

directly variables which are unconstrained in sign and whose corresponding matrix is positive

definite. We show that the rate of convergence of this extended algorithm is independent of the

number of such variables.

This paper proceeds as follows: in §2 we show that, for some fixed ax (0,1), an approximate

solution of (Paw) in Ex9t n can be obtained by taking a Newton step for (Pw) starting at an

approximate solution of (Pw) in Ex9tI. Based on this observation, in §3 and §4 we present our

algorithm and analyze its complexity. In §5 we discuss the initialization of our algorithm. In §6 we

consider extensions.

2. Technical Preliminaries

Consider an we (0 ,oo)m and an (ii,u)e .xn . Consider applying a Newton step for (Pw) at (x,iu)

subject to the constraint (1.lb), and let (x,u)e 9Imx9Rn be the vector generated by this step. Then

(x,u) satisfies

gw() + Vgw(X)(x-I) - ATu = 0,

Ax =b,

or equivalently (cf. (1.2)),

Qx + c - X-lw + (Q+X- 2 W)z-ATu = 0, (2.1a)

Az = 0, (2. 1b)

where
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z = x-x. (2.2)

Let d = X-1 z and r = w - X(Qx + c - AT i-). Then Eqs. (2.1a)-(2.1b) can be rewritten as

(W + XQX)d - (Ax)T(u-u ) = r,

AXd = 0.

Solving for d gives

d = O-1r - O-1XAT[Ax-O' xAT]-AXO-l-r,

where O = W + XQX. [Note that 0 is positive definite.] Straightforward calculation finds that

(d,Od) = (,-1'-) - (AXO-lr, [AXO-IlAT]-lAxO' I>r).

Since [AXO'lXAT] -l is positive definite, this implies (d,O(d) < (,,0O-1 - ) or, equivalently,

lriF/ 2 dll < rI-n1/2-iI, (2.3)

where F = W + XQX and Q denotes the symmetric part of Q, i.e. Q = (Q + QT)/2. Since (cf. (2.2))

x = x + Xd, we also have X = X + DX and therefore

w- X(Qx + c - A T u) = w - X(Qx + c - ATu) - DX(Qx + c - A T u)

= Dw - DX(Qx + c - AT u)

= D[w, - X(Qx + c - ATu)]

=D2

where the second and the third equality follows from (2.la) and (2.2). This in turn implies

IIw - X(Qx + c - ATu)ll = IID2wll

< IID2w, 11

= (d,Wd)

< (d,rd)

< I I-1/2fl , (2.4)
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where the first inequality follows from properties of the L1-norm and the L2-norm, the second

inequality follows from the fact (d,rd) = (d,Wd) + (Xd,QXd) (also using the positive semi-definite

property of Q), and the third inequality follows from (2.3).

Consider any 13e (0,1) and any scalar a satisfying

(3 2+,llwll)/(3+(llwll-/ ) < a < 1, (2.5)

where 0 = minj{wj}. Let w = aw, 0 = aO, r = w - X(Qx + c - ATu), and r = W + XQX. Then

jjF-l/2rl]t < Ilrll/0

- Ilaw - X(Qx + c - ATu)ll/(aO)

< Iiw - X(Qx + c - ATu)ll/(aO) + (1-a)llwll/(aO)

where the first inequality follows from the fact that the eigenvalues of r are bounded from below by

0, the second inequality follows from the triangle inequality, and the third inequality follows from

(2.4). Hence, by (2.5),

lr-l/2r-ll/'/< j3 =:> II'l1/2rIll/F-< . (2.6)

From (2.3) we would also have Ildll < llFl/2dllI/4\ 0 < 1. Hence e + d > 0, where e is the vector

in %9 m all of whose components are l's, and (cf. (2.2)) x > O0. Also, by (2.lb) and (2.2), Ax = A(x

+ z) = b. Furthermore, from (2.1a) and (2.2) we have that Qx + c - ATu = WX- 1 (e - d). Since

(cf. Ildll < 1) e - d > 0, this implies that

0 < Qx + c - ATu = WX-1(I + D)(e - d) < WVX-le, (2.7)

where the equality follows from the fact X- 1 = x1(I + D) and the second inequality follows from

the observation that (I + D)(e - d) = e - Dd. [Note that in the case where Q is symmetric, (2.7)
implies that u is dual feasible for (QP). This is because if the dual cost of u, i.e. (b,u) + min;>0{

(C,Q()/2 + (c-ATu,() }, is not finite, then there exists ye [0 ,-)m such that Qy = 0 and (c-ATu,y) <

0. Multiplying by y gives 0 < (Qx+c-ATu,y) = (c-ATu,y) < 0, a contradiction.]

For any vector we (0 ,o)m, let pw:=xS9n-O[0,oo) denote the Lyapunov function
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pw(x,u) = II(W+XQX)-/2(w - X(Qx+c-A Tu))ll/4minj {wj, V xe E, V ue 90n ,

and let g(w) = Ilwll/minj{wj}. [The function pw(x,u) measures the amount by which the
complementary slackness condition (x,Qx + c - ATu) = 0 in (1.la) is violated. It also has some nice
properties which we will discuss in §6.] We have then just proved the following important lemma
(cf. (2.5)-(2.7)):

Lemma 1 For any 3E (0,1), any we (0,oo)m, and any (X,i-)e x9 n such that p~(x,iu) < j3, it
holds that

(x,u)E.xRn, Paw(x,U) < ,
0 < Qx+c-ATu < X'w,

where a = (P2+g(w,))/(+l(w,)) and (x,u) is defined as in (2.1a)-(2.1b), (2.2).

3. The Homotopy Algorithm

Choose OEr (0,1), oe (0,oo)m, and let a = (f2+g(co))/(f3+g(co)). Lemma 1 and (2.1a)-(2.1b),
(2.2) motivate the following algorithm for solving (LCP), parameterized by a scalar 86 (0,1):

Homotopy Algorithm
Step 0: Choose any (xl,ul)e Ex9in such that po(xl,ul) < 3. Let wl = co.
Step t: Compute (zt+l,ut+l) to be a solution of

r - r 7 r
I Q-(Xt)-2W t -AT z (Xt)-lwt - Qxt - c I

A 0 J I, 0 
Set x t+l = xt + z t+l , wt+l = awt.

If Ilwt+lll < 81ll011, terminate.
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[Note that, for convex quadratic programs, ut is dual feasible for all t (cf. Lemma 1).] We gave the

above algorithm the name "homotopy" [7] (or "path following") because it solves (approximately) a

sequence of problems that approaches (LCP). This algorithm is closely related to one of Goldfarb

and Liu [9]. In particular, if Q is symmetric and Co is a scalar multiple of e, then this algorithm

reduces to the Goldfarb-Liu algorithm with y = 1 and a reduces to the quantity o given in Lemma

3.3 of [9]. However, in contrast to the complexity proof in [9], which is based on showing

II(Xt)-lzt+lll < ,3 for all t, our complexity proof, as we shall see in §4, is based on showing

pwt(xt,ut) _< f for all t. This latter approach simplifies the analysis and, as we shall see in §6, allows

line search to be introduced into the algorithm to accelerate convergence.

4. Convergence Analysis

By Lemma 1 and the fact that g(.) is invariant under scalar multiplication, the homotopy

algorithm generates, in at most log(6)/log(a) steps, an (x,u)e .x9 n" satisfying

O < Qx+C-ATu < 6X-1 0.

Since log is a concave function and its slope at 1 is 1, we have that log(1-0) < -0, for any

3e (0,1). Therefore

log(a) = log(1-(l- P)/(P+-g((o)))

< -[3(1-3)/(p+ g(0)).

Hence we have just proved following:

Lemma 2 For any 13e (0,1), any me (0 ,oo)m and any §E (0,1), the homotopy algorithm

generates, in at most -log(§)([+g(co))/3(1-lP) steps, an (x,u)e .x9tn satisfying 0 < X(Qx + c -

ATuu)< ao.

Hence if we fix [3 and choose co such that Ilcll < 2• L and g(co) = O(4-m), where L denotes the size of

the problem encoding in binary (defined as in [9], [12]-[14], [18], [19], [26]) and X is a positive

scalar, then the homotopy algorithm with 6 = 2- 2hL would terminate in O(/-mL) steps with an

approximate solution of (LCP) whose error is less than 2- XL . For X sufficiently large (independent
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of L), a solution for (LCP) can be recovered by using, say, the techniques described in [12]. Since

the amount of computation per step is at most O(m3) arithmetic operations (not counting Step 0), the

homotopy algorithm has a complexity of O(m3 SL) arithmetic operations. [We assume for the

moment that co is chosen such that Step 0 can be done very "fast". See §5 for justification.].

5. Algorithm Initialization

In this section we show that Step 0 of the homotopy algorithm (i.e. to find an m (0,oo)m and an

(x,u)e Ex91n satisfying po,(x,u) < [3) can be done very "fast". [In fact, we can typically choose c

such that 4(0o)) = 4-m (i.e. co is a scalar multiple of e) and Iloll < 20(L).]

Suppose that the matrix A in (LCP) has all l's in its last row, i.e.,

r -
I A'

A= I
L eT J

where A' is some (n-l)xm matrix, and Ae = b. [We can transform (LCP) into this form by using

techniques similar to that used in [11, §5]. Also see [9, §4] and [12, §6].] Let Ti = IIQe+cll/P and u =

(O...,O,-_.)T . Then (e,u)e Ex9In and

pre(e,u) = II(iI + Q)-l/2(e - Qe - c + ATu)Ill/-

= II(TI + Q)-l/2 (-Qe - c)ll/

< IIQe + cll/r

= P,

where the inequality follows from the fact that the eigenvalues of lI + Q are bounded from below by

T1. Alternatively, we can solve (PO) over Ex9i n, whose solution (x,u) can be seen to satisfy p,,(x,u)

= 0. [It can be shown, by modifying the argument used in [12, Appendix A], that Assumptions A

(a)-(b) implies the existence of such a solution.] If . is bounded, we can solve the problem

Maximize Yj wj log(xj) (5.1)

subject to Ax = b,
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for some we (0 ,o)m. The optimal primal dual solution pair (x,p) of (5.1) can be seen to satisfy w =

-XATp and xc E. Hence, for T1 = IIXQx + XcIl/V, we have pnw(x,Tlp) < 3. Polynomial-time

algorithms for solving (5.1) are described in [4], [5], [24] and [25]. [Note that neither (P(,) nor

(5.1) needs to be solved exactly.]

However, each of the initialization procedures described above either is difficult to implement or

requires that E be bounded. We show below that the homotopy algorithm can start with any interior

solution by choosing o appropriately. Suppose that we have an (x,u)e Emx9 In such that Qx+c-ATu

> 0. Then it can be seen that pv(x,u) = 0, where v = X(Qx+c-A T u). By Lemma 1, the homotopy

algorithm with (xl,ul) = (x,u) and o = v converges at a linear rate with a rate of convergence

([2+gi(v))/([t+g(v)). [Hence, if Ilvil = 2 0(L) and i(v) is a polynomial in L, then the homotopy

algorithm can be terminated in a number of steps that is a polynomial in L. The quantity p(v) in a

sense measures how far the vector (x,u) is from satisfying (Pne), where T1 = minj {vj }.]

6. Conclusion and Extensions

In this paper we have proposed an algorithm for solving linear complementarity problems with

positive semi-definite matrices and have provided a short proof of its complexity. This algorithm

solves a sequence of approximations to the original problem where the accuracy of the approximation

is improving at a geometric rate. This algorithm has a complexity (in terms of the number of steps)

that is comparable to existing interior point methods (cf. [9]-[14], [18], [19], [26]) and, for convex

quadratic programs, maintains both primal and dual feasibility.

There are many directions in which our results can be extended. For example, we can accelerate

the rate of convergence of the homotopy algorithm by setting wt = Etwt-1, where Et is the smallest

positive e for which pEwt1 (x t,u t) < 3. [More generally we can set wt = argmin{ Ilwll I pw(xt,ut) _< ,

i(w) < g(co) }.] This minimization is difficult in general, but if Q is diagonal, it can be verified that

the quantity epew(x,u) 2 = Xj (ewj-vj)2/(ewj+0j) is convex in e (the second derivative is non-

negative), where vj and wj denote the j-th component of, respectively, v = Xt(Qxt + c - ATut) and w

= wt-l, and Oj denotes the j-th diagonal entry of XtQXt. Hence in this case the above minimization

reduces to finding a solution e of the equation
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Xj (£wj-vj)2/(Ewj+Oj) = e£ 2minj (wj . (6.1)

Because the lefthand side is convex in e, such a solution can be found using classical line search

techniques (see [2], [16]). For linear programs (i.e. Q = 0), (6.1) further reduces to the scalar

quadratic equation

X(ewj-vj)2/wj = e 2 32minj{wj}, (6.2)

whose solution is unique and is obtainable in a closed form (see Ye [26, §5] for a similar line search

procedure). Alternatively, we can solve the simpler scalar quadratic equation

IIew - vll = eP minj { wj) }, (6.3)

whose solution is more conservative than that given by (6.2), but has the advantage that it is usable
even for general Q. [This follows from the fact that pw(x,u) < IIew - vll/(eminj {wj)) for all e > 0

and (see proof of Eq. (2.6)) Ilaw - vii < at minj(wj}).] Hence the solution of (6.3) is at least as

good as a and, for 5 = 1/F2 and Ix(w) = I-m, can be shown by a more refined analysis to be less

than 1 - 0.5/I-m. [The latter, to the best of our knowledge, gives the best theoretical rate of

convergence amongst existing interior point algorithms.]

We can also choose [ to minimize a (this gives a = 2 g (0)2+I(0) - 2p(co)). Also, Freund [6]

noted that, at the t-th step, one can apply the Newton step for (Pawt) instead of for (Pwt). The

resulting analysis is slightly different, but achieves the same complexity. Another direction of

extension is to handle directly variables that are unconstrained in sign and whose corresponding

matrix is positive definite. Consider the following generalization of (LCP) of finding an

(x,y,u)e %mxim'xS9n satisfying

x 2 0, Qx+c-ATu > 0, (x,Qx + c - A Tu) = 0, (6.4a)

Ax+By =b, Hy+h-BT u = 0, (6.4b)

where H is a m'xm' positive definite matrix, B is an nxm' matrix and h is a m'-vector. Then it can

be seen that Lemma 1 still holds with (x,y,u) given as a solution of

gw(-) + Vgw(-)(x-x) - ATu = 0, Hy + h - BTu = 0,

Ax+By = b.
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This immediately suggests an extension of the homotopy algorithm for solving (6.4a)-(6.4b) that

maintains pwt(xt,ut) < P at all steps t, where wt = (a)to and a, [, to, Pw are defined as in the

homotopy algorithm. This algorithm has a rate of convergence of (5 2+,g(o))/(3+lt(o)), which is

independent of m'. [Of course, the line search procedures described earlier are also applicable here.]
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