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1 Introduction

The investigation of multi-scale representations of signals and the development of mul-

tiscale algorithms has been and remains a topic of much interest in many contexts.

In some cases, such as in the use of fractal models for signals and images [13,27] the

motivation has directly been the fact that the phenomenon of interest exhibits pat-

terns of importance at multiple scales. A second motivation has been the possiblity

of developing highly parallel and iterative algorithms based on such representations.

Multigrid methods for solving partial differential equations [14,23,28,30] or for per-

forming Monte Carlo experiments [18] are a good example. A third motivation stems

from so-called "sensor fusion" problems in which one is interested in combining to-

gether measurements with very different spatial resolutions. Geophysical problems,

for example, often have this character. Finally, renormalization group ideas, from

statistical physics, now find application in methods for improving convergence in

large-scale simulated annealing algorithms for Markov random field estimation [20].

One of the more recent areas of investigation in multi-scale analysis has been

the development of a theory of multi-scale representations of signals [24,26] and the

closely related topic of wavelet transforms [4,5,6,7,10,19,22]. These methods have

drawn considerable attention in several disciplines including signal processing because

they appear to be a natural way to perform a time-scale decomposition of signals and

because examples that have been given of such transforms seem to indicate that it

should be possible to develop efficient optimal processing algorithms based on these

representations. The development of such optimal algorithms e.g. for the recon-

struction of noise-degraded signals or for the detection and localization of transient

signals of different duration-requires, of course, the development of a corresponding

theory of stochastic processes and their estimation. The research presented in this

and several other papers and reports [17,18] has the development of this theory as its

objective.

In the next section we introduce multi-scale representations of signals and wavelet

transforms and from these we motivate the investigation of stochastic processes on
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dyadic trees. In that section we also introduce the class of isotropic processes on

dyadic trees and set the stage for introducing dynamic models on trees by describing

their structure and introducing a rudimentary transform theory. In Section 2 we

also introduce the class of autoregressive (AR) models on trees. As we will see, the

geometry and structure of a dyadic tree is such that the dimension of an AR model

increases with the order of the model. Thus an nth order AR model is characterize

by more than n coefficients whose interdependence is specified by a complex relation

and the passage from order n to order n + 1 is far from simple. In contrast, in

Section 3 we obtain a far simpler picture if we consider the generalization of lattice

structures, and in particular we find that only one reflection coefficient is added

as the order is increased by one. The latter fact leads to the development of a

set of scalar recursions that provide us with the reflection coefficients and can be

viewed as generalizations of the Schur and Levinson recursions for AR models of time

series. These recursions are also developed in Section 3 as are the constraints that

the reflection coefficients must satisfy which are somewhat different than for the case

of time series. In Section 4 we then present the full vector Levinson recursions that

provide us with both whitening and modeling filters for AR processes, and in Section 5

we use the analysis of the preceding sections to provide a complete characterization

of the structure of autoregressive processes and a necessary and sufficient condition

for an isotropic process to be purely nondeterministic. The paper concludes with a

brief discussion in Section 6.
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2 Multiscale Representations and Stochastic
Processes on Homogenous Trees

2.1 Multiscale Representations and Wavelet Transforms

The multi-scale representation [25,26] of a continuous signal f(x) consists of a se-

quence of approximations of that signal at finer and finer scales where the approxi-

mation of f(x) at the mth scale is given by

+00

f(x) = E f(m,n)e(2mx - n) (2.1)
n=-oo00

As m -- oo the approximation consists of a sum of many highly compressed, weighted,

and shifted versions of the function +(x) whose choice is far from arbitrary. In par-

ticular in order for the (m + 1)st approximation to be a refinement of the mth, we

require that +(x) be exactly representable at the next scale:

+(x) = >j h(n)q(2x - n) (2.2)

Furthermore in order for (2.1) to be an orthogonal series, +(t) and its integer translates

must form an orthogonal set. As shown in [7], h(n) must satisfy several conditions for

this and several other properties of the representation to hold. In particular h(n) must

be the impulse response of a quadrature mirror filter [7,31]. The simplest example of

such a q, h pair is the Haar approximation with

1 0 <x < 1
OW~(x)~~~~~~~ = 0 (2.3)

0 otherwise

and

h(n) ={ n=0 (2.4)
0 otherwise

Multiscale representions are closely related to wavelet transforms. Such a trans-

form is based on a single function 4b(x) that has the property that the full set of its
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scaled translates {2m/24b(2mx - n)} form a complete orthonormal basis for L 2. In [7]

it is shown that q and h are related via an equation of the form

+(x) = Eg(n)q(2x - n) (2.5)
n

where g(n) and h(n) form a conjugate mirror filter pair [3], and that

fm+l (X) = f m (X) + E d(m, n)b(2mx - n) (2.6)
n

fm(z) is simply the partial orthonormal expansion of f(x), up to scale m, with respect
to the basis defined by 4b. For example if q and h are as in eq. (2.3), eq. (2.4), then

1 O<x <1/2

,b(x)- -1 1/2<x <1 (2.7)

0 otherwise

1 n=O

g(n) = -1 n = I (2.8)

0 otherwise

and {2m/20 (2mx - n)} is the Haar basis.

From the preceding remarks we see that we have a dynamical relationship between

the coefficients f(m, n) at one scale and those at the next. Indeed this relationship

defines a lattice on the points (m,n), where (m + 1, k) is connected to (m, n) if

f(m, n) influences f(m + 1, k). In particular the Haar representation naturally defines

a dyadic tree structure on the points (m, n) in which each point has two descendents

corresponding to the two subdivisions of the support interval of q(2mx - n), namely

those of 0(2(m+1)x - 2n) and q$(2(m+l)x - 2n - 1). This observation provides the

motivation for the development of models for stochastic processes on dyadic trees as

the basis for a statistical theory of multiresolution stochastic processes.

2.2 Homogenous Trees

Homogenous trees, and their structure, have been the subject of some work [1,2,3,12,

16] in the past on which we build and which we now briefly review. A homogenous
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tree T of order q is an infinite acyclic, undirected, connected graph such that every

node of T has exactly (q + 1) branches to other nodes. Note that q = 1 corresponds

to the usual integers with the obvious branches from one integer to its two neighbors.

The case of q = 2, illustrated in Figure 2.1, corresponds, as we will see, to the dyadic

tree on which we focus throughout the paper. In 2-D signal processing it would be

natural to consider the case of q = 4 leading to a pyramidal structure for our indexing

of processes.

The tree T has a natural notion of distance: d(s,t) is the number of branches

along the shortest path between the nodes of s, t E T (by abuse of notation we use

T to denote both the tree and its collection of nodes). One can then define the

notion of an isometry on T which is simply a one-to-one, onto a map of T onto itself

that preserves distances. For the case of q = 1, the group of all possible isometries

corresponds to translations of the integers (t F- t+k) the reflection operation (t '-+ -t)

and concatenations of these. For q > 2 the group of isometries of T is significantly

larger and more complex. One extremely important result is the following [12]:

Lemma 2.1 (Extension of Isometries) Let T be a homogenous tree of order q,

let A and A' be two subsets of nodes, and let f be a local isometry from A to A', i.e.

f is bijection from A onto A' such that

d(f(s), f(t)) = d(s, t) for all s,t E A (2.9)

Then there exists an isometry f of T which equals f when restricted to A. Further-

more, if fl and f2 are two such extensions of f, their restrictions to segments joining

any two points of A are identical.

Another important concept is the notion of a boundary point [1,16] of a tree.

Consider the set of infinite sequences of T where any such sequence consists of a

sequence of distinct nodes tl, t 2 ,... where d(ti, ti+l ) = 1. A boundary point is an

equivalence class of such sequences where two sequences are equivalent if they differ

by a finite number of nodes. For q = 1, there are only two such boundary points

corresponding to sequences increasing towards +oo or decreasing toward -oo. For
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q = 2 the set of boundary points is uncountable. In this case let us choose one

boundary point which we will denote by -oo.

Once we have distinguished this boundary point we can identify a partial order on

T. In particular note that from any node t there is a unique path in the equivalence

class defined by -oo (i.e. a unique path from t "toward" -oo). Then if we take any

two nodes s and t, their paths to -oo must differ by only a finite number of points

and thus must meet at some node which we denote by s A t (see Figure 2.1. We then

can define a notion of the relative distance of two nodes to -oo

S(s, t) = d(s, s A t) -d(t, s A t) (2.10)

so that

s -< t ("s is at least as close to -oo as t") if 6(s,t) < 0 (2.11)

s -4 t ("s is closer to -oo than t") if b(s, t) < 0 (2.12)

This also yields an equivalence relation on nodes of T:

s r t ~5(s, t)=0 (2.13)

For example, the points s, t, and u in Figure 2.1 are all equivalent. The equivalence

classes of such nodes are referred to as horocycles.

These equivalence classes can best be visualized as in Figure 2.2 by redrawing the

tree, in essence by picking the tree up at -oo and letting the tree "hang" from this

boundary point. In this case the horocycles appear as points on the same horizontal

level and s -< t means that s lies on a horizontal level above or at the level of t.

Note that in this way we make explicit the dyadic structure of the tree. With regard

to multiscale signal representations, a shift on the tree toward -oo corresponds to

a shift from a finer to a coarser scale and points on the same horocycle correspond

to the points at different translational shifts in the signal representation at a single

scale. Note also that we now have a simple interpretation for the nondenumerability

of the set of boundary points: they correspond to dyadic representations of all real

numbers.
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2.3 Shifts and Transforms on T

The structure of Figure 2.2 provides the basis for our development of dynamical

models on trees since it identifies a "time-like" direction corresponding to shifts toward

or away from -oo. In order to define such dynamics we will need the counterpart of

the shift operators z and z - 1 in order to define shifts or moves in the tree. Because of

the structure of the tree the description of these operators is a bit more complex and

in fact we introduce notation for five operators representing the following elementary

moves on the tree, which are also illustrated in Figure 2.3

* 0 the identity operator (no move)

-* y- 1 the backward shift (move one step toward -oo)

* a the left forward shift (move one step away from -oo toward the left)

* / the right forward shift (move one step away from -oo toward the right)

* S the intercharge operator (move to the nearest point in the same horocycle)

Note that 0 and 5 are isometries; a and , are one-to-one but not onto; 7-1 is onto

but not one-to-one; and these operators satisfy the following relations (where the

convention is that the right-most operator is applied first):

7-fa = y-1/ = 0 (2.14)

-15 = 7,-1 (2.15)

62 = 0 (2.16)

b/ = oa (2.17)

Arbitrary moves on the tree can then be encoded via finite strings or words using

these symbols as the alphabet and the formulas (2.14)-(2.17). For example, referring

to Figure 2.3

S1 = Y-4 t , S2 = 57- 3t , 53 = Z7- - 3 t
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s4 = a/Y3- 3 t , s5 - = 12Ca-3 t (2.18)

It is also possible to code all points on the tree via their shifts from a specified,

arbitrary point to taken as origin. Specifically define the language

= (r-1)* U {a,,}* S(l-1)* U {af, }* (2.19)

where K* denotes arbitrary sequences of symbols in K including the empty sequence

which we identify with the operator 0. Then any point t E T can be written as wto,

where w E £. Note that the moves in £ are of three types: a pure shift back toward

-oo ((7-1)*); a pure descent away from -oo ({ca,,}*); and a shift up followed by a

descent down another branch of the tree ({a, P}*S(y-l)*). Our use of S in the last

category of moves ensures that the subsequent downward shift is on a different branch

than the preceding ascent. This emphasizes an issue that arises in defining dynamics

on trees. Specifically we will avoid writing strings of the form w<-l or p7 - 1. For

example acy-t either equals t or St depending upon whether t is the left or right

immediate descendant of another node. By using S in our language we avoid this

issue. One price we pay is that £ is not a semigroup since uw need not be in C for

v,w E £C. However, for future reference we note that, using (2.14)-(2.17) we see that

Sw and y-1w are both in /2 for any w E £2.

It is straightforward to define a length Iwl for each word in £, corresponding to

the number of shifts required in the move specified by w. Note that

'-11 = la I = 1- 1 = 1

101=0 , 1l1=2 (2.20)

Thus l-1nl = n, IW1I = the number of a's and P's in wag E {cal}*, and IwSe-nl =

IWYal + 2 + n.3 This notion of length will be useful in defining the order of dynamic

models on T. We will also be interested exclusively in causal models, i.e. in models in

which the output at some scale (horocycle) does not depend on finer scales. For this

reason we are most interested in moves the either involve pure ascents on the tree, i.e.
3Note another consequence of the ambiguity in a-y-1: its "length" should either be 0 or 2.
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all elements of {y- 1} *, or elements wy8-n of {ac, f}*6{y-<} * in which the descent

is no longer than the ascent, i.e. Iwapl < n. We use the notation w -< 0 to indicate

that w is such a causal move. Note that we include moves in this causal set that are

not strictly causal in that they shift a node to another on the same horocycle. We

use the notation w - 0 for such a move. The reasons for this will become clear when

we examine autoregressive models.

Also, on occasion we will find it useful to use a simplified notation for particular

moves. Specifically, we define 6(n) recursively, starting with '(1) = 6 and

If t = ay-lt, then b(n)t = aS(n-1)y-lt

If t = ,3B-1t, then I(n)t = -/(n-1)7-1t (2.21)

What 8(n) does is to map t to another point on the same horocycle in the following

manner: we move up the tree n steps and then descend n steps; the first step in the

descent is the opposite of the one taken on the ascent, while the remaining steps are

the same. That is if t = m,~,y-n+lt then 6(n)t = m,p5,-n+lt. For example, referring

to Figure 2.3, s6 = 5(4)t.

With the notation we have defined we can now define transforms as a way in which

to encode convolutions much as z-transforms do for temporal systems. In particular

we consider systems that are specified via noncommutative formal power series [11]

of the form:

S = E s, *w (2.22)
wEC

If the input to this system is ut, t E T, then the output is given by the generalized

convolution:

(Su)t = E swuwt (2.23)
wEl

For future reference we use the notation S(O) to denote the coefficient of the empty

word in S. Also it will be necessary for us to consider particular shifted versions of

S:

7S = E S--lW W (2.24)
wEL
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6(k)S = Z Sc(k)W .* (2.25)
wEC

where we use (2.14)-(2.17) and (2.21) to write y-lw and 5(k)w as elements of L.

2.4 Isotropic Processes on Homogenous Trees

Consider a zero-mean stochastic process Yt, t E T indexed by nodes on the tree. We

say that such a process is isotropic if the covariance between Y at any two points

depends only on the distance between the points, i.e. if there exists a sequence r,, n =

0, 1,2,... so that

E[YtY] = rd(t,,) (2.26)

An alternate way to think of an isotropic process is that its statistics are invariant

under tree isometries. That is, if f : T - T is an isometry and if Yt is an isotropic

process, then Zt = Yf(t) has the same statistics as Yt. For time series this simply

states that Y-t and Yt+k have the same statistics as Yt. For dyadic trees the richness

of the group of isometries makes isotropy a much stranger property.

Isotropic processes have been the subject of some study [1,2,12] in the past, and in

particular a spectral theorem has been developed that is the counterpart of Bochner's

theorem for stationary time series. In particular Bochner's theorem states that a

sequence rs, n = 0, 1,... is the covariance function of a stationary time series if and

only if there exists a nonnegative, symmetric spectral measure S(dw) so that

r 1 2 euwnS(dw)

2ir
_ 1 jcos(wn)S(dw) (2.27)

If we perform the change of variables x = cos w and note that cos (n w) = Cn(cOs w),

where Cn(x) is the nth Chebychev polynomial, we have

rn = L Cn(x)li(dx) (2.28)
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where p(dx) is a nonnegative measure on [-1,1] (also referred to as the spectral

measure) given by

,(dx) = (1- 2)-S(dw) (2.29)

For example, for the white noise sequence with r, = 6n0,

# d 1 2-
(d) = - (1- 2)- (2.30)

The analogous theorem for isotropic processes on dyadic trees requires the intro-

duction of the Dunau polynomials [2,12]:

Po(x) = 1 , P1(x) = x (2.31)

2 1
xP,(x) = 3P,+i(x) + ~P.-_(x) (2.32)

Theorem 2.1 [1,2]: A sequence rn,n = 0, 1,2,... is the covariance function of an

isotropic process on a dyadic tree if and only if there exists a nonnegative measure y

on [-1, 1] so that

rn = | P.(x),u(dx) (2.33)

The simplest isotropic process on the tree is again white noise, i.e. a collection of

uncorrelated random variables indexed by T, with rn = 5n0, and the spectral measure

pt in (2.33) in this case is [12]

i (8- 9x2)½d
4(dx) = TX[-2,22 ] (x) 1 - 2 dx (2.34)

where XA(x) is the characteristic function of the set A. A key point here is that

this spectral measure is smaller than the interval [-1, 1]. This appears to be a direct

consequence of the large size of the boundary of the tree, which also leads to the

existence of a far larger class of singular processes than one finds for time series.

While Theorem 2.1 does provide a necessary and sufficient condition for a sequence

rn to be the covariance of an isotropic process, it doesn't provide an explicit and direct

criterion in terms of the sequence values. For time series we have such a criterion

based on the fact that rn must be a positive semi-definite sequence. It is not difficult
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to see that rn must also be positive semidefinite for processes on dyadic trees: form

a time series by taking any sequence Ytl, Yt2,... where d(ti, ti+l) = 1; the covariance

fuction of this series is rn. However, thanks to the geometry of the tree and the

richness of the group of isometries of T, there are many additional constraints on r,.

For example, consider the three nodes s, u, and s A t in Figure 2.1, and let

X = [Ys, Yu, Yst] (2.35)

Then
ro r2 r2

r2 r2 0 J
which is a constraint that is not imposed on covariance functions of time series.

Collecting all of the constraints on r, into a useful form is not an easy task. However,

as we develop in this paper, in analogy with the situation for time series, there is

an alternative method for characterizing valid covariance sequences based on the

generation of a sequence of reflection coefficients which must satisfy a far simpler set

of constraints which once again differ somewhat from those in the time series setting.

2.5 Models for Stochastic Processes on Trees

As for time series it is of considerable interest to develop white-noise-driven models

for processes on trees. The most general input-output form for such a model is simply

Yt = E ct,,Ws (2.37)
sET

where Wt is a white noise process with unit variance. In general the output of this

system is not isotropic and it is of interest to find models that do produce isotropic

processes. One class introduced in [1] has the form

Yt = E Cd(s,t)WS (2.38)
sET

To show that this is isotropic, let (s, t) and (s', t') be two pairs of points such that

d(s,t) = d(s',t'). By Lemma 2.1 there exists an isometry f so that f(s) = f(s'),
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f(t) = f(t'). Then

E [Y,Yt] = Cd(s',u)d(t,,u)
U

= Cd(sf(u,))Cd(tfI(ub))
U

I

= Cd(f(s),f(uI))Cd(f(t),f(u,))

= Cd(s,u')Cd(t,u,) = E [YsYt] (2.39)

The class of systems of the form of (2.38) are the generalization of the class of zero-

phase LTI systems (i.e. systems with impulse responses of the form h(t, s) = h(It-s I)).
On the other hand, we know that for time series any LTI stable system, and in

particular any causal, stable system, yields a stationary output when driven by white

noise. A major objective of this paper is to find the class of causal models on trees

that produce isotropic processes when driven by white noise. Such a class of models

will then also provide us with the counterpart of the Wold decomposition of a time

series as a weighted sum of "past" values of a white noise process.

A logical starting point for such an investigation is the class of models introduced

in Section 2.3

Yt = (SW)t , S = ,wECsw .' (2.40)

However, it is not true that Yt is isotropic for an arbitrary choice of S. For example

if S = 1 + ay- 1, it is straighforward to check that Yt is not isotropic. Thus we must

look for a subset of this class of models. As we will see the correct model set is the

class of autoregressive (AR) processes, where an AR process of order p has the form

Yt = E awY,t + aWt (2.41)
wRO

Iwr[p

where Wt is a white noise with unit variance.

The form of (2.41) deserves some comment. First note that the constraints placed

on w in the summation of (2.41) state that Yt is a linear combination of the white

noise Wt and the values of Y at nodes that are both at distances at most p from

Y(lwl < p) and also on the same or previous horocycles (w _ 0). Thus the model
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(2.41) is not strictly "causal" and is indeed an implicit specification since values of

Y on the same horocycle depend on each other through (2.41) (see the second-order

example to follow). A question that then arises is: why not look instead at models in

which Yt depends only on its "strict" past, i.e. on points of the form 7-nt. As shown

in Appendix A, the additional constraints required of isotropic processes makes this

class quite small. Specifically consider an isotropic process Yt that does have this

strict dependence:
00

Yt = E a,nW.y-nt (2.42)
n=O

In Appendix A we show that the coefficients an must be of the form

a, = =an (2.43)

so that the only process with strict past dependence as in (2.42) is the AR(1) process

}t = aY,-It + oWt (2.44)

Consider next the AR(2) process, which specializing (2.41), has the form

=t = alY-lIt + a 2Y,-2t + a3Yst + aWt (2.45)

Note first that this is indeed an implicit specification, since if we evaluate (2.45) at

St rather than t we see that

Yet = alYxt + a2Yy-2t + a3Yt + oWst (2.46)

We can, of course, solve the pair (2.45), (2.46) to obtain the explicit formulae

(t = a, -t + _ a 2 ) Y-2t + aVt (2.47)

al -t + Y-2t + 6t (2.48)
=1- a 3l - (2.48)

where

t 1 2 {Wt + a3Wt} (2.49)
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Note that Vt is correlated with Vt and is uncorrelated with other values of V and

thus is not an isotropic process (since E [VtVy-2t] i E [VtVit]). Thus while the explicit

representation (2.47)-(2.48) may be of some value in some contexts (e.g. in [17] we

use similar nonisotropic models to analyze some estimation problems), the implicit

characterization (2.45) is the more natural choice for a generalization of AR modeling.

Another important point to note is that the second-order AR(2) model has four

coefficients-three a's and a, while for time series there would only be two a's. Indeed

a simple calculation shows that our AR(p) model has (2P -1) a's and one a in contrast

to the p a's and one a for time series. On the other hand, the coefficients in our AR

model are not independent and indeed there exist nonlinear relationships among the

coefficients. For example for the second-order model (2.45) a3 7f 0 if a 2 $f 0 since

we know that the only isotropic process with strict past dependence is AR(1). In

Appendix B we show that the coefficients al, a2, and a3 in (2.45) are related by a

4th-order polynomial relation.

Because of the complex relationship among the a,'s in (2.41), the representation

is not a completely satisfactory parameterization of this class of models. As we will

see in subsequent sections, an alternate parametrization, provided by a generalization

of Schur and Levinson recursions, provides us with a much better parametrization.

In particular this parametrization involves a sequence of reflection coefficients for AR

processes on trees where exactly one new reflection coefficient is added as the AR

order is increased by one.
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3 Reflection Coefficients and Levinson and Schur
Recursions for Isotropic Trees

As outlined in the preceding section the direct parametrization of isotropic AR models

in terms of their coefficients {a,} is not completely satisfactory since the number of

coefficients grows exponentially with the order p, and at the same time there is a

growing number of nonlinear constraints among the coefficients. In this section we

develop an alternate characterization involving one new coefficient when the order

is increased by one. This development is based on the construction of "prediction"

filters of increasing order, in analogy with the procedures developed for time series

[8,9] that lead to lattice filter models and whitening filters for AR processes. As is the

case for time series, the single new parameter introduced at each stage, which we will

also refer to as a reflection coefficient, is not subject to complex constraints involving

reflection coefficients of other orders. Therefore, in contrast to the case of time series

for which either the reflection coefficient representation or the direct parametrization

in terms of AR coefficients are "canonic" (i.e. there are as many degrees of freedom as

there are coefficients), the reflection coefficient representation for processes on trees

appears to be the only natural canonic representation. Also, as for time series, we

will see that each reflection coefficient is subject to bounds on its value which capture

the constraint that r, must be a valid covariance function of an isotropic process.

Since this is a more severe and complex constraint on r~ than arises for time series,

one would expect that the resulting bounds on the reflection coefficients would be

somewhat different. This is the case, although somewhat surprisingly the constraints

involve only a very simple modification to those for time series.

As for time series the recursion relations that yield the reflection coefficients arise

from the development of forward and backward prediction error filters for Yt. One cru-

cial difference with time series is that the dimension of the output of these prediction

error filters increases with increasing filter order. This is a direct consequence of the

structure of the AR model (2.41) and the fact that unlike the real line, the number of

points a distance p from a node on a tree increases geometrically with p. For example,
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from (2.45)-(2.49) we see that Yt and Yu, are closely coupled in the AR(2) model, and

thus their prediction might best be considered simultaneously. For higher orders the

coupling involves (a geometrically growing number of) additional Y's. In this section

we set up the proper definitions of these vectors of forward and backward prediction

variables, and, thanks to isotropy, deduce that only one new coefficient is needed as

the filter order is increased by one. This leads to the desired scalar recursions. In the

next section we use the prediction filter origin of these recursions to construct lattice

forms for modeling and whitening filters. Because of the variation in filter dimension

the lattice segments are somewhat more complex and capture the fact that as we

move inward toward a node, dimensionality decreases, while it increases if we expand

outward.

3.1 Forward and Backward Prediction Errors

Let Yt be an isotropic process on a tree, and let .{--..} denote the linear span of

the random variables indicated between the braces. As developed in [9], the basic

idea behind the construction of prediction models of increasing orders for time series

is the construction of the past of a point t : Yt,n = 7' {Yt-k10 < k < n} and the

consideration of the sequences of spaces as n increases. In analogy with this, we define

the past of the node t on our tree:

Yt,n-,, -{Y,,: w O, IwI n} (3.1)

One way to think of the past for time series is to take the set of all points within a

distance n of t and then to discard the future points. This is exactly what (3.1) is:

Yt,n contains all points ys on previous horocycles (s >- t) and on the same horocycle

(s t) as long as d(s, t) < n. A critical point to note is that in going from Yt,n- 1 to

Yt,n we add new points on the same horocycle as t if n is even but not if n is odd (see

the example to follow and Figures 3.1-3.4).

In analogy with the time series case, the backward innovations or prediction errors

are defined as the variables spanning the new information, Ft,., in Yt,. not contained
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in Yt,n-l:

Yt,n = Yt,n-l eFt,n (3.2)

so that .Ft,n is the orthogonal complement of Yt,n-I in Yt,, which we also denote by

-Ft,. = Yt,, e Yt,,-i. Define the backward prediction errors for the "new" elements of
the "past" introduced at the nth step, i.e. for Iwol _ 0 and Iwi = n, define

Ft,n(w) = Yt - E (YtjYt,n-l) (3.3)

where E(xlY) denotes the linear least-squares estimate of x based on data spanning

y. Then

t,n = HE {Ft,,(w): Iw = n, w -< 0} (3.4)

For time series the forward innovations is the the difference between Yt and its

estimate based on the past of Yt- 1. In a similar fashion define the forward innovations

Et,n(w) - Yt - E (Ywt lY-,ltn-l) (3.5)

where w ranges over a set of words such that wt is on the same horocycle as t and at

a distance at most n - 1 from t (so that Y,-lt,n-l is the past of that point as well),

i.e. IwI < n and w x 0. Define

gt,n =- 7 {Et,n(w): Iwl < n and w x 0} (3.6)

Let Et,n denote the column vector of the Et,,(w). a simple calculation shows that

dimEt,n = 2U[Y] (3.7)

where [x] denotes the largest integer < x. The elements of Et,n are ordered according

to a dyadic representation of the words w for which owi < n, w x 0. Specifically any

such w other than 0 must have the form

W= .(i.)5(i2)...
( i k ) (3.8)

with

1 < il <i2 < - < ik<[ (3.9)
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and with IwI = 2 ik. For example the points wt for w = 0, ,6(2), and 66(2) are illus-

trated in Figure 3.44. Thus the words w of interest are in one-to-one correspondence

with the numbers 0 and ]j=i 21., which provides us with our ordering.

In a similar fashion, let Ft,, denote the column vector of the Ft,~(w). In this case

dimFt,, = 2[q] (3.10)

The elements of Ft,, are ordered as follows. Note that any word w for which Iwl = n

and w - 0 can be written as w = cy - k for some k < 0 and LZ x 0. For example, as

illustrated in Figure 3.4, for n = 5 the set of such w's is (5(2 )y - 1, 66(2)7 - 1, 67-3, and

7-5 ). We order the w's as follows: first we group them in order of increasing k and

then for fixed k we use the same ordering as for Et,, on the C.

Example 3.1 In order to illustrate the geometry of the problem, consider the cases

n = 1,2,3,4,5. The first two are illustrated in Figure 3.1 and the last three are in

Figures 3.2-3.4 respectively. In each figure the points comprising Et,n are marked with

dots, while those forming Ft,n are indicated by squares.

n = 1 (See Figure 3.1): To begin we have

Yt,o = I Yt}

The only word w for which 1w = 1 and w -< 0 is w = r- 1 . Therefore

Ftl = Ft,l(1- 1 )

= Y - E (EY-1tlYt)

Also

yy-lt,O = H {Y-lti

and the only word w for which IwI < 1 and w - 0 is w = O. Thus

Et,l = Et,l(0)

= Yt- E (Yt I,-t)

4In the figure these points appear to be ordered left-to right along the horocycle. This, however,
is due only to the fact that t was taken at the left of the horocycle.
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n = 2 (See Figure 3.1): Here

Yt, = -H Yt, Y,- t,

In this case 1w[ = 2 and w - 0 implies that w = S or 7- 1 . Thus

F = ( Ft,2(S)

Y( - E(YstIYt,Y--it)
YY- 2 t - E(Yt-2t Yt, Yy-it)

Similarly,

YY-lt,1 = 7H {Y,-It, Yy-2t}

and 0 is the only word satisfying Iwl < 2 and w 0 O. Hence

Et,2 = Et,2 (0)

= Yt-E(YtIY,-1t, Yy-2t)

n = 3 (See Figure 3.2) In this case

Yt,2 = H {Yt,Yy-lt, Y-2t, Y)t}

Ft,/3 .. Ft,3(6_. -
( Ft,3 (--3) )

Y~-*lt - E(Y5-ltIYt, Yy-It, Y-2t, Y-t)

Y-Y-3t - E(Y,-3tjYt, Yy-lt,Yy-2t, Yst)

Also

Y_-lt,2 = H {Yy-lt, Yy-2t, Yy- 3t, Yy-lt}

and there are two words, namely 0 and 6, satisfying Iwl < 3 and w x 0.

( Et,3 (0) )
Et,3 (6)

Yt - E(YtlYy-t,Y, Y-2t, Yy-3t, Ys.-l1t)

Y2 - E(YtlYy-lt, Yy-2t, Y-3t, Y-lt)
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n = 4 (See Figure 3.3)

Yt,3 = X {Yt, Y-lt, Y-2t, Y6 I Y-3t, Y 6, -lt}

Ft,4(6(2))

Ft,4 Ft,4(bb(2))
= ,4(6Iy-2)

Ft,4(-4) 

Ya-rt,3 = X- {Yy-lt, Yy-2t, Y,-3t, Yya4t, Y-y-lt, Ys8-2t}

Et,4= ( Et,4 (0)
Et,4 (- )

n= 5 (See Figure 3.4)

Yt, 4 = 1 {Yt, y-t, Yy-2t, Yst, YY-3t, Yy-lt, Yy_4t, Y&_-2t, Ya.,y-t, Y¥,_y-lt}

Ft5,s ((2)7 - 1 )

Ft,5 = Ft,5 (*, - 3 )

Ft,5(, - )

Y'Y-lt,4 = X7 {1Y-lt, Yy-2t, Y1 -3t, Y&y-lt, Yr-4t, Ys6 -2t, YI-5t, Y&Y-3t) Y.6-y-2t, YP,6,-2t}

Et,5(0)

Et,.5 = Et,5( (6))

Et,5(6( 2))

Let us make a few comments about the structure of these prediction error vectors.

Note first that for n odd, dim Ft, = dim Et,, while for n even dim Ft, = 2 dim Et,.
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Indeed for n even Ft,, includes some points on the same horocycle as t (namely wt for

Iwi = n, w - 0)- e.g. for n = 2 Ft,2 (6) is an element of Ft,2. These are the points that

are on the backward-expanding boundary of the "past". At the next stage, however,

these points become part of Et,n -e.g. for n = 3 Et,3(S) is an element of Et,3. This

captures the fact mentioned previously that as the order of an AR model increases,

an increasing number of points on the same horocycle are coupled.

As a second point, note that we have already provided a simple interpretation

(3.2) of Ft,n as an orthogonal complement. As for time series, this will be crucial in

the development of our recursions. We will also need similar representations for £t,n.

It is straightforward to check that for n odd

Yt,n e Yy-lt,n-l = Et,n (3.11)

(this can be checked for n = 1 and 3 from Example 3.1), while for n even

Yt,n e Y,-lt,n- 1 = £t,n E( £,n)t,n (3.12)

For example for n = 2 this can be checked from the calculations in Example 3.1 plus

the fact that

E6t,2 = Yt - E [Yst IYy-it, Y--2t]

Finally, it is important to note that the process Et,, (for n fixed) is not in general

an isotropic process (we will provide a counterexample shortly). However, if Yt is

AR(p) and n < p, then, after an appropriate normalization Et,n is white noise. This

is in contrast to the case of time series in which case the prediction errors for all order

models are stationary (and become white if n < p). In the case of processes on trees

Et,n has statistics that are in general invariant with respect to some of the isometries

of T but not all of them.

3.2 Calculation of Prediction Errors by Levinson Recursions on
the Order

We are now in a position to develop recursions in n for the Ft,n(w) and Et,n(w).

Our approach follows that for time series except that we must deal with the more
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complex geometry of the tree. In particular because of this geometry and the changing

dimensions of Ft,, and Et,,, it is necessary to distinguish the cases of n even and n odd.

n even

Consider first Ft,n(w) for Iwl = n, w -< 0. There are two natural subclasses for

these words w. In particular either w -< 0 of w x 0.

Case 1: Suppose that w - O. Then w = -y`- l for some CD -< 0 with IJ1 = n -1.

We then can perform the following computation, using (3.3) and properties of

orthogonal projections:

Ft,. (W) = Ft,n (tT7-lt) = Yo.-t - E (Yw7- t[Ytn-1)

= YwY-'t-E (Yz-ltlYy-'t,n-2)- E (Ywy-lt lYtxn-l e Yy-lt~n-2)

Using (3.3) (applied at y-lt, n-I) and (3.11) (applied at the odd integer n-l),

we then can compute

Ft,n(w) = F/-lt,n-1_l(W) --E (-ltlEt,n-l)

= F-yt~n-l (w)--E (Fy-ltn-l(w) lEt,n-l) (3.13)

where the last equality follows from the orthogonality of Et,,_l and Y,-lt,n-2

(from (3.11)). Equation (3.13) then provides us with a recursion for Ft,n(w) in

terms of variables evaluated at words Co of shorter length

Case 2: Suppose that w >x 0. Then, since Iwl = n, it is not difficult to see that

w = wD2S(1) for some C' satisfying kll < n, x- 0 (for example, for n = 4, the

only w satisfying Jlw = n and w x 0 are 82 and 552 -- see Example 3.1). As in

Case 1 we have that

Ftn(w) = Y-8(f)t-E (Y-,(,)tlyn-,t,n-2)-E (Y(?)tlYt,,n-, O Yy-,t,n-2) (3.14)

Now for n even we can show that

Y-'2t,n-2 = Y4-16(i)t,n-2

24



For example for n = 4 these both equal {Y,-lt, Yy-2t, Y-3t, Y6_-lt}. Using this

together with (3.5) and the orthogonality of Et,n-1 and Y-lt,n-2 we can reduce

(3.14) to

Ft,n(w) = Es,(-)t ._1(w)-E (E( )tn_,(C)lEt) (3.15)

which again expresses each Ft,n(w) in terms of prediction errors evaluated at

shorter words. As an additional comment, note that the number of words

satisfying Case 1 is the same as the number for Case 2 (i.e. one-half dimFt, ).

Consider next Et,n(w) for Iwl < n and w x 0. In this case we compute

Et,n(w) = Yt- E (YwtIYy-,t,n-2) -E (YutlYy-It,n-l ¢3 Yey-t,n-2)

= Et,n-l(w)-E (Etn-l(w)lFry-lt,-l) (3.16)

where the last equality follows from (3.2).

n odd

Let us first consider the special case of n = 1 which will provide the starting point

for our recursions. From Example 3.1

Ft, = Yy-1t-E(Y,-1tIYt)

= Y-,t - k1Yt = F,-lt,o - kEt,o (3.17)

where kl is the first reflection coefficient, exactly as for time series

k E [Y,-itYtI r (3.18)
E [Yit] ro

Similarly

Etl = Yt-E(YtIYy-lt)

= Yt- klY-lt = Et,o - klFy-t,o (3.19)

Consider next the computation of Ft,n(w) for n > 3 and odd. Note that for n odd it

is impossible for Iwl = n and w O 0. Therefore the condition

{w[ = n and w -< 0
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is equivalent to

w= wy- , lil = n-1 , w-g 0

Therefore, proceeding as before,

Ft,.(w) = Y,-lt- E (Y-ltIY-,ltn-2) - E (Y-lt Y,-'tn-l e Y~ltn-2)

F-It,n-_l(t~) - E (Fct,n-_(t7)JEt,n-_lE6(n- (3.20)

where the last equality follows from (3.12) applied at the even integer n - 1.

Consider next the computation of Et,n(w) for n > 3 and odd, and for w Il < n,

w - 0. There are two cases (each corresponding to one-half the components of Et,n)

depending upon whether Iwl is n - 1 or smaller.

Case 1: Suppose that Iw i < n - 1. In this case exactly the same type of argument

yields

Et,,(w) = Et,n_l(w) - E (Et,_n-(w) IFy-lt,n-l) (3.21)

Case 2: Suppose that Iwl = n - 1. In this case w = w6S( 2 ) where zi 0 and

computations analogous to those performed previously yield

Et,n (W) = E (n)tn-l ()-E (E()tn (lW) lFz, t,nl) (3.22)
J2),nW - -1 %(T1,n--

where in this case we use the fact that

Y-y-'t,n-2 = Y -,(')t,n-2

For example for n = 5 these both equal

{Y[-lt, Y -2t, Yy-3t, Yyt Y5, Y,-~ Y -. Y-2t}

We have now identified six formulas-(3.13), (3.15), (3.16), (3.20), (3.21), and

(3.22)-for the order-by-order recursive computation of the forward and backward

prediction errors. Of course we must still address the issue of computing the pro-

jections defined in these formulas. As we make explicit in the next subsection the

richness of the group of isometries and the constraints of isotropy provide the basis for
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a significant simplification of these projections by showing that we need only compute

projections onto the local averages or barycenters of the prediction errors. Moreover,

scalar recursions for these barycenters provide us both with a straightforward method

for calculating the sequence of reflection coefficients and with a generalization of the

Schur recursions.

Finally, as mentioned previously Et,n is not, in general, an isotropic process unless

Yt is AR(p) and n > p, in which case it is white noise. To illustrate this, consider

the computations of E [Et,1Est,1] and E [Et,lE,-2t,l] which should be equal if Et,1 is

isotropic. From (3.18), (3.19) we find that

E [Et,1Est,l] = r2 -

while
E [E 2 = r2+ r(rr 2 - ror 3 )E [ElE,--2t,l] = r2 - 2 +
ro0 r

In general these expressions are not equal so that Et,1 is not isotropic. However, from

the calculations in Appendix A we see that these expressions are equal and indeed

Et,l is white noise if Yt is AR(1). A stronger result that we state without proof is

that Et,,, suitably normalized, is isotropic for all n > p if and only if Yt is AR(p).

3.3 Projections onto E and F and their Barycenters

Let us define the average values of the components of the prediction errors:

et,n = 2-[ J] Et,n(w) (3.23)
Iwl<n,wxo

ft,n = 2-[2] Ft,n(w) (3.24)
uIw=n,w-<O

The following result is critical

Lemma 3.1 The six collections of projections necessary for the order recursive com-

putation of the prediction errors for all required words w and w5 can be reduced to

a total of four projections onto the barycenters of the prediction error vectors. In

particular,

27



For n even: For any word w' such that Iw'l = n - 1 and for any word w" such that

Iw"I < n and w" x 0, we have that

E (F-1t,n- 1 (W)') lEtn-_) = E (Ef(q)t,nl(W" )lEtn_l) (3.25)

= E (Fy-)t,n_(WO)Iet,n-l) (3.26)

= E (E(qn,t,,nl(O)let,n-_) (3.27)

(refer to (3.13),(3. 15)) where wo is any of the w'. Also for any w such that

IwI < n and w O0, we have that

E (Et,n-_(w)[Fy-lt,n_l)= E (Etn-l(O)lfy-lt,n-l) (3.28)

(refer to (3.16)).

For n odd: For any w' and w" satisfying the constraints I < n and · x 0 we have

that

E(Et,nl(w')lF-yIt,n._) = E (E (n,,-1 (w")IF,-y-t,n,_) (3.29)

= E (Etn-l(O) fy-lt,n-1) (3.30)

(refer to (3.21),(3.22)). In addition for any v _ 0 such that Iwl = n - 1

E (Fy,-1t,nl(W)IEt,n-l.l,E( )tnl) = E (Fy-ltnl( ) (et,n-l + e t )n

(3.31)
(refer to (3.20)) where wo is any of the dv.

These results rely heavily on the structure of the dyadic tree, the isometry exten-

sion lemma, and the isotropy of Y. As an illustration consider the cases n = 4 and

5 illustrated in Figures 3.5 and 3.6. Consider n = 4 first. Note that the distance

relationships of each of the elements of F.-lt,3 and of Es(2)t,3 to Et,3 are the same.

Furthermore all three of these vectors contain errors in estimates based on Y -t,2.

Hence because of this symmetry and the isotropy of Y, the projections of any of the

elements of F.-lt,3 or E6(2)t,3 onto Et,3 must be the same, as stated in (3.25). Fur-

thermore, the two elements of Et,3 have identical geometric relationship with respect
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to the elements of the other two error vectors. Hence the projections onto Et,3 must

weight its two elements equally, i.e. the projection must depend only on the average

of the two, et,3, as stated in (3.26), (3.27). Similarly, the two elements of F,-lt,3

have identical geometric relations to each of the elements of Et,3, so that (3.28) must

hold. Similar geometric arguments apply to Figure 3.6 and (3.29)-(3.31) evaluated

at n = 5. Perhaps the only one deserving comment is (3.31). Note, however, in this

case that each of the elements of Fy-t,4 has the same geometric relationship to all of

the elements of Et,4 and Es(2)t,4 and therefore the projection onto the combined span

of these elements must weight the elements of Et,4 and Es(2)t,4 equally and thus is a

function of (et,n-, + e -()t,n-) /2.

Proof of Lemma 3.1: As we have just illustrated the ideas behind each of the

statements in the lemma are the same and thus we will focus explicitly only on

the demonstration of (3.26). The other formulas are then obtained by analogous

arguments.

The demonstration of (3.26) depends on the following three lemmas which are

proved in Appendix C by exploiting symmetry and the isometry extension lemma.

Lemma 3.2 The expectation

Gt,,n = E (F-lt,n-l (w) [Et,n-) (3.32)

for n even is the same for all Iwl = n - 1, w - 0.

Lemma 3.3 The expectation

Ht,, = E(F-,t,n-_l(w)Et,n-l(W')) (3.33)

is the same for all Iwl = n - 1, w -< O and all Iw'l < n and w' O 0.

Lemma 3.4 The covariance ZE,n of Et,n has the following structure. Let (ao, . . ., ad)

denote a 2d x 2d covariance matrix, depending upon scalars ao,..., ad and with the

following recursively-defined structure:

('(ao) = ao (3.34)
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E M X Xa, ha-1/ hadUd-1

E (CO,. ad, ) = (3.35)

C-dUd-1 E (CYao,' -, - Cd-1)

where Ude is a 2d x 2d matrix all of whose values are 1 (i.e. Ud = ldld where Id is a

2d-dimensional vector of 1 's). Then there exist numbers ao, cl ,..., a[n-] so that

En = (ao , Ca[n-I) (3.36)

From Lemma 3.2 we see that we need only show that Gt,n depends only on et,nl-

However, from Lemma 3.4 it is a simple calculation to verify that l[n-_] is an eigen-

vector of EE,n. Then, consider any X E £t,n-1 of the form

X= E A,Et,nl(w') (3.37)
Iwll<n
whxO

where

Z A, = 0 (3.38)
Iwll<n

Then, since et,nl is also as in (3.37) but with all Aw equal, we have that

2[2 1E (Xet,n-1) = (,. -, A-,, )EE,nl = 0 (3.39)

Thus we have an orthogonal decomposition of £t,n_l into the space spanned by X

as in (3.37), (3.38) and the one-dimensional subspace spanned by et,nl. However,

thanks to Lemma 3.3, for any X satisfying (3.37), (3.38)

E [F-it,.n_1(w)X] = ( A,) Htn = 0 (3.40)

Thus the projection (3.32) is equal to the projection onto et,nl, proving our result.

Remark: Lemma 3.4 allows us to say a great deal about the structure of E,~n. In

particular it is straightforward to verify that the eigenvectors of EE,n are the discrete
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Haar basis. For example in dimension 8 the eigenvectors are the columns of the

matrix
1 0 0 0 1 0 1 1

2 2Vf 2V,2
1 0 0 0 1 0 1 1

2 2V7 2V7

0 1 0 0 I 0 1 1
0 °°2 2°' 2vZ

0- 0 0 1 0 1 10 1 ° ° 2 2v° 2Vr (3.41)
0 0 020 I 122

0 0 1 0 0 1 1 1
72' 2 2x/2 2V'

0 0 0 1 0 1 1

0 0 0 2 1 0 /
o2' 2,72' 2 -,,f 2- 

Also, as shown in Section 4.2 and in Appendix D, the structure of YE,n allows us to

develop an extremely efficient procedure for calculating E1,2- Indeed this procedure

involves a set of scalar computations and a recursive construction similar to the

iterative construction of E(ao, a1,... , ad), with a total complexity of 0(1 log 1), where

[ 2 ]

3.4 Scalar Recursions for the Barycenters

An immediate consequence of Lemma 3.1, and the definitions of the barycenters,

and the computations in Section 3.2 is the following recursions for the barycenters

themselves:

For n even:

et,n = et, nl- E (et,n-l |f-Yt,n-1) (3.42)

ft, = 2 (f t 1n-l + e tn-l 2E (f,- + e6 ()tletn1) (3.43)

For n odd, n > 1:

i2 \2-t 1 1 n1
= 2 yet~n- ± e6 (n)t 1) - E ( + e6 (n)t ltn (3.4--4)

ft, e= for-n1- -I-et- 1 E1 (etn+ es nt )) (3.45)
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while for n = 1,

ft,i = Ft,l et,l = Etl (3.46)

and thus (3.17)-(3.19) provide the necessary formulas.

It remains now to compute explicitly the projections indicated in (3.42)-(3.45). As

the following result states, we only need compute one number, k,, at each stage of the

recursion, where kn is the correlation coefficient between a variable being estimated

and the variable on which the estimate is based. We've already seen this for n = 1 in

(3.17)-(3.19), which yields also the first of the sequence k, which we refer to as the

reflection coefficient sequence.

Lemma 3.5 For n even:

et,n = et,n-1 -lknfy-lt,n-l (3.47)

Atn = 2 +(fl,n-l eS(k)tnnl)- ketn-1 (3.48)

where

kn = cor (et,n-lv fl-et,n-1)

= cor (e T)t n-1 etn-i)

= cor (e(f)t,n-1) fy-lt,n-1 ) (3.49)

and cor (x, y)= E(xy)/ [E(x2)E(y2)1'/2 .

For n odd:

tn = -2 (et n - l + e(n- l)) - knf-it,nl (350)

ft,n = fy-lt,n-1- 2 kn et,n-l + e(tn- ) (3.51)

where

kn 1 cor (2 (et,n-l + e (n- fl-1tnl (3.52)
2 8 = COT( -)-t,n-_

Keys to proving this result are the following two lemmas, the first of which is

proven in Appendix C and the second of which can be proven in an analogous manner:
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Lemma 3.6 For n odd:

E e ,) = E(e2n)=E (e2-t) n)= E (3.53)

Lemma 3.7 For n even 2 (et,n + e ()t,,) and fy-lt,n have the same variance.

Proof of Lemma 3.5 We begin with the case of n even. Since n -1 is odd, Lemma

3.6 yields

E (tn) =E (e,( ) =E(f , (3.54)

From (3.42)-(3.43) we than see that (3.47)-(3.49) are correct if

E [et,n-_lfy-lt,n-l] = E [e%()t,nletn-1]

= E [eg( )t,nlf-lt,n-l]-gn-1 (3.55)

so that

kn = 92-1 (3.56)
2

However, the first equality in (3.55) follows directly from Lemma 3.1 while the second

equality results from the first with t replaced by 8(2)t and the fact that

Y-lt,n_ = =F-()t,n-(3.57)

For n odd the result directly follows from Lemma 3.7 and (3.44),(3.45).

Corollary: The variances of the barycenters satisfy the following recursions. For n

even

27n = E (en,) = (1- k) an (3.58)

,n =) = ( 2 1(3.59)

where kn must satisfy

-< - <k < 1 (3.60)
2

For n odd

O'e,n an = (1 - ) k2afn (3.61)e,n = -' 'n -3 f,n-1
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where

-1< k, < 1 (3.62)

Proof: Equation (3.58) follows directly from (3.47) and (3.49) and the standard

formulas for the estimation variance. Equation (3.59) follows in a similar way from

(3.48) and (3.49) where the only slightly more complex feature is the use of (3.49) to

evaluate the mean-squared value of the term in parentheses in (3.48). Equation (3.61)

follows in a similar way from (3.50)-(3.52) and Lemma 3.7. The constraints (3.60)

and (3.62) are immediate consequences of the nonnegativity of the various variances.

As we had indicated previously, the constraint of isotropy represents a significantly

more severe constraint on the covariance sequence rn. It is interesting to note that

these additional constraints manifest themselves in the simple modification (3.60)

of the constraint on kn for n even over the form (3.62) that one also finds in the

corresponding theory for time series. Also, as in the case of time series the satisfaction

of (3.60) or (3.62) with equality corresponds to the class of deterministic or singular

processes for which perfect prediction is possible. We will have more to say about

these and related observations in Section 5.

3.5 Schur Recursions and Computation of the Reflection
Coefficients

We now need to address the question of the explicit computation of the reflection

coefficients. The key to this result is the following

Lemma 3.8 For n even:

E[etin-lfy-ltxn-l] = E [YtfZlt,n-1]

= E [Yte.(),t,n_l] (3.63)

n2 1 _ = E[Y-et,n-l] (3.64)
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For n odd

E (et,n-lff-1t,.-l) = E (eg(.)t,,_l fy-ltn-1)

E [Ytf,-lt,n-l] (3.65)

E [fy-t,n- 1 ] n1= E [4 (etn + e(ft,n-l1

2 [E (Ytet.n-l) + E (Yte,(n)t, )] (3.66)

Proof: This result is essentially a consequence of other results we have derived

previously. For example, for n even, since f,-1t,,-1 is orthogonal to Y--t,n- 2 , we

have that for JIw < n, w x 0

E [Ytf,-1,,_n-] = E [Et,,_l(O)fy-1lt,,,_l]

= E [Et,n,,_l(w)f.-lt,n-l] (3.67)

where the second equality follows from Lemma 3.2. Summing over iwI < n and w - 0

and using (3.23) then yields the first equality in (3.63). The second follows in a similar

fashion (see also (3.25)). Similarly, since et,n-l is also orthogonal to Y-1t,n-2, we have

that

E [Ytet,n-l] = E [Et,n_l(O)et,n_l] = E [Et,n(w)et,nl] (3.68)

The last equality here follows from the structure of EE,n-1

E[Et,nl-(w)et,nl] = [0...,1, 0' ' ' 0].E,n-1 E

= eigenvalue associated with [1,... ,1]T (3.69)

(here the single 1 in the row vector in (3.69) is in the wth position.) Summing over

w and using (3.23) yields (3.64). Equations (3.65) and (3.66) follow in an analogous

manner.
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It is now possible to write the desired recursions for k,. Specifically if we multiply

(3.47), (3.48), (3.50), (3.51) by Yt and take expectations we obtain recursions for the

quantities needed in the right-hand sides of (3.63)-(3.66). Furthermore, from (3.49)

and (3.52) we see that kn is directly computable from the left-hand sides of (3.63)-

(3.66). In order to put the recursions in the most compact and revealing form it is

useful to use formal power series. Specifically for n > 0 define P, and Qn as:

Pn =cov (Ye, et,,) = E E (Yewt,n) (3.70)

Qn cV (Yt, ft,n) E (Ytft,,) .w (3.71)
w-O<0

where we begin with PO and Q0 specified in terms of the correlation function rn of Yt:

Po = Qo = E rwl -.w (3.72)
w-<O

Recalling the definitions (2.24), (2.25) of yS and 6(k)S for S a formal power series
and letting S(O) denote the coefficient of w = 0, we have the following generalization
of the Schur recursions :

Proposition: The following formal power series recursions yield the sequence of
reflection coefficients.

For n even

Pn = Pn_1 - kn-/Qn- (3.73)

Qn = 2 (-Qn-1 + (2)Pn-1 - PknPn- (3.74)

where
k Qn-l(0) + O(5)Pn- 1(0)

2Pn_1(0)

For n odd

=n i (Pn-1 + 6(U-)Pnl) - knQn- (3.76)

Qn = Qn- -kn2 (Pnl + 6( )Pn-1) (3.77)
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where
27Q,~-1(0)

Pn 1(O) + 6(-)P ) (3.78)

Note that for n = 1, (3.76)-(3.77) do agree with (3.17)-(3.19) since Po = 6(°)Po,

7Qo(O) = rl and Po(O) = ro.
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4 Vector Levinson Recursions and Modeling and
Whitening Filters

In this section we return to the vector prediction errors Et,,, Ft, in order to develop

whitening and modeling filters for Yt. As we will see, in order to produce true whiten-

ing filters, it will be necessary to perform a further normalization of the innovations.

However, the formulas for Et,, and Ft,, are simpler and are sufficient for us to study

the question of stability. Consequently we begin with them.

4.1 Filters Involving the Unnormalized Residuals

To begin, let us introduce a variation on notation used to describe the structure of

EE,n- In particular we let 1* denote a unit vector all of whose components are the

same:

1*= 1 (4.1)
vd-im I

We also define the matrix

U. = 1.1T (4.2)

which has a single nonzero eigenvalue of 1. Equations (4.1), (4.2) define a family

of vectors and matrices of different dimensions. The dimension used in any of the

expressions to follow is that required for the expression to make sense. We also note

the following identities:

U*U* = U* (4.3)

f* = 1 F(w) (4.4)

If = 1lf* = U*F (4.5)

where F = {F(w)} is a vector indexed by certain words w ordered as we have

described previously, where f is its barycenter, and where f* is a normalized version

of its barycenter.

The results of the preceding section lead directly to the following recursions for

the prediction error vectors:
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Theorem 4.1 The prediction error vectors Et,n and Ft,, satisfy the following recur-

sions, where the kn are the reflection coefficients for the process Yt:

For n even:

Et,n = Et,n- 1 -k n U Fy-lt,n_ 1-l (4.6)

Ftn = E6(q)t'n-1 -kn U, Et,n-1 (4.7)
FFy-t,n-- 1 U

For n odd, n > 1:

Et,n -kn U. F-lt,n-1l (4.8)
EE ,nn-l

ki 5~'"I-Jt,n - 1

Ft,n = F-t,n_l- -kn U [ E] (4.9)
6Es()t,n-1

while for n = 1 we have the expressions (3.17)-(3.19).

Proof: As indicated previously, this result is a direct consequence of the analysis

in Section 3. For example, from (3.16), Lemma 3.1 (3.28), and (4.5) we have the

following chain of equalities for n even:

Et,n = Et,n-- E (Et,n-ljFy-1t,n-1)

= Et,n-1 - lfr-lt,n-l

= Et,n - A U* F--lt,n-l (4.10)

where A is a constant to be determined. If we premultiply this equality by (dim Et,n- 1) 1T,

we obtain the formula for the barycenter of Et,,_l, and from (3.47) we see that A = kn.

The other formulae are obtained in an analogous fashion.

The form of these whitening filters deserves some comment. Note first that the

stages of the filter are of growing dimension, reflecting the growing dimension of the

Et,, and Ft,n as n increases. Nevertheless each stage is characterized by a single

39



reflection coefficient. Thus, while the dimension of the innovations vector of order n

is on the order of 22, only n coefficients are needed to specify the whitening filter for

its generation. This, of course, is a direct consequence of the constraint of isotropy

and the richness of the group of isometies of the tree.

In Section 3.4 we obtained recursions (3.58), (3.59), (3.61) for the variances of the

barycenters of the prediction vectors. Theorem 4.1 provides us with the recursions for

the covariances and correlations for the entire prediction error vectors. We summarize

these and other facts about these covariances in the following.

Corollary: Let EE,n, EF,n denote the covariances Et,n and Ft,n, respectively. Then

1. For n even

(a) The eigenvalue of EE,n associated with the eigenvector [1,... , 1] is

PE,n = 22-a12 (4.11)

where a2n is the variance of et,n.

(b) The eigenvalue of EF,n associated with the eigenvector [1,..., 1] is

tF,n = 2n",, (4.12)

where JTf,, is the variance of ft,n-

2. For n odd,

EE,n = EF,n = En (4.13)

and the eigenvalue associated with the eigenvector [1,... , 1] is

#n = PE,n = PF,n = 2 (2' )at2 (4.14)

where a2 is the variance of both et,n and ft,n-

3. For n even

Etn = E (E, ] (4.15)

U 40E,n

40



where U = 1 1 T, and

FE,. = En-1 - kna,._1U (4.16)

An = (kn -( k2) n-1 (4.17)

4. For n odd, n > 1

E [2En:- An-1U k -2lU U (4.18)

An-1U EE,n-1

5. For n = 1

El = (1 - k) ro (4.19)

Proof: Equations (4.11), (4.12), and (4.14) follow directly from the definition of the

barycenter. For example, for n even

2()-let,n = 1TEt,n (4.20)

from which (4.11) follows immediately. Equation (4.13) is a consequence of Lemma

3.1. To verify (4.15) let us first evaluate (4.6) at both t and O(q)t:

E8(q)t,n E6(f)t,n-1 U.E ~i=t, = (/t,, _k,;U. F)_ ~t,,~_l (4.21)

The first equality in (4.15) is then a direct consequence of Lemma 3.1 (compare (4.7)

and (4.21)). The form given in the right-most expression in (4.15) is also immediate:

the equality of the diagonal blocks is due to isotropy, while the form of the off-diagonal

blocks again follows from Lemma 3.1. The specific expression for EE,n in (4.16) follows

directly from the second equality in (4.10), while (4.17) follows from (4.21) and the

fact that

E [Et,n-l(w)Et',s()tn_1 (w')] = knn2_l (4.22)

which in turn follows from Lemma 3.1 and (3.49). Finally, (4.18) follows from (4.15)

and (4.8), and (4.19) is immediate from (3.17)-(3.19).
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Just as with time series, the whitening filter specification leads directly to a mod-

eling filter for Yt.

Corollary: The modeling filter for Yt is given by the following. For n even

Ft,n ( (4.23)
Fy-l t,n-l

where
I 0 knU.

S (kn) k -knU* I (kn-k2) U. (4.24)

:-kU, 0 (I- kU*)

For n odd, n > 1:

Et,n-1

E ),n-1 (k) tn (4.25)6" -7-) t,n= -( Fy-,t,n-,_
Ft,n

where

[-E ) I-u ] (4.26)
L-ku, (I- k 2U*)

while for n = 1:

( t,) (1 / FEt (4.27)
Ft, 1 -kl I1- k2 F y-It'o

These equations can be verified by solving (4.6)-(4.9) and (3.17)-(3.19) to obtain

expressions for E's of order n - 1 and F's of order n in terms of E's of order n and

F's of order n - 1. Thus, as in the case of lattice filters for time series we have a

scattering layer-like structure for the generation of Yt = Et,o.

Since Et,N consists of prediction errors for Yt, owj < N, w O. 0, the input-

output map for the modeling filter is a map from the 2[ 2 ]-dimensional input Et,N

to the 2[ 2 ]-dimensional vector of outputs {Y,,tlw < N, w x 0}. Figure 4.1 pro-

vides a picture of the structure of this multivariable scattering system. Here E(kl)
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is the matrix on the right-hand side of (4.27), and for n odd E(kn) is given by

(4.26). For n even E(kn,) is a modified version of E(kn,) as it produces both Et,,_l

and E(q)t,,_ 1 (essentially (4.21) with these two prediction vectors viewed as outputs

and Et,n, Eg)t,,n viewed as inputs). Also E(k,*) has both F-lt,,n-i and F_, 6(~)tn 1

as inputs. Note that the inputs to this block are not all linearly independent and

thus there are a number of ways to write E(kn,) (essentially due to the fact that

Ft,n = F 8()t,,n). Ordering the inputs as (Et,n, Es()t,,Fy-lt,n-l, F 6_l~)tn 1_l) and the

outputs as (Et,n -l, E(q)t,nl Ft,n) one choice is

I 0 kn U, 0

E(kn) = O nU*

-knU. I (k,, - kn)U, 0

-knU. 0 I-k2U* 0

where all the blocks are of dimension 2(M)-1 (note that this form emphasizes the

redundancy in the input: given Et,n, Eg)t,,nF-r-lt,n-l, all we need is f_-~6(f)t,n-l).

Finally, based on this corollary we can now state the following stability result:

Theorem 4.2 The conditions

-1< kn, <1 n odd 1 < n < N (4.28)

< k, < 1 n even 1 < n < N (4.29)

are necessary and sufficient for the Nth-order modeling filter specified by reflection

coefficients {knII < n < N} to be stable, so that a bounded input Et,N yields a bounded

output Yt = Et,o.

Proof: This is a variation on the proof of stabilty for systems described by cascades

of scattering sections, complicated here by the growing dimensionality of the E's and

F's. Let us consider in detail the scattering diagram illustrated in Figure 4.1. Thanks

to the fact that the forward transmission matrices are identity matrices and the com-

mon eigenstructure of all matrices involved, a necessary and sufficient condition for

stability is that all reflection coefficient matrices have eigenvalues of magnitude less
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than 1 and all reverse transmission matrices have eigenvalues with magnitudes less

than or equal to 1. For n odd, the transmission matrices I and I - kOU have eigen-

values of 1 and 1 - k 2, while the reflection matrices ±k,,U,, have nonzero eigenvalues

of -kn. From these we can deduce (4.28). For n even, the eigenvalues of

( knU* 0 

0 knU. 

are kn and 0, yielding the constraint Ik I < 1. However the tighter constraint comes

from the other reflection coefficient matrix:

( knU* I

kn U* 0 

The two nonzero eigenvalues of this matrix are the roots of the equation

A2 + knA + kn = O

It is easily checked that these roots have magnitude less than one if and only if (4.29)

is satisfied. Similarly the transmission matrix

[(kn-kn)U* 0

I-knU. o

has nonzero eigenvalue (kn - k2), which is between +1 for kn satisfying (4.29), com-

pleting the proof.

4.2 Levinson Recursions for the Normalized Residuals

The prediction errors Et,n and Ft,n do not quite define isotropic processes. In partic-

ular the components of these vectors representing prediction error vectors at a set of

nodes are correlated. Furthermore for n even we have seen that Et,n and Es( )t,n-l are

correlated (see (4.15)). These observations provide the motivation for the normalized

recursions developed in this section. In this development we use the superscript * to

denote normalized versions of random vectors. Specifically X* = E-1/2X where E.

is the covariance of X and 1/2 is it symmetric, positive definite square root.

We now can state and prove the following:
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Theorem 4.3 The following are the recursions for the normalized residuals.

For n even

0( Et' ) = e(kn) n[( E_ (U )) F ]- (4.30)
t(7)t,n-1

E* U*
Ft~ = (kn) E(I F-k) ( Un ' Et* (4.31)

where -l1(kn) is the matrix square root satisfying

I-knU* (kn -k)U*
E- 2 (kn) = (4.32)

k (kn-k)U* I-ksU*.

For n odd, n > 1

t (k S E6() - kn U. F;*-lt,n-l (4.33)

Et,n-1Ft* = O(k) Fk-lt,s- - k ( U. (4.34)
E (n-)

-~ =t,s-1

where

O-T(kn)O-l(kn) = I- kU* . (4.35)

for n = 1

Et*_ 1 (Et*,o -klF-t,o) (436)
E* (4.36)

_/ 1 - kl2

= (F ,oEo ) (4.37)t,, 1-k?

Remark: Note that for n even we normalize Et,n and E.(q)t,n together as one vector,

while for n odd, Et,n is normalized individually. This is consistent with the nature

of their statistics as described in (4.15)-(4.19) and with the fact that for n even

dim Ft,n = 2 dim Et,n, while for n odd dim Ft,n = dim Et,.
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Proof: This result is a relatively straightforward computation given (4.11)-(4.19).

For n even we begin with (4.7) and (4.21) and premultiply each by

diag ( x-1/2 1'-/2diag ( En--/ I E-

Since 1* is an eigenvector of En-1, En-1 and therefore -1I/2 commute with U,. This

immediately yields (4.30) and (4.31) where the matrix O(kn) is simply the inverse of

the sqauare root of the covariance of the term in brackets in (4.30) and in (4.31) (the

equality of these covariances follows from (4.15)). Equation (4.32) then follows from

(4.11) and (4.15). The case of n odd involves an analogous set of steps, and the n = 1

case is immediate.

The preceding result provides us with a recursive procedure for calculating E-1/ 2

(see Appendix D for an alternate efficient procedure). For n even we have

n-/2 = o(kn) diag ( En-/2 , 1/ ) (4.38)

while for n odd, n > 1

- = E(kn)n-1/2 (4.39)

and for n = 1

1/2 = [(1- k2)ro] -1/2 (4.40)

The calculation of O(kn) is also obtained in a straightforward way using the following

two formulae. For any k > -1

(I kU)- = I -1) U, (4.41)

and for S and T symmetric

T S 2 X-Y X+Y (4.42)

where

X =(S + T) - 1 / 2

Y = (S - T) - 1 /2 (4.43)
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Using (4.42), (4.43) we see from (4.32) that to calculate O(kn) for n even we must

calculate

(I+ (kn - 2kn) U)-1/2

and

(I -knu*)-1/2

which can be done using (4.41) as long as -1/2 < kn < 1. As mentioned previously

and as discussed in Section 5, kn = -1/2 or 1 corresponds to the case of a singular

process and perfect prediction. For n odd, from (4.35) we see that we must calculate

(I - k U*) -1/2

which exists and can be calculated using (4.41) as long as kn - -±1 i.e. as long as we

are not dealing with a singular process for which perfect prediction is possible.

Now that we have a normalized form for the residual vectors, we can also describe

the normalized version of the modeling filters which provde the basis for generating

isotropic Yt's specified by a finite number of reflection coefficients and driven by white

noise

Theorem 4.4 For n even we have

t,n-l Etn

= E(kn) E()g,n (4.44)

Ft,n F~*.. t,n-l

where
I + a(kn)U* b(kn)U* knu*

E(k~)- -kn * I + c(kn)U* b(kn)U* (4.45)

d(ku_ k- U* I + a(kn)U*

with

a(k) = 2+ 1 l - 1 (4.46)
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b(k) = l/1 + 2k - - (4.47)
2

c(k) = + 2k- (1 + k) (4.48)

d(k) = -c(k)-k (4.49)

The matrix E(k~) is referred to as the scattering matrix, and it satisfies

E (k,) T (k) = I (4.50)

For n odd, n=1

( )tn- ] [ tn- (4.51)
6 =)t,n-l F'-Ylt,n -1

where the scattering matrix

(I- k2nU) 1 / 2 knU*

ES-cU (kn)Il~U/ _ (4.52)

-knU* (I-knU*)1/ 2

satisfies

E (kn) T (kn) = I (4.53)

Forn = 1:

( ,O Et- (k1) ( F )(4.54)

and

E(kl) = ( k1 (4 55)

also satisfies

E (kl) ET (kl) = I (4.56)
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Proof: We begin by solving (4.30) for (Et._n E- 1 ).t 1) then by subsituting this

into (4.31) we obtain

5( ') t ,n- 1 E6 ( i ) t ,n
, Etln-1 * ( k 1E s(§)t, (4.57)
F, F-* l t,n- 1

where

(1:(kn) ( : U)

= (kn) = (4.58)

O(kn ) )-l(kn) O(kn) ( I-k)U )
-knu. 0 I- k2U*

To obtain the desired relation, we simply drop the calculation of E(t from (4.57).

To do this explicitly we consider t(kn) as a matrix with three block-columns and four

block-rows (one each for Et*_ and E t and two for Ft*n). Thus what we wish to

do is to drop the second block-row. A careful calculation using the relations derived

previously yields (4.45)-(4.49). That E(kn) satisfies (4.50) follows immediately from

the fact that the vectors on both sides of (4.44) have identity covariances. The result

for n odd, n > 1 is obtained in a similar fashion, and the case of n = 1 is immediate.
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5 Characterization of Autoregressive and Regular
Processes

The analysis in the preceding sections allows us to deduce a number of properties

of the class of autoregressive isotropic processes. The first result summarizes some

immediate consequences which we state without proof:

Proposition 5.1 If Yt is an AR(p) isotropic process, then

1. The reflection coefficents kn = 0 for n > p + 1, and the forward and back-

ward normalized prediction error vectors Et* and Ft,*p are standard white noise

processes (i.e. with unity covariance).

2. Let us write the formal power series Pp defined in (3.70) as

Pp = j pW.,w (5.1)
wEgO

If p = O, p, = O if w 7 O. If p = 1, p, = O unless w = y-k for some k > O. If

p > 2, then p,w = 0 for all words of the form w = w,&ab-k with

wa, E {a,/3}* and lwa,lI > [P]-1 (5.2)

In other words, Pp has its support in a cylinder of radius [2] around the path

{(-k) toward -oo. From this we also have that the modeling filter of an AR(p)

process has its support in the same cylinder of radius [2] around [t, -oo). Con-

versely, any process such that the modeling filter has its support contained in

the cylinder of radius [E] is necessarily an AR(p) process.

Figure 5.1 illustrates the cylinder for an AR(2) process. Note that (1) is a gener-

alization of the result in Appendix A that stated that if an isotropic process has its

support concentrated on [t, -oo) it is necessarily AR(1).

Our analysis to this point has shown how to construct a sequence of reflection

coefficients {kn} from an isotropic covariance sequence {rn}. Furthermore we have
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seen that the {k(,}'s have particular bounds and that if {r,} comes from an AR(p)

process, only the first p of the reflection coefficients are nonzero. The following

result states that the converse holds, i.e. that any finite k, sequence satisfying the

required constraints corresponds to a unique AR covariance sequence. This result

substantiates our previous statement that the reflection coefficients provide a good

parameterization of AR processes.

Theorem 5.1 Given a finite sequence of reflection coefficients k,, 1 < n < p such

that
< kn < 1 forn even

2 (5.3)
-1 < kn < 1 for n odd

there exists a unique isotropic covariance sequence which has as its reflection coeffi-

cient sequence the given kn followed by all zeroes.

The proof of this theorem rests on the following which is obtained immediately

from the Schur recursions:

Lemma 5.1 Consider the transformation I which maps an isotropic covariance se-

quence {rn} to the corresponding reflection coefficient sequence. The Jacobian of this

transformation satisfies the following:

Okn
= 0 for n < m (5.4)

arm
ak2 n 1

r2n70 (5.5)
ar2n 2n-1P2n-_(0) - 0

ak2n+l (5.6)
ar2n+l-- 2n- 1 (P2n(0) + (n)P 2n(O)) 7 0 (5.6)

where the P, are the Schur series defined in (3.70)

Proof of Theorem 5.1: Consider the modeling filter of order p specified by the

given set of reflection coefficients. What we must show is that the output of this

filter, yt, is well defined (i.e. has finite covariance) and isotropic when the input is a

standard white noise process. That it is well-defined follows from the stabililty result

in Theorem 4.2. Thus we need only show that yt is isotropic. More specifically, let
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(s, t) and (s', t') be any two pairs of points such that d(s, t) = d(s', t'). The theorem

will be proved if we can show that the function

': K = (kn)ln<p ) E(ytys) - E(yty 8,) (5.7)

is identically zero.

The form of the modeling filter shows that 4( is a rational function of K. Thus it

is sufficient for us to show that Q( is zero on a nonempty set in RP. Since we know

that ¢(K) = 0 if K is obtained via the transformation XF, it is sufficient for us to

show that the set of K obtained via the transformation T has a nonempty interior.

Thanks to the form of the Schur recursions we know that T is also a rational

function and, thanks to Lemma 5.1, its Jacobian is triangular and always invertible.

Thus it is sufficient to show that the set of finite sequences {r, 10 < n < p} that can

be extended to a covariance function of an isotropic process has a nonempty interior.

However, this property is characterized by a finite family of conditions of the form

RN ... I rp,) > o (5.8)

where RZ(ro, ..., rp) denotes a matrix whose elements are chosen from the r0 , ... , rp.

The set of (p+ 1)-tuples satisfying these conditions with strict inequality is nonempty

(e.g. rn = nO,) and as a consequence the set of ro,...,rp satisfying (5.8) has a

nonempty interior.

Finally, the machinery we have developed allows us to characterize the class of

regular processes.

Definition 5.1 An isotropic process Yt is regular or purely nondeterministic if no

nonzero linear combination of the values of Yt on any given horocycle can be predicted

exactly with the aid of knowledge of Yt in the strict past.

With the aid of a martingale argument, Yt is regular if and only if

liminf Ainf (SE,n) > 0 (5.9)
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where XAif(A) denotes the minimum eigenvalue of A. Given the form of ,n in (4.13),

(4.15), and (4.18), we can deduce that this is equivalent to

lim inf Ainf (on) > 0 (5.10)

Thanks to the structure of En determined from (4.38)-(4.40) and the definition of

0-l(kn) in (4.32), (4.35), we can deduce that

n

Ainf (on) = rO(1 - kl2 ) I| Ainf (-2(ki)) (5.11)
i=2

and for i odd, i > 1

Ainf (O-2(ki)) = 1 - k2 (5.12)

while for i even

Anf (O-2 (ki)) = min (1 - ki,1 + ki - 2k)

1-Ik I| for ki small (5.13)

From this we can deduce the following:

Theorem 5.2 An isotropic process Yt is regular if and only if its reflection coefficient

sequence is such that
0o

E (k2 + Ik2n)I < 00C (5.14)
n=l
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6 Conclusion

In this paper we have described a new framework for modeling and analyzing signals at

multiple scales. Motivated by the structure of the computations involved in the theory

of multiscale signal representations and wavelet transforms, we have examined the

class of isotropic processes on a homogenous tree of order 2. Thanks to the geometry

of this tree, an isotropic process possesses many symmetries and constraints. These

make the class of isotropic autoregressive processes somewhat difficult to describe if we

look only at the usual AR coefficient representation. However, as we have developed,

the generalization of lattice structures provides a much better parametrization of AR

processes in terms of a sequence of reflection coefficients.

In developing this theory we have seen that it is necessary to consider forward and

backward prediction errors of dimension that grows geometrically with filter order.

Nevertheless, thanks to isotropy, only one reflection coefficient is required for each

stage of the whitening and modeling filters for an isotropic process. Indeed isotropy

allowed us to develop a generalization of the Levinson and Schur scalar recursions for

the local averages or barycenters of the prediction errors, which also yield the reflec-

tion coefficients. Finally we have justified our claim that the reflection coeffients are

a good paramtrization for AR processes and isotropic processes in general by showing

that AR processes can be uniquely specified by these coefficients and the regular-

ity of an isotropic process can be characterized in terms of its reflection coefficient

sequences.

It is our belief that the theory developed in this paper provides an extremely useful

framework for the development of multiscale statistical signal processing algorithms.

In particular we expect this framework and its multidimensional counterparts to be

useful in analyzing signals displaying fractal-like or self-similar characteristics, i.e.

random signals whose behavior is similar at multiple scales. Figure 6.1 illustrates a

sample of an AR(1) process with kl = 0.99 which displays this self-similar behavior.
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Appendices

A AR(1) and isotropic processes with strict past
dependence

We wish to show that AR(1) processes are the only isotropic processes with strict

past dependence. To do this let us introduce the notation ]- oo, t] to denote the path

from t back towards -oo, i.e. the set {y-ntln > 0}, and consider a process of the

form

Yt= E ad(t,,)W, (A.1)
sE]-oo,t]

where Wt in unit variance white noise.

We now consider the conditions under which (A.1) is stationary. Let tl and t2 be

any two nodes, let t = tl A t 2, and define the distances nl = d(ti, t), n 2 = d(t 2, t).

Note that d(tl, t2) = n 1 +n 2. Also let r(tl, t 2) = E(Yt, Yt2). Then from (A.1), the fact

that Wt is white, and the definition of t, n1, and n 2, we have

r (tl,t 2 ) = E ad(t,, 1s)ad(t2,s2)E (Wsl Ws2)
i El]-oo,t] 2 E]-oo,t21

= ]E ad(tl,s)ad(t2 ,s)
sE]-00 oo,t]

E anl+man2+m
m>O

For Yt to be isotropic we must have that

r(tl,t 2) = r(d(tl,t 2))

= r (n 1 + n 2)

Therefore for nl > 0, n 2 > 0 we must have that

r (nl + n2 ) = E an,+man2 +m (A.2)
m>O
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In particular for n > 2 we can deduce from (A.2) that we have the following two

relationships

r(2n) = r(n + n)

--- a2

m>O

r(2n - 2) - a2 (A.3)

r(2n) = r((n + 1)+(n-1))

- E am+n+larnm+n-1
m>O

r(2n - 2) - an-2an (A.4)

from which we deduce that

nan_2 = an > 2

or equivalently

an = constant n > 1
an--1 

Thus an = aan, so that

Yt = Y aad(ts)W
sE]-oo,t]

from which we immediately see that Yt satisfies

Yt = aY,-lt + aWt.
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B The Relation Among the Parameters of AR(2)

Consider the second-order model (2.45) where Wt is unit variance white noise. We

would like to show that the coefficients al, a 2, and a3 are related by a fourth-order

poylnomial relation that must be satisfied if Yt is isotropic. To begin note that from

(2.45) we obtain the relation

E(YtWt) = a3E(YstWt) + a (B.1)

while from (2.46) we find

E(Y6 tWt) = a3 E(YtWt) (B.2)

from which we deduce that ja3 1 I 1 and

ao
E(YtWt) = a2 _-2

0 a 3

E(YAtWt) = aa2 a3 (B.3)
ao - a3

Next consider multiplying (2.45) by each of the following: Yt, Y6t, Yy-'t, Y,-2t. We

take expectations using (B.1), (B.2) and the fact that E(Y-ItWt) = E(Yy-2tWt) = 0

(since we are solving the AR equations "casually"-see (2.47), (2.48)). Assuming that

Y is isotropic, we obtain the following four linear equations in the three unknowns

r0o, r1 , r2 :

ro = alrl + a2r 2 + a3 r2 + cE

rl = alro + a 2r1 + a3r1 (B.4)

r2 =ar + a2ro + a3 r 2

3
r2 = alrl + a 2r2 + a3 ro + a02 _

For this system to have a solution the coefficients al, a 2, a3 must satisfy

-1 al a 2 + a 3 -1

al a 2 + a 3 0 0 = 0 (B.5)

a2 al a 3 -1 0

a3 al a 2 - I-a 3
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which is a fourth-order polynomial relation. It is straightforward to check that these

are the only constraints on the ai in order for Y to be isotropic (multiply (2.45) by

any Y,t, w - 0, Iwl > 2 and take expectations--one obtains a unique expression for

each r~, n > 3 in terms of the preceding values of r).
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C Properties of the Statistics of the Forward and

Backward Residuals

In this appendix we prove some of the results on the structure of the statistics of

the prediction errors Et,, and Ft,, and their barycenters. The keys to the proofs of

all of these results-and to the others stated in Section 3 without proof-are the

constraints of isotropy and the construction of specific isometries.

C.1 Proof of Lemma 3.2

Let

Gt,n(w) E (F-it,n-i (w) Et,n_1 ) (C.1)

where n is even and Iwl = n- 1, w -< 0. We wish to show that Gt,,(w) is identical

for all such w. By definition

Gt,,(w) = E ([Ye-at -E (Y,-,t lYy-it,n-1)] lEt,n-1 ) (C.2)

Define the set of nodes

.,n = {s = vt; Ivl < n, v - 0} (C.3)

The points wi-lt in (C.2) correspond to the points s = vt in i,n with Ivl = n. Let

w', w" be any two words satisfying Iwl = n - 1, w q O. Suppose that we can find a

local isometry q: 7,n -- , t,,such that

q(w'7- 1t) = W"7 -lt

(W"/7-lt) = W1-6lt

+(t) = t

(T,_n-1) = Tt,n-1 (C.4)

By the isometry extension lemma q can be extended to an isometry on T.

Consider Gt,n(w') and G()(t),n(") which are linear projections onto respectively,

Et,n-1 and EO(t),nl. Since the processes Yt and YO(t) have the same statistics, these
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two projection operators are identical. Furthermore, from (C.4) we see that +q(x) = t

and Ek(t),._l = Et,,_l, so that we can conclude that Gt,,(w') = Gt,,,(w").

Thus it remains to show that we can construct such local isometries for any such

w' and w". To do this note that the words w to be considered consist of

n-I

w= U WP (C.5)
P=_

Wn-l = {y-n+ } , Wn-2 = {Y-n+3}

WP = {(= , }n-P-267,-p+l, n < < n n-3 (C.6)

where

{cr,/}k = {m E {c,3}* Ilml = k} (C.7)

We now describe a set of maps:

1. qnl interchanges Wn-1 and Wn- 2 and leaves the rest of ITt, fixed. That is

On- ( -nt) = by-n+2t

n-1 ("y-n+2t) = y-n t

On-1 (s) = s for all other s E Ttn (C.8)

2. For n < p < n- 2, qp interchanges Wp- 1 and Ujn Wq. Specifically for any

such p, Op makes the following interchanges, leaving the remaining points in ITt,
fixed:

"y-P+lt a+ y-P-lt

lka"py-P+lt "y-P-k-lt, 1 < k < n - p - 1

mappc3ak- p+lt m_ mapSy-P-k+2 t,

1 < k < n - p - 2, O < Imaml < n - p - k

3. For each n < p < n- 3 and any 1 < k < n - p - 2, qp,k interchanges points

in Wp. Specifically, for any such p and k, qpk makes the following interchanges,
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leaving the remaining points in Tt, fixed:

M 2 I7 -+ p 2 bI 6, -pma Oma ,7t m-+ m map ~ pt

Iml l = k , 0 < Im2 l _< n - k -p -2

A straightforward, if somewhat tedious computation, verifies that (i) these are all

local isometries leaving t fixed and Tt,n_- invariant, and (ii) for any w', w" in W

an isometry satisfying (C.4) can be constructed by composing one or more of the

isometries in (1) - (3). This completes the proof of Lemma 3.2.

C.2 Proof of Lemma 3.3

Let

Ht,m(w, w') = E[F-lt,n-_(w)Et,n_l(w')] (C.9)

Where n is even Iwl = n - 1, w _ 0 and Iw'l < n, w' O 0. We wish to show that

Ht,,(w, w') is identical for all such w, w' pairs. An argument analogous to that in the

preceding subsection shows that this will be true if we can construct two classes of

isometries:

1. For any wl, w2 satisfying Iwl = n- 1, w _- 0, q(Wl) = w 2, Oq(w2) = W1, q

leaves 1Tt,_- invariant and leaves fixed any point of the form w't, with Iw'I < n,

W' x 0.

2. For any w', w' satisfying lw'l < n, w' x 0, O(w') = b(w'), b leaves y-1t,n-1

invariant and leaves fixed any point of the form wzy-'t, with lwl = n -1, w -< 0.

It is straightforward to check that the isometrics ,n-1, p, , p,k and their com-

positions form a class satisfying (1). To construct the second class, let us recall the

representation and ordering of the words w for which Iwl < n, w x 0 (see (3.8)

(3.9)), and let Wm denote the mth of these with respect to this ordering, where

0 < m < 22-1 - 1. We then define the following maps:
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* For each 1 < k < I -1 and each 0 < r < 27 - k - 1 1, ;bkr makes the following

interchanges, leaving the remaining points in Tt, fixed:

7 -Wr 2 kt )6(k-j) 7 -jWr 2kt, 0 < j < k - 1

Again it is a straightforward computation to check that (i) each such 4 lkr is a local

isometry (so that it can be extented to a full isometry); (ii) ;kr leaves Tr-lt,,n-

invariant and leaves fixed any point of the form w '-lt, with Iwl = n- 1, w < 0; and

(iii) for any wl, w' satisfying Iw'l < n, w' x 0, we can construct ,b as in (2) as a

composition of one or more of the Obkr. This completes the proof of Lemma 3.3.

C.3 Proof of Lemma 3.4

As in Section C.2, let wm denote the 2 [ 2 ] words such that Iwl < n, w x 0, and for

any two such words let

Jt (wi wj) = E[Et,n(wi)Et,n(wj)] (C.10)

Let nl = Iwll and n 2 = Iw21. Consider first the case when nl / n2. What we

must show in this case is that Jt,n(wi, wj) is the same for all pairs wi, wj with these

respective lengths. By an argument analogous to the ones used previously, this will

be true if for any two pairs (wi,wj), (wi,w}) with Iwil = IwI[ = n1, IwjI = 1wj1 = n2

we can find a local isometry q of Tt,n so that q leaves 1T-1t,n_- invariant and performs

the interchanges

wit w+ w't, wjt ~ w'jt

Direct calculations shows that compositions of the ?kkr defined in the previous sub-

section yields such a local isometry.

Suppose now that [wil = Iwjl = n1 , and let s = d(wit,wjt). An analogous

argument shows that

Jt,n(wi, wj) = Jt,n(O, wk), where Iwkl = s (C.11)
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Again an appropriate composition of the !kr yields an isometry leaving T-lt,n-1

invariant and performing the interchange

wit +-+ t, wjt +- wkt (C.12)

Which finishes the proof of Lemma 3.4.

C.4 Proof of Lemma 3.6

We wish to show that (3.53) holds for n odd. Consider the first equality in (3.53).

As before, an argument using the isotropy of Yt shows that this equality will follow if

we can construct a local isometry, this time of Tt,,+1 which leaves IT-lt,,-1 invariant

and which interchanges the sets

{WmtIO < m < 2'-2 - 1} (C.13)

and

{Wmt12 2- 1 m < 2 -1 _ 1) (C.14)

where as in Section C.2, the Wm are the ordered words such that Iwl < n + 1, w O 0.

The isometry in-lO (defined as in Section 3.2 but with n replaced by n + 1) has the

desired properties.

Consider now the second equality in (3.53). In this case we must construct an

isometry that again leaves 2T-it,,_1 invariant and which interchanges the set in (C.13)

and the set

{wy-'tllwl = n, w 0o)

The following local isometry q has the desired property. Each element s of 1,n+l can

be written uniquely in the form

s = ma,,y- 2 -Pt (C.15)

where
n + 1 < 1 (C.16)

2 2
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n+l
Ima,pl + + p < n + 1 (C.17)

The desired isometry is then, in essence, a reflection: for s as in (C.15)

+q(S) = mp- 2 +Pt (C.18)

which completes the proof of Lemma 3.6.
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D Calculation of a-1/2 (& ... , Ek)

From (3.35) and (4.42) we see that the computation of '-1/2(ao..., ak) can be per-

formed by a simple construction from the inverse square roots of

S+ = S(ao,...,ak-_) + akUk-1 = (ao + ak,...,ak+l + ak) (D.1)

_- = (ao,... , ak-)-akUk-1 = 2(ao - k, ... , k-1 -ak) (D.2)

If we introduce the following notation

Bloc(X,Y)2 X-Y X+Y (D.3)

Then E-1/2(Co,..., Ck) can be calculated via the following recursion:

(a -1/2 if k = O
- 1/ 2 (ao,... ak) = loc ( 1 / 2 1/ 2 ) if k > 1 (D.4)

Bloc (72 i', Y1 1 2) if k > 1

which involves a sequence scalar calculations.
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-igre 5.1 Cylinder of radius 1, the suppor of the impulse response of AR(2)

Figure 5.1: Cylinder of radius 1, the support of the impulse response of AR(2)
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