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Abstract

Motivated by the recently-developed theory of multiscale signal models and wavelet
transforms, we introduce stochastic dynamic models evolving on homogeneous trees.
In particular we introduce and investigate both AR and state models on trees. Our
analysis yields generalizations of Levinson and Schur recursions and of Kalman filters,
Riccati equations, and Rauch-Tung-Striebel smoothing.

1. MULTISCALE REPRESENTATIONS AND HOMOGENEOUS TREES

The recently-introduced theory of multiscale representations and wavelet trans-

forms [4] provides a sequence of approximations of signals at finer and finer scales. In

1-D a signal f(x) is represented at the mth scale by a sequence f(m, n) which pro-

vides the amplitudes of time-scaled pulses located at the points n2-m . The progression

from one scale to the next thus introduces twice as many points and indeed provides

a tree structure with the pair (2 - m , n) at one scale associated with ( 2
- ( m+ l), 2n) and

(2-(m+l),2n + 1) at the next. This provides the motivation for the development of a

system and stochastic process theory when the index set is taken to be a homogeneous

dyadic tree. In this paper we outline some of the basic ideas behind our work.

Let T denote the index set of the tree and we use the single symbol t for nodes on

the tree. The scale associated with t is denoted by m(t), and we write s -< t(s -- t)

if m(s) < m(t)(m(s) < m(t)). We also let d(s, t) denote the distance between s and

t, and s A t the common "parent" node of s and t (e.g. (2 -m, n) is the parent of

(2-(m+1),2n) and (2-(m+1),2n + 1). In analogy with the shift operator z-' used as

the basis for describing discrete-time dynamics we also define several shift operators

on the tree: 0, the identity operator (no move); 7 - l, the fine-to-coarse shift (e.g.

from (2-(m+l),2n or 2n + 1) to (2-m, n)); a, the left coarse-to-fine shift ((2-m,n) to
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(2-(m+1),2n)); A, the right coarse-to-fine shift ((2-m, n) to (2-(m+l),2n + 1)); and 6,

the exchange operator ((2-(m+1),2n) , , (2-(m+1),2n + 1)). Note that 0 and 6 are

isometries in that they are one-to-one, onto maps of T that preserve distances. Also

we have the relations

62 = ^-la = a-l = 0, -16 = a-1,6: = a (.y)

It is possible to code all points on the tree via shifts from an arbitrary origin node,

i.e. as wto, w E 4, where

_ = (y-1)* U {(a, }*6((--1) Ua, {,}* (1.2)

The length of a word w is denoted Iwl and equals d(wt,t) (e.g. [l-ll = 1, 16s = 2).

Also, since we will be interested in coarse-to-fine dynamic models, we define some

notation for causal moves:

w -< 0 (w -< 0) if wt -t (wt -< t) (1.3)

We also define for convenience the move 6(n) which exchanges the nth bit:

If t = ay-'lt, then 5(n)t = aa(n'-l)7-1t

If t = py-lt, then -(n)t = ,6(n-l)?-lt (1.4)

Finally, we introduce formal power series notation and operations.

S = E SW 'W (1.5)
wEC

yS = w S-1W W (1.6)
wEI

6(k)S = E s8kw w (1.7)
wEl

2. MODELING OF ISOTROPIC PROCESSES ON TREES

A zero-mean process Yt, t E T is isotropic if

E[YtY,] = rd(t,s) (2.1)

i.e. if its second-order statistics are invariant under any isometry of T. These pro-

cesses have been the subject of some study, and a Bochner-like spectral theorem has

been developed [1,2]. However, many questions remain including an explicit criterion
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for a sequence rn to be the covariance of such a process and the representations of

isotropic processes as outputs of systems driven by white noise. Note first that the

sequence {YK-nt} is an ordinary time series so that rn must be positive semidefinite;

however, the constraints of isotropy require even more. To uncover this structure we

seek here the characterization of the class of autoregressive (AR) models where an

AR model of order p has the form

Yt = E a,,t + oWt (2.2)
w-<O

where Wt is a white noise with unit variance. Note that this model is "causal" - i.e.

it has a coarse-to-fine direction of propagation - since w -< 0. Also, a first thought

might be to examine models with strict past dependence, i.e. Yt a function of W,-nt;

however as shown in [2], the constraints of isotropy allow us to show that only AR(1)

has such dependence. Thus we have that AR(p) involves a full set of 2p- 1 aw's and

one oa so that the number of parameters doubles as p increases by one. In addition as

shown in [2], isotropy places numerous polynomial constraints on these parameters.

As we now describe a better representation is provided by the generalization of lattice

structures which involves only one new parameter as p increases by one.

Let '{I... } denote the Gaussian linear space spanned by the variables in braces

and define the (nth order) past of the node t:

Yt,,n -I {Yt: w - 0, Iwl < n} (2.3)

As for time series, the development of models of increasing order involves recursions

for the forward and backward prediction errors. Specifically, define the backward

residual space:

Ytn = Yt,n, 1 E- -Ft,. (2.4)

where -. t,n is spanned by the backward prediction errors

Ft,n(w) -Yt - E (Ywt IYt,n- ) (2.5)

where w O0, Iwl = n. These variables are collected into a 2[2]-dimensional vector

(see [2] for the order), Ft,,. For Iwi < n and w x 0(i.e. m(wt) = m(t)) define the

forward prediction errors:

Et,n(w) -Yt - E (YtlYy-'t,n-l) (2.6)

and let Ft,n denote the span of these residuals and Et,, the 2[ 2 ]-dimensional vector

of these variables (see [2]).
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The key to the development of our models is the recursive computation of Ft,, and

Et,, as n increases. The general idea is the same as for time series but we must deal

with the more complex geometry of the tree and the changing dimensions of Ft,, and

Et,n. In particular, as shown in [2], it is necessary to distinguish between n even and

odd and between different groups of the components of Ft,, and Et,n. For example,

Ft,, consists of Ft,n(w) in eq.(2.5) with Iwl = n, w -< 0. Suppose that n is even and

consider elements of Ft,n for which Iwl = n, w - 0. In this case w = tiey- 1 for some

iv -< 0, with JIzil = n - 1, and by an argument exactly analogous to the time series

case we obtain the recursion:

Ft,n(w) = F-y-t,n-1(TO) -E t[F-l1t,n-_l(O)lEt,n_l] (2.7)

This procedure identifies several projections, as in eq.(2.7), to be calculated. A key

result is that these projection operators can in fact be reduced to scalar projections

involving a single new reflection coefficient and the local averages or barycenters of

the residuals:

et,n = 2-['- 1] E Et,n(w) (2.8)
Itwl<n,wuxO

ft,. = 2-[1 ] E Ft,n(w) (2.9)
IwI=n,w-O

For example, the projection in eq.(2.7) is the same for all such ti5 and in fact equals

E[Fy-lt,n-l(t3)let,nl]. This and related expressions follow from the properties of

isotropy and from a very important fact: any local isometry, i.e. a map f from one

subset of A onto another that preserves distances, can be extended to a full isometry

on T.

As a consequence of this result, we can obtain scalar Levinson recursions for the

barycenters themselves. Note first that et, = Eto = Yt = Ft,o = ft,o; that et,1 = Et,l,

ft,l = Ft,l; and that a straightforward calculation yields

ft,l = f-lt,o - klet, (2.10)

et,l = et,o - klf-lt,o (2.11)

-1 <kl= rl< 1 (2.12)
ro

For n even we find [2] that

et,n = et,n-1 -knf y-lt,n-1 (2.13)

ft, = (nf,-lt,n- 1 + e-s()t,nl) -ket,n- (2.14)
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where the reflection coefficients kn and the variances of the residuals satisfy

kn = cor (et,nl, f-lt,n-l1)

= cor (e5(f)t,n-l et,n-l)

= cor (e,(n)tn-lf -ltxn-1) (2.15)

cor(x, y) = E(xy)/ [E(x2)E(y2)]1 / 2 (2.16)

a2 = E (e 2,) = (1 - k2) an (2.17)

fn E (f) = ( 1 2 k (2.18)

where kn must satisfy

- < kn < 1 (2.19)

For n odd we have

et,n =' (etn- + e n1)- knfy-t,n-l (2.20)1 k t,n-1(

ftn = f -,-lt,n- - k (etn + e )t,n-l) (2.21)

k cor ( (et,n- + eo(n-I) ) f- (2.22)

=e2n = = n = (1 - k2) a l (2.23)

where

-1 < kn <1 (2.24)

Note that the constraints on the reflection coefficients are slightly different than for

time series, and as shown in [2] these conditions are precisely those for a sequence rn

to be the covariance of an isotropic process. In addition, the following generalization

of the Schur recursions allow us to calculate the kn efficiently. Define the formal power

series

Pn cOv (Yt, et,n) E E (Ytet,n) · W (2.25)
w-<O

Qn -coV (Yt, ft,n) E (Ytft,) w (2.26)
ut-<O

Then

Po = Qo = E rll - w (2.27)
uw-O
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while for n even

Pn = Pn- - -k7Qn-1 (2.28)

Qn = 2 (YQn-1 + "(!)Pn-1) -knPn-1 (2.29)= 2. ~ + - (2.29 )

where

kn =Qn-i(0) + S(T)Pn-.(O) (2.30)
2Pn-1(0)

and for n odd

= 2 (Pn-1 + 6( Pn-1) - Qn (2.31)

Qn = yn-1-kn2 (Pn-1 + 6( (2.32)

where

n -Pnl (0) + (n(-1)Pn-l(0) (2.33)

In [2] we also show how these same kn can be used to construct whitening and

modeling filters for Yt and we present a stability result analogous to the time series

case: kn must not achieve any of the extreme values in eq.(2.19), eq.(2.24). In addi-

tion we demonstrate that the class of AR(p) processes are completely equivalent to

reflection coefficient sequences with kn = 0, n > p and we show that these processes

are exactly the isotropic processes with impulse responses with support on a cylinder

of radius [2] about the strict past 7-.

3. STATE MODELS AND MULTIGRID ESTIMATION

A second class of models displaying coarse-to-fine structure is specified by state

models of the form

x(t) = A(m(t))x(^y-lt) + B(m(t))w(t) (3.1)

where w(t) is a vector white noise process with covariance I. The model eq.(3.1)

describes a process that is Markov scale-to-scale and, because of this we can readily

calculate its second order statistics. For example in the case in which A and B

are constant and A is stable, eq.(3.1) can describe stationary processes, where the

covariance of x satisfies the Lyapunov equation

Px = APxAT + BBT (3.2)
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and the correlation function is

Kx(t, s) = Ad(tsAt)P (AT)d(t' sAt) (3.3)

In the scalar case, or if APx = PAT, eq.(3.1) describes an isotropic process, but in

general eq.(3.1) describes a somewhat larger set of processes.

Consider now the estimation of x(t) based on measurements

y(t) = C(m(t))x(t) + v(t) (3.4)

where v(t) is white noise of covariance R(m(t)), independent of x. In many prob-

lems we may only have data at the finest level; however in some applications such

as geophysical signal processing or the fusion of multispectral data, data at multiple

scales is collected and must be combined. In [3] we describe three different algorith-

mic structures for estimating x(t) based on the measurements in eq.(3.4). One of

these involves processing from one scale to the next. This structure resembles the

Laplacian pyramid processing structure [4] and can be performed extremely quickly

using discrete Haar transforms.

A second structure is based on the following equality which can be derived from

the Markovian structure of eq.(3.1):

x(t) = Ll("-l1t) + L2((cat) + i({t)) + L 3 y(t) (3.5)

where L 1, L 2, and L 3 are gains(depending upon scale in general). Eq.(3.5) describes

a set of coupled equations from scale to scale which can be solved by Gauss-Seidel

relaxation that can be structured exactly as in multigrid algorithms for the solution

of partial differential equations.

A third algorithm involves a single fine-to-coarse sweep followed by a coarse-to-fine

corrrection. In the first step we recursively calculate the best estimate of x(t) based

on observatios in its descendent subtree. This recursion involves three steps, which

together define a new Riccati equation: a backward prediction step to predict

from at and /3t to t; a merge step, merging these two estimates; and an update

step incorporating the measurement at t. The merge step is the new feature that has

no counterpart for standard temporal models. Once we have reached the top node

of the tree, the downward sweep has the same form as the Rauch-Tung-Striebel form

of the optimal smoother for temporal models(allowing of course for the proliferation

of parallel calculations as the algorithm passes from coarser to finer scales): the best

smoothed estimate at t is calculated in terms of the best smoothed estimate at "y-lt

and the filtered estimate at that node calculated during the upward sweep.
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