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Abstract

Passive and lossless two-dimensional discrete systems of the

fully recursive half-plane type are introduced by viewing

them as 1-D filters over convolutional algebra. Necessary

and sufficient conditions for 2-D transfer functions to be

valid scattering as well as immittance domain description of

such systems are obtained. An algorithm for the structurally

passive (in fact, lossless) synthesis of filters having such

recursive structure is then derived from these representation

results as an extension of a recent 1-D Schur type algorithm

for the synthesis of discrete lossless two-ports. Specific

comments on various aspects of design and implementation of

such 2-D filters potentially useful in practical problems are

also made.
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1. Introduction

Various recursive schemes have been proposed in the

multidimensional (m-D) digital filter literature. Among

these the most widely studied are the quarter plane, the

asymmetric and the symmetric half-plane recursive scheme.

More recently, motivated by needs for parallel processing of

2-D signals a scheme known as the fully recursive half-plane

scheme has been proposed in [15], and a method of designing

transfer functions of filters having this recursive structure

has been outlined in [5]. The impulse responses of the class

of filters just mentioned satisfies the characteristic

property that the region of support is a half-plane and the

filter is recursive in both horizontal and vertical

direction. More specifically, the recursion equation

describing the relation between the input x and output y of a

filter of this type is given by:

o[0{Yn(m))] =

LD L
-E 1i[{Yni(m)}] + Z [{x (m)}] (1.1)

i=1 1 n-i irO (n-i)'

where xn(m), Yn(m) denote the n-th row of the input and the

output signal, and the (row) operations ai[.] and it ]

respectively denote 1-D linear shift invariant convolution

operations with fixed 1-D sequences ai(m) and bi(m).

Considering the 2-D Z-transform of (1.1), and assuming that

the operations ai[.] and hi[.] are all rational we then have

H(zlz 2 ) in (1.2) for the transfer function of the filter,

where Ai(z1), Bi(z1) are rational transfer functions
representing the convolutional row operations just mentioned.

L LN i D i
H(zl'Z2 )= A i (z1)z 2/ Bi(z 1 )z 2 (1.2)

i=0 i=O

On the otherhand, it is now well known that an input-
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output description such as the one expressed in (1.2), (1.3)

is not enough for the successful operation of a digital

filter but structural considerations need to be taken into

account. The class of structurally passive filters variously

known as the wave digital filters [16], orthogonal filters

[17] or the lossless bounded real filters [18], when properly

designed, are known to satisfy the properties of

insensitivity to coefficient perturbation and non-linear

arithmetic conditions resulting from overflow, finite

precision arithmetic etc. These are, in fact, properties of

specific realizations of transfer functions and can,

therefore, also be studied via state space methods. We refer

to the work in [27] for a discussion on sensetivity

properties of specific realizations such as the balanced

realization. Although much progress has been documented in

the synthesis and design of 1-D structurally passive filters,

methods for two and higher dimensions are still evolving.

Synthesis methods for two and multi-

dimensional wave digital filters, which are quarter plane

type filters have been reported in [16], [7]. Quarter plane

and asymmetric half-plane generalizations of 1-D lattice

filters which are, in fact, structurally passive, have been

discussed recently in the context of random field modeling in

[11],[19].

Following 1-D, in the present paper (pseudo) passive or

(pseudo) losslesslfully recursive half-plane 2-D digital

filters are introduced and a method of their structurally

passive synthesis and subsequently that of their design is

discussed for the first time. The problem of synthesis of

our filters are (pseudo) passive or (pseudo) lossless in the

sense that they dissipate or conserve discrete energy in

signals with half-plane support. See Sections 2 and 4 for

precise details.
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quarter plane causal (thus, including filters causal in a

convex cone [20]) structurally passive multidimensional

filters of the type mentioned above can be equivalently

viewed as the classical network theoretic problem of

synthesizing a lossless but otherwise arbitrarily prescribed

multidimensional transfer function as an interconnection of

elementary building blocks such as capacitors and inductors

(see [10] and references contained therein). This latter

problem is unsolvable in multidimensions (m>2), whereas in

2-D synthesis is feasible only in an unconstrained

topological structure [20], [26]. On the otherhand, it has

been shown that if certain ladder-like constraints are

imposed on the structure in which the filter is to be

synthesized then the prescribed 2-D transfer function must

satisfy further restrictions in addition to input-output

losslessness [21], [22], [23]. Related other synthesis

results [7], [16] in this context deal with important special

cases when the multidimensional frequency response of the

filter possesses certain symmetries. In contrast, the

present work provides us with a synthesis of single input

single output but otherwise arbitrary lossless fully

recursive half-plane 2-D filters. Additionally, unlike the

quarter plane case referred to earlier the synthesis is

obtained in a fixed predetermined structure potentially

useful for practical implementation.

As in most passive or lossless filter design techniques

our synthesis method proceeds by viewing the prescribed

passive transfer function as being embedded into the transfer

function of a lossless two-port. The synthesis of this fully

recursive half-plane lossless two-port takes advantage of a

recent algorithm for the design of structurally passive 1-D

filters advanced by Rao and Kailath [6] as an extension of

the celebrated Schur algorithm [9]. Unlike all other methods

known for the synthesis of 1-D continuous as well as discrete

lossless two-ports including those available in the classical
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circuit theoretic literature, the algorithm of [6] enjoys the

unique feature that given a transfer function associated with

the lossless two-port the synthesis algorithm makes use of

rational arithmetic operations only (i.e., nonrational

arithmetic operations such as polynomial factorization is not

required) [10]. The synthesis method for fully recursive

half-plane filters to be presently described fully exploits

this rational character of the 1-D algorithm in [6].

Although the details of the method differ nontrivially from

1-D due to considerations characteristic of multidimensional

problems (e.g., those utilizing techniques from elementary

algebraic curve theory [3], [12]), the synthesis to be

outlined can be considered, at least at a conceptual level,

to be a generalization of the result in [6] to two-port

transfer functions the coefficients of numerator and

denominator polynomials of which belong to a field of

rational functions (instead of the field of rational

numbers). From a different perspective the present work can

also be viewed as a generalization of 1-D Schur algorithm to

2-D fully recursive half-plane schemes, thus making it

possible to cast the present discussion in the closely

related framework of modeling of stationary random fields and

scattering theory [9].

A note regarding the stability of the filter is in

order. The region of analyticity of the transfer function of

our filter will be found to marginally differ from those

previously considered in the 2-D half-plane literature [4],

[5]. This is primarily due to the fact that the results such

as those in [4], [5] are motivated by bounded-input-bounded-

output considerations, whereas, in contrast, our results are

driven by passivity considerations. The fact that this

difference in consideration does indeed lead to diverging

formulations of stability in multidimensions (m>l), but not

in 1-D, is now known [1], [2]. Thus, there is no

contradiction between our stability results and those
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existing in the half-plane literature so far.

The idea of considering filters with recursive

structures such as the one considered in the present paper

can, along with [15], be traced back to the work of Harris as

referenced and described in [29]. However, although possible

generalizations of 1-D lattice filters were investigated in

this work, considerations of passivity or losslessness, let

alone structural passivity, were not taken into account. In

the present paper a complete characterization of passivity

and losslessness in terms of transform domain description of

systems having (partially) acausal recursive structures is

given for the first time. Furthermore, it is known that due

to the restricted nature of transmission zeros, (l-D) lattice

filters can only realize AR type transfer functions.

Structurally passive realizations of broader class of

transfer functions require considerations of structures other

than the lattice structure (the wave digital filters,

Rao-Kailath structures etc. are examples). Since the

specified transfer function need not be of the AR type (in

fact, it is completely arbitrary within the class of transfer

functions which are passive/lossless in the fully recursive

half plane sense -- a notion to be made precise in Section

2), our results go much beyond that established by Harris

[29].

In Section 2 the fully recursive half-plane passive

one-ports are characterized in terms of their transfer

function. In Section 3 we consider the immittance domain

description of fully resursive half-plane passive systems.

Characterization of fully recursive half-plane lossless

two-port transfer functions form the context of Section 4. A

representation theorem for fully recursive half-plane

lossless two-ports analogous to that of the Belevitch

canonical form [8] of representation for lossless 1-D

continuous two-ports of classical network theory is developed
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here. In Section 5 the synthesis method based on this

representation theorem is described, and in Section 6 a

design methodology is proposed by taking into account the

symmetry requirements [14] on the frequency response imposed

by many practical multidimensional processing tasks. Some

implementational considerations are also discussed here.

Finally, the results are summarized and possibilities of

further research are pointed out.
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2. Fully recursive symmetric half-plane passive systems:

The major intent of this section is to develop transform

domain characterization of single-input-single-output passive

or lossless fully recursive symmetric half-plane systems. We

note that in the classical theory of linear passive time

invariant 1-D systems two apparently different definitions of

passivity have been used [24]. As shown by Youla (see [24]

for datails and references to original literature), however,

the two definitions are mathematically equivalent under the

additional assumption that the system under consideration is

causal. Thus, causality may or may not be viewed as a

consequence of passivity depending on the way this latter

concept is introduced. In 2-D, since there are various ways

of introducing causality in the recursive structure of the

filter (the present context deals with only one such

possibility), it is desirable to adopt the definition of

passivity in such a way that causality may be introduced as

an independent notion. In this vein, we associate the total

(pseudo) energy EZlx(nl,n 2)l2 to the input x(n1 , n2 ) and the

total (pseudo) energy ZZJy(nl,n 2)Hl to the output y(n1 , n2 )

of the system, where the summations range from -- to +-. The

fully recursive half-plane filter is then said to be (pseudo)

passive if (2.1) holds true for any choice of square summable

input bi-sequence x(n1, n2 ).

E Jy(n1 , n2) 2 < ZE Ix(n1, n2 )1
2 (2.1)

To facilitate our discussion it will be assumed for the rest

of the paper that the 1-D convolution operations ai[.] and

Bi[.] in (1.1), can be viewed as convolutions with possibly

infinite but rational sequences i.e., these sequences are

impulse responses of 1-D IIR filters. This assumption has the

consequence of making Ai(z 1) and Bi(z1) 1-D rational transfer

functions and thus, the 2-D transfer function H(z1 ,z 2) of the

fully recursive filter as in (1.2) is a rational function in
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both z1 and z2.

We first examine the consequence of passivity reflected on

the frequency response H(w1, W2) of the filter2. By using the

2-D Parseval's theorem and the fact that Y(w1 l, 2) =

H(wlI2)X( l,~2), where Y(o'l, 2)' X( 1,w 2 ) are the respective

Fourier transforms of y(n1,n 2), x(n1 ,n2 ) we have that (2.1)

is equivalent to (2.2)

n n 2
I I IX(( 1, 2)jI (1-H(1l,'2)1 ) dw1 d 2 2 0 (2.2)

-It-I

Since (2.2) is true for any input X(Xl,x 2) with square

summable x(n1, n2 ), we have that IH(l,Uw 2 )I<1 for all real

two-tuples (w1,w 2) except possibly for finitely many of them.

To justify this latter step note that in view of rationality

of the transfer function H(z1 ,z 2) if IH(l,1 2 )I>l for some

("10o'20) then there must exist a neighbourhood of (10,w20)

in which IH(Ul,W 2)1>1 for all (W1, w2 ) . Then (2.2) is

violated by choosing X(X 1,x 2) to have finite support inside

the neighborhood (w10, 20 ) just mentioned (the existence of

such X(X1,x 2) with square summable x(nl,n 2) can be easily

demonstrated). Also, if the system is lossless we have

equality in (2.1) and (2.2), which via the same argument

yields that IH(w1, w2 )1=1 for all real 2-tuples (1,W&2)

except possibly for finitely many of them. Note that the

results of the preceding discussion can be succintly stated

by saying that IH(zl,z2)1<1 (or IH(zl,Z 2 )=l1 in the lossless

case) everywhere on Izll=l1 except possibly at the

nonessential singularities of the 2nd kind [20],[28].

Next, by choosing x(n1, n2 ) = 6(n1 , n2 ) i.e., the 2-D impulse

function, the impulse response h(n1, n2 ) of the filter can be

2 with slight abuse of notation H(wi, 2) is used for frequency

response, whereas H(z1,z 2) is used for transfer function.



obtained as the corresponding output. Since the support of

the impulse response h(n1, n2) of the filter is restricted to

the upper half plane n2>0 [5] we then have that:

y(n1 , n2) = h(n1 , n2 ) = £ hk(nl) 6(n2-k) (2.3)
k=0

where hk(nl), k=0,1,...etc. are certain 1-D row sequences and

6(.) is the 1-D impulse sequence.

Considering the z-transform of (2.3) we obtain

o nl k
H(z1, z2) = [E hk(nl)z 1 ] z2 (2.4)

k=0 n1

Using the Schwartz inequality it follows from (2.4) that

2 nl 2
IH(zl, z2 )I

2 < k(z2 ) · Ij hk(nl)z1 1 (2.5)
k=- n1

where k(z2) = 1 + z2 1 2+ IZ214 + .... etc.

If we consider the special case z1 = exp(jw1 ) then we have

(2.6) from (2.5).

Jl1 2 2jH(e , z2 ) I < k(z2) *. IHk(1)12 (2.6)
k=0

where Hk(Wl) is the Fourier transform of hk(nl) for each
k = 0,1,2,...etc.

On the otherhand, the total output (pseudo) energy

corresponding to input x(nl1 n2 )=6(n1 ,n2) can also be

expressed as:

ZZh(nl,n 2)1 2 Ihk(nl)I = £ (1/2n) S IHk(l )l dw1
k=0 n1 k=O -i

= (1/2r) I £ IHk(1) 2 dw1
-n k=O

(2.7)
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in which the first equality follows from the definition of

hk(n 1) and the fact that the support of the impulse response

h(n1 , n2 ) is in the upper half plane n2 >0; the second

equality from 1-D Parsevals' formula; whereas the last

equality follows from interchanging the integral with the

infinite sum (this latter operation, although not always

feasible, can be justified in the present context on the

basis of monotone convergence theorem [30, p.243]).

The left hand side of (2.7) is the total (pseudo) energy in

the signal h(nl, n2), whereas the right hand side can be

similarly interpreted as the sum of the total (pseudo)

energies contained in the row outputs h 0(n1 ), h1 (nl),...etc.

corresponding to the impulsive input 6(n1,n 2). Furthermore,

it follows from passivity that ZE Ih(n 1,n 2)1 < 1. Thus, the

integral in the left hand side of (2.7) is finite, and

consequently, the integrand in the right hand side is bounded

a.e. (almost everywhere in the Lebesgue measure sense) in

[-n,t] i.e., we have:

2£ IHk(1)1 < X a.e. (2.8)
k=O

In view of (2.6) and the fact that k(z2 ) < - for 1z21 < 1 we

then conclude that H(zl,z2) is bounded a.e. fgr all z 11 = 1
2 3W10

and for all Iz2 1 < 1; and furthermore, if H(e ' z20 ) is

2unbounded for some Iz20 1 < 1 and real w10' then Z IHk(H10)1
k=0

must be unbounded, and thus H(e ,z2 ) must also be so for

all z2 . The latter statement would then hold for all z2 on

Iz21=1 in particular, which would in turn violate the

previously established fact (cf. paragraph after (2.2)) that

IH(z1, z2 )1<1 everywhere on Iz1 1=1z 2 1=l except possibly at

the nonessential singularities of 2nd kind. Thus, H (Zl, z2 )

is bounded for all Iz11 = 1, 1z21 < 1.
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Since the convolution operations ai[.] and .i[.] in (1.1) can

be taken to be rational IIR functions, we have that for each

i, Ai(z1 ) and Bi(z1) in (1.2) are rational functions in z1.

Thus, as stated earlier, under the present assumption,

H(zl,z2) becomes a rational function of both z1 and z 2, and

can be expressed as the ratio of two relatively prime

polynomials n(z1,z 2) and d(zl,z 2) as:

n(zlz 2 )H(z1,z2) = z,_2)
2 = d(Zl'Z2 ) (2.9)

We now claim that for passive systems presently under

consideration, the polynomial d(z1,z 2) in (2.9) cannot have

infinitely many zeros on the distinguished boundary Izl =

Iz2 1 = 1 of the unit bi-disc. For, if d(z 1 0,z 2 0) = 0 for

some Iz1 01 = Iz201 = 1 then in view of (2.9), in order for

H(w1,w2 ) to be bounded we would need n(z1 0 ,z20 ) = 0 i.e.,

d(zlz 2 ) and n(zl,z 2) would have a common zero on

Iz 11=1z2 1=1. However, the presence of infinitely many such

zeros would, in view of Bezout's theorem in algebraic curve

theory [3], require that n(zl,z2) and d(zl,z 2) have a common

factor, which has been hypothesized to be absent in (2.9).

Some essential features of the above discussion are

summarized in the following result.

Property 2.1: A passive fully recursive symmetric half-plane

filter transfer function, when expressed in irreducible

rational form as in (2.9), satisfies the following two

conditions: (i) d( 1l,z2) ¢ 0 for Iz11 = 1 and Iz21 < 1 i.e.,

H(zl,z2 ) is analytic in Iz2 1 < 1 for every Iz11 = 1. (ii)

d(zl,z2 ) does not have infinitely many zeros on Iz 1 1=1z2 1=l.

To investigate further consequences of passivity on the

transfer function H(z 1,z 2), when expressed in terms of ratio
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of two relatively prime polynomials n(zl,z2) and d(z1,z 2) as

in (2.9) let us define d(zl,z 2) and d(zl,z 2) as:

^ ~ d 1 d 2 * ~1 ,-1
d(z1 ,z2 ) = d(Z l,Z 2 )Z1 Z2 ; d(Zl,Z2 ) = d (z1 ,z2 )

(2.10a,b)

where d1 , d2 are the partial degrees of d in z1 and z2, and *

denotes complex conjugation.

For convenience of further discussion the following

definitions will be introduced in the spirit of [2]. A

polynomial d will be said to be half-plane Schur if it does

not have any zero in Iz1i=l, Iz2 1<l. Furthermore, if any

polynomial d satisfies d = yd for some necessarily unimodular

constant y (i.e., IYI=l) then d will be called

self-reciprocal. Similarly, a polynomial satisfying

properties 2.1(i) and 2.1(ii) simultaneously will be called

half-plane scattering Schur.

Condition (ii) in Property 2.1 can, in fact, be replaced by

any one of the conditions expressed in the following.

Assertion 2.1: Let d=d(zl,z2 ) be a half-plane Schur

polynomial in z1 and z2 and let a be the primitive3 part of

d. Then the following conditions are all equivalent.

(a) d(z1,z 2 ) does not have infinitely many zeros on the

distinguished boundary 1z11 = Iz21 = 1.

(b) a(zl,z2 ) and a(z1 ,z 2), are relatively prime polynomials.

3 for the purpose of the present paper the primitive part and

content [20] are considered, without explicit reference, with

respect to the variable z1.
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(c) Each irreducible factor of a(z1 ,z 2) has at least one

zero in the domain 1z11 Z 1 1,z2 1 > 1.

We first need the following Lemma.

Lemma 2.1: Let g be a self-reciprocal half-plane Schur

polynomial. If g is nonconstant and primitive then g must

have infinitely many zeros on 1zll=lz 2 1=l.

Proof: Since g is primitive, g(z1 0,z 2) must be a nonconstant

polynomial involving z2 for almost all fixed values of z1 0 on

1z1 1=l. Furthermore, since g is self-reciprocal g(z1 0, z2 ) is

also so, and thus, the zeros of g(z 1 0 ,z2) must either form

inverse conjugate pairs or lie on 1z2 1=1. The former

possibility, however, is ruled out by the half-plane Schur

property of g. The result thus follows. Q.E.D.

Proof of Assertion 2.1: Let g=gcd(a,a). Then as shown in [2]

we must have g(zl,Z 2) = yg(zl,z 2 ), where y = constant, Irl=1;

and since a, thus g, is primitive, in view of the above

Lemma, g(zl,z2 ) is either a constant or must have infinitely

many zeros on Iz11 = jz21 = 1. In the latter case, a(z1 ,z2 )

and thus d(zl,z2) must have infinitely many zeros on 1z11 =

1z21 = 1, which is impossible if (a) holds. Thus, g(zlz 2 )
=

constant, and a(z1 ,z 2) is relatively prime with a(z1 ,z 2).

This shows that (a) implies (b).

To show that (b) implies (a) observe that since the

content of d(Zl,z2) is nonzero on Iz11 = 1, if d(z1,z 2) has

infinitely many zeros on Iz11 = 1z21 = 1 then so does

a(z1,z 2 ). Also, if for some Iz101 = 1z201 = 1, a(z 1 0,z 2 0 ) = 0

then a(z1 0 ,z20 ) = 0. Consequently, if d(zl,z 2) and thus

a(z1,z 2 ) has infinitely many zeros on Iz11 = 1 then a(z1,z 2)

and a(zl,z2) would have infinitely many common zeros (on Jz11

= Iz21 = 1). Therefore, due to Bezout's theorem [3],
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a(zl,z2 ) and a(z1 ,z 2) would not then be relatively prime

polynomials. Thus, (a) and (b) are equivalent.

Next, if a1 (zl,z2 ) is any irreducible factor of a(z1 ,z 2) then

obviously a1 (z1 lz2 ) # 0 for IZl1 ", 1z21 < 1. Furthermore,

if a1(z 1 ,z 2) does not contain any zero in Iz11 = 1 1z21 > 1

then for any z1 on Iz11 = 1, a1 (zlz 2 ) • 0 in 1z21 < 1 as

well as in 1z21 > 1, and thus, in view of primitive property

of a1 inherited from a, the values of z2 such that a 1 (zl,z2 )

= 0 must be on Iz21 = 1. Consequently, a1 (zl1 z2 ), and thus,

a(z1 ,z2 ) would have infinitely many zeros on Iz11 = 1z21 = 1.

Therefore, (a) (or equivalently (b)) implies (c).

To prove that (c) implies (b) let g = gcd(a,a) i.e., a = g.e,

a = gf, where e and f are relatively prime polynomials.

Then, as shown in [2] g = yg where y is a constant. Assuming

g to be a nonconstant polynomial, if each irreducible factor

of a contains at least one zero in Iz11 = 1 1z21 > 1 then g

and thus g = yg must have a zero in Iz11 = 1, [z21 > 1.

However, this implies that the polynomial g and thus, in view

of a = ge, the polynomial a must have a zero in 1zl2 = 1,

Iz2 1 < 1, which is a contradiction. Thus, g = constant and a

and a are relatively prime. Q.E.D.

We also have the following important result.

Property 2.2a: If a rational function H-H(z1 ,z 2) as in (2.9)

is such that IHI<1 on Iz11=1z2 1=1 except possibly at finite

number of nonessential singularities of 2nd kind, if present,

and if d in (2.9) is a half-plane Schur polynomial (thus, if

H(z1 ,z 2 ) is transfer function of a passive fully recursive

half-plane filter) then IHI<i for all z1 1=l and Iz21<l.

Furthermore, if IHI=1 for some (z1 0 ,z2 0 ) with

Iz1 0 1=1,1z2 0 <l, then H(z 1 0,z 2) is a constant independent of
z2. Assuming H to involve z2, the latter situation can arise

for at most finitely many values of z10 (with 1z10 =l1).
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Proof: Due to the half-plane Schur property of the

denominator polynomial of H(z1,z 2), d(z1,z 2) cannot be zero

for some fixed Jz10 =1 and arbitrary values of Iz2 1<1. Thus,

if for any z1 0 with lz1 0 1=l we define H1 =Hl(z2 )=H(z 1 0 ,z2 )

then due to our hypothesis, H1 is well defined, analytic in

Iz2 1<1 and IH1 1<1 for Iz2 1=l. Thus, by maximum modulus

theorem, IH1 1<1 for all 1z2 1<1. Since this is true for

arbitrary z10 on z11=l1 the first part follows.

To show the second part assume that for some 1z1 0 1=1,

Iz2 0 1<1, we have IH(z 1 0 ,z 2 0 )1=l. Then as shown above the

maximum modulus theorem applies to H 1 =Hl(z2 )-H 1(z 10,z 2 ) and

thus IH1 (Z 20 )1 1 with 1z2 0 1<l implies that

H 1=H1 (z2 )=C=constant. However, this latter statement

obviously cannot hold for infinitely many values of z10

unless H(Z1 ,Z 2) is independent of z2. Q.E.D.

A rational function satisfying the property IHI<1 for Iz11=1,

Iz21<l will henceforth be called a half-plane bounded

function. In fact, the following result in Property 2.2b can

also be proved. This result shows that the polynomials of the

type described in Properties 2.1(i) and 2.1(ii) i.e., the

half-plane scattering Schur polynomials characterize

denominator of irreducible rational functions satisfying the

half-plane boundedness property.

Property 2.2b: If H is a nonconstant irreducible rational

function as expressed in (2.9) and is such that IHlI< for

IZl1=l,z 2 1<l1 then either d is a constant or satisfies

Properties 2.1 (i) and 2.1 (ii) i.e., d is a half-plane

scattering Schur polynomial.

Proof: Obviously, it is impossible to have d=O and n#0 for

any 1z1 1=l,1z2 1<l, because otherwise IHI would be unbounded

there. If d=n=O for some 1z1 0 1=1, 1z2 0 1<1 and z10 is not a
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zero of the content of d then consider an arbitrary small arc

rl of Iz11-1 issuing from z10. Let r2 be the continuous [12]

arc traced out by z2 (beginning from z2 0 ) such that

d(z,z 2 )=0O is satisfied. Note that since r1 is assumed

arbitrarily small, due to the continuity property of zeros of

a polynomial as a function of its coefficients, r2 must lie

completely within Iz2 1<1. On other hand, If d-n=O for some

Iz1 0 1=l, Iz2 0 1<1 and z10 is a zero of the content of d then

d=O for Zl=Z1 0 and for arbitrary z2 and thus, d=0 for

infinitely many values of (Zl, 2 ) (in Iz1 =1l, lz2 l<l in

particular). In each of the above two cases d would have

infinitely many zeros in Iz1 1=l, Iz2 1<. However, since n and

d are relatively prime, due to Bezout's theorem [3], n cannot

be zero at each of these infinitely many values of (Zl,z 2)

just mentoned. Thus, we would then have n0O, d=0 for some

Izll=l, Iz2 1<l, which has already been proved to be

impossible. Thus, d y 0 for Iz11 = 1, 1z2 1 < 1.

Finally, if d(z 1 0,z 2 0 )=0 for some 1z1 0 1=1z 20 1=1 then

n(z10,z20)=0 because otherwise IHI<1 would be violated in

z1 1=1,lz 2 <l1 at the vicinity of (z1 0 'z20 ). Thus existence

of infinitely many such (z1 0 ,z 20 ) would again violate the

relative primeness of n and d. Q.E.D.

We then have the following characterization for passive

half-plane transfer functions.

Fact 2.1: A rational function H is the transfer function of a

passive fully recursive half-plane filter if and only if it

satisfies the property that IHIl1 for all 1z1 1=1, 1z2 1<l.

Proof: Necessity has already been established in Property

2.2a. Conversely, if IHI<1 for Iz1 1=1, 1z2 1<1 then from

Property 2.2b it follows that the denominator of H in

irreducible rational form must be either a constant or a

half-plane scattering Schur polynomial, and thus can have at



19

most finitely many zeros on Iz1 1-1z 2 1-1. Consequently,

H(1,r" 2) is well defined except possibly for a finite number

of real 2-tuples (w 1,w 2).

Furthermore, due to rational character of H it follows by

invoking continuity that JIHJ< wherever H is well defined on

1I1 1=lz 2 1=1. Thus, IH(w 1 i,2)L1< for all real 2-tuples (w1, 2)

except possibly a finite number of them. This latter

conclusion, however, implies that (2.2) holds, where X(wl, 2)

is the Fourier transform of any square summable input signal

x(n1 ,n 2 ). The pseudo-passivity of H(zl,z2 ) then follows from

equivalence of (2.2) and (2.1). Q.E.D.

We next assume the filter to be (pseudo) lossless in the

sense described earlier i.e., equations (2.1) and (2.2) are

satisfied with equality. Consequently, from (2.2) we then

have that for all 2-tuples (b1 &,2 ) with the possible

exception of finitely many values (2.11) holds true.

IH(w1, 2) I = 1 (2.11)

We first claim that the rational transfer function H(Zl,Z2)

of a (pseudo) lossless fully recursive half-plane transfer

function satisfies the property that

H(Z1 ,Z2 ) H(z1 ,z2) = 1 (2.12)

To substantiate this result we observe from the definition of

the operation - that H(Z1,Z 2) = H*(Z1 ,z 2) for IZ1 1=1z 2 1=l,

where the superscript * denotes complex conjugation.
~ - -1

Consequently, from (2.11) it follows that H(z 1,z 2 )=H (Z1 ,z2 )

for all 2-tuples (Zl,z2 ) on Izl=lz 2 1=l with possible

exception of at most finitely many values. Thus, the two

variable rational function H(z1 ,z 2) and H 1(z1 ,z2 ) assume

equal values at infinitely many distinct points (Zl,z2), and

consequently, due to analytic continuation are identically
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-1
same, i.e., H(zl,z2) - H (Zl1 z2 ) for all z1 and z2.

For convenience of further exposition the following

terminology will be introduced. Any rational function

H(z 1,z2 ) as expressed in (2.9) will be said to be a fully

recursive half-plane all-pass function if H(z1 ,z 2) satisfies

the conditions stated in Property 2.1 and in equation (2.12).

Thus, transfer functions of (pseudo) lossless fully recursive

half-plane filters are fully recursive half-plane all-pass

functions.

A function A(zl,z2) of two variables z1, z2, when expressible

as a polynomial in z2 with coefficients as rational functions

in z1 will be said to be a pseudopolynomial (in z2 ). Thus,

if A(z1,z 2) is a pseudopolynomial then

N
A(z 1lZ 2) = 0 (Z 1 ) + al(z 1 )z 2 +...+ aN (z1 )z 2 (2.13)

where ak(zl)'s are rational functions in z1. With A(z1 ,z 2)

as given in (2.13), where aN (z1) is not identically zero,

the integer N2 will also be denoted by deg2A. Furthermore,

the notation A(zl,z2) will be used to denote the pseudo-

polynomial obtained from A(z1 ,z2 ) as:

~ N 2
A(Zl,Z2 ) = A(z1 ,z 2 )2 2 (2.14)

Two pseudopolynomials B(z 1 'Z2) and C(zl,z 2 ) are said to be

coprime if there is no pseudopolynomial D(z1 ,z 2) actually

involving z2 such that B(Zl,z 2) = D(Zl,z 2) B 1(zl,z 2) and

C(zl,Z2 ) = D(z1 ,z2 ) C1(zl,z2 ) for some pseudopolynomials

B 1(Zl,z 2 ) and C1 (zl,z 2). The following property then holds

true.

Theorem 2.1: Any fully recursive half-plane all-pass

function H(z1 ,z 2) (thus, rational transfer function of

(pseudo) lossless fully recursive half-plane filter) can be
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expressed as follows:

H(zl,z 2) - -D(z1 ) [A(Z1 ,Z 2 )/A(Z1' Z2 )] (2.15)

where i) A(z1 ,z 2) is a pseudopolynomial

N ^
ii) D(z1) = z 1 y [d(zl)/d(zl)], where d(z1 ) is a

polynomial in z1, y is a constant of unit modulus

and N = integer

iii) the pseudopolynomials A(z1 ,z 2) and A(z1 ,z 2) are

coprime

iv) A(z 1,z2 ) # 0 for all Iz1 1=1, Iz2 <1l.

Conversely, any rational function expressible as in (2.15)

with (i), (ii), (iii) and (iv) in force is a fully recursive

half-plane all-pass function.

Proof: Let H(zl,Z 2) = A(Z 1 ,Z2)/B(Z1 ,Z2 ), where A = A(z1 ,z 2)

and B = B(z1,z 2) are pseudopolynomials expressible as A =

aN/aD and B = bN/bD, where in turn aN = aN(ZlZ 2 ), bN =

bN(Zl,z2 ) are polynomials in both zl and z2, whereas aD =

aD(Z1) and bD D bD(z 1) are polynomials in z1 only.

We further assume that H = H(z1,z 2) expressed as in (2.16) is

in irreducible rational form i.e., the pairs of polynomials

(aN,aD), (bN,bD), (aN,bN) and (bD,aD) are relatively prime.

H = (bDaN)/(aDbN) (2.16)

Then from (2.16), equations (2.17), (2.18) and (2.19)

follows, where the generic notation nip for denoting the

degree of the polynomial p in the i-th variable has been

used.
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....1~ u~N-vD N 1
H H (aDbN)/(bDaN) [(aDbN)/(bDaN)] 1 z2

(2.17)

=N nlba -D n laD + nlb N 0 (2.18 a,b)
D N D N

and N1 = n2a N n2b N (2.19)

Since H is analytic in Iz1 ll=l, Iz2 1<1 and neither aD nor bN

can have a factor z2, it clearly follows that N 1 > 0. Also,

since H in (2.16) is in irreducible rational form, it follows

by comparing (2.16) and (2.17) that

V N N V D^ vN N1 ^ ^ D
cbDaN = aDbN z1 z2 , aaDbN bDaN z1 (2.20 a,b)

where a = o(zl,z 2) is a polynomial in z1 and z2. By

inserting (2.20b) into (2.16) and subsequently making use of

the relations between aN and aN, between aD and aD and

finally by using A = aN/aD, (2.18) and (2.19), we obtain the

following

-(nlaN + nlb -n2aN

H = a[(aDbD)/(aDbD)][A/A].z 1 lb 2

(2.21)

2 aN

By defining d = aDb D and noting the fact that A = A z2 we

then have:

-(nla N nbN)

H = a(d/d)(A/A) z N N (2.22)

Since H in (2.16) is irreducible and analytic in

Iz11=l,lz 2 1<l we note that aDbN cannot have a factor z2 .
Invoking this fact and considering the ^ of (2.20a) we then

have:
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k
abDaN a Db Z (2.23)

where in (2.23) k is the total multiplicity of zl in (aDbN).

By substituting (2.23) into (2.20b) we obtain aa=zlD (note

that since from (2.18b) vD = degree of (aDbN) in z1 it

obviously follows from (2.23) that vD-k>O). Consequently, it

must be true that a is a monomial involving z1 only i.e., is

of the form

VD-k D-k
=¥yz 1i for some constant r. Then oa = ry*zl . Thus,

yIrl1. Therefore, (2.22) yields (2.15) with N v= D-(nla +

nlb + k). Properties 2.3(i) and 2.3(ii) are twus

established. To show that 2(iii) holds true note that

n n
la -nla

= (aN/aD) z1 (2.24)

Consequently, if A and A has a pseudopolynomial common factor

then it follows from AN = aN/aD and (2.24) that aN and aN

must have a common factor involving z2. In view of (2.20a,b)

then aDbN and bDaN would not be relatively prime, thus

violating the irreducibility of H in (2.16). Finally, to

prove (iv) note that it follows from Property 2.1, (2.16) and

(2.20b) that aDbN and thus aN is nonzero for 1zll = 1, and

1z21 < 1.

The converse proposition follows trivially from the fact that

any H = H(zl,z2) satisfying (2.15) along with (i) through

(iv) is necessarily analytic in Iz11 =1, 1z2 1 < 1 and has

the property of HH = 1 on 1z11 = 1z21 = 1. Q.E.D

Theorem 2.2: If a is a half-plane scattering Schur polynomial

then there exists a half-plane bounded function, which in its

irreducible rational form, has a as its denominator.

Proof: Let a=d.g, where g is the primitive part and d is the
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content of a. Then d#O on 1z1 11l and, due to Assertion

2.1(b), g is relatively prime with g. Thus, H1 - g/g is an

irreducible rational function, such that IH1 1-1 wherever g is

nonzero on Iz1 1=1z 2 1=l. Since g can have at most finite

number of zeros on Izll1=1z 2 1=l we have IH111= on Iz1 1l=z 2 1=1
except possibly at finite number of points. It then follows

from Property 2.2a by invoking the half-plane Schur property

of g that IH1 1<1 for Iz1l1=, Iz21<l.

Consider any polynomial h relatively prime with g and d. Then

Ih/dI is bounded on Iz111. Thus, H 2 - c(h/g) satisfies

IH2 1<l on jz1 1- for appropriate choice of a constant c.

Consequently, H=H1H2 satisfiess IHI<1 for Iz1 ll=, Iz2 1<1.

Also, since g, being a primitive polynomial, cannot have a

factor in common with d, dg is the denominator of H in

irreducible rational form. Q.E.D.

Note that Theorem 2.2 along with Property 2.2b characterizes

half-plane scattering Schur polynomials as the denominators

of half-plane bounded functions in irreducible rational form.
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3. Half-plane immittance functions and their properties:

A description of fully recursive half-plane one ports, which

is essentially analogous to scattering parameter description

of passive 1-D filters was developed in Section 2. It is now

well known that an alternative formalism, namely the

immittance formalism, also provides an equivalent but

sometimes more efficient way of describing passive systems.

For example, the split versions of Levinson and Schur

algorithms of 1-D linear prediction theory as well as the 2-D

wave digital filters having fan type frequency response [16]

are most conveniently described via the immittance formalism.

Motivated by such considerations, the class of 2-D transfer

functions that characterize fully recursive half-plane

passive as well as lossless filters are identified in the

present section. The development on the one hand closely

follows our analogous studies for the quarter plane case

reported in [2] and makes use of the concept of 1-D

pseudo-lossless functions [25] on the other.

A rational function Z(Z 1,z 2) in two-variables z1, z2 will be

called half-plane positive if ReZ(z1,z 2) 2 0 for Iz11=1 and

1z2 1<l. In addition, if a half-plane positive function

satisfies the property Z(zl,z2) +Z(zl,z 2)=0 then it will be

called a half-plane reactance function.

Clearly, then there is a one-to-one correspondence between

the class of half-plane bounded functions H and the

half-plane positive functions Z via the bilinear

transformation H=(1-Z)/(l+Z); Z=(1-H)/(l+H). The same comment

holds true between the class of half-plane bounded lossless

functions and the class of half-plane reactance functions.

In order to characterize the nature of numerator and

denominator polynomials of half-plane positive (or reactance)

functions, when expressed in irreducible rational form, we
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first claim that the following results hold true.

Lemma 3.1: (i) Any half-plane Schur polynomial can be

expresssed as a product of a half-plane self-reciprocal Schur

factor and a half-plane scattering Schur factor. (ii) a

half-plane self-reciprocal Schur polynomial may not contain a

half-plane scattering Schur factor involving z2. (iii) a

polynomial is half-plane self-reciprocal Schur if and only if

the irreducible factors in its primitive part have the same

property and its content is a self reciprocal polynomial

non-zero on iz1l = 1.

Proof: Let a be a half-plane Schur polynomial.

(i) Let d=gcd(a,a); a=d.e, a=d.f, where e and f are coprime

polynomials. Then d and e are half-plane Schur and, due to

[2, Lemma Al], d=yd, where r=constant, Ivy=l. Thus, d is

half-plane self-reciprocal Schur. Also, d.f=a=d.e=y.d.e, and

consequently, f=ye. Thus, relative primeness of e and f

implies the relative primeness of e and e. Consequently, due

to Assertion 2.1(b), e is half-plane scattering Schur.

Assume furthermore that a is self-reciprocal.

(ii) Any half-plane scattering Schur factor of a involving z2

if present, would, due to Assertion 2.1(c), have a zero for

Iz11=1, 1z2 1>1, and thus, in view of self-reciprocal

character of a, would contribute a zero to a in z1 1=1,

1z2 1<1, which is impossible.

(iii) Let a bd, where b is the content and d is the

primitive part of a. Clearly, both b and d are

self-reciprocal and half-plane Schur. Thus, any irreducible

factor of d, due to part (i), is either half-plane scattering

Schur or half-plane self-reciprocal Schur. The first of these

two possibilities may not, however, occur due to (ii) above.

The converse proposition follows trivially from the fact that

a product of half-plane self-reciprocal Schur polynomials is
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also so. Q.E.D.

Corollary 3.1: Any factor of a half-plane scattering Schur

polynomial d is also so.

Proof: Clearly, any such factor is half-plane Schur, and

thus, due to Lemma 3.1(i), product of a half-plane

self-reciprocal Schur factor e and a half-plane scattering

Schur factor f. Thus, d and d must both contain e as a

factor. However, e cannot contain a factor involving z2

because, otherwise, due to Assertion 2.1(ii) d would not be

scattering Schur. Thus, e = e(z1 ) # 0 on 1z11 = 1.

Consequently, e is half-plane scattering Schur. Q.E.D.

Associated with any polynomial a=a(z1 ,z 2) we next define [2]

a polynomial +2(a) as follows, in which n2 > 0 is the partial

degree of a in z 2.

%2(a)=n2a - 2z 2(8a/6z 2) (3.1)

We then have the following result.

Lemma 3.2: If a is a half-plane self-reciprocal Schur

polynomial involving z2 then *2 (a)/a is a half-plane

reactance function. Additionally, if a is a nonfactorable

(i.e., irreducible) polynomial then *2 (a)/a is rational

function in irreducible form.

Proof: Let Zl=Z10 be any fixed value of z1 on Izll=l. Then

a(z2)=a(z10,z2 ) ° 0in Iz21<1, because a is half-plane Schur.

Thus, #(cx)/a is a discrete positive function [2, Lemma A2].

Furthermore, since it routinely follows that

[%2(a)/a]z =Z = %2(a)/a + (deg 2a - deg2o) (3.2)

we have that Re[4 2(a)/a]>O for Zl=Z 1 0, 1z2 1<l. Since z10 is

arbitrary on Iz1 1=1, it follows that Z=%2(a)/a is a
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half-plane positive function. Also, it follows via straight-

forward algebraic manipulations that Z - *2 (a)/a = -% 2(a)/a =

-Z. Thus, Z = 02 (a)/a is a half-plane reactance function. The

last part follows from the fact that +2(a) and a cannot have

a common factor (cf. Theorem Al in [2]) if a is an

irreducible polynomial. Q.E.D.

A polynomial is said to be half-plane reactance Schur, if it

is half-plane self-reciprocal Schur, and none of its

irreducible factors involving z2 is of multiple order.

Theorem 3.1: If d=d(zl,z 2) is any half-plane reactance Schur

polynomial then there exists a polynomial n such that Z=n/d

is a half-plane reactance function in irreducible rational

form.

We first need the following two elementary results for the

proof of the above result.

Lemma 3.3: If Zi=ni/di, i=l to n are rational functions in

irreducible rational form and d i are mutually coprime

polynomials then the rational function Z Zi has d=dld2... dn

as its denominator in irreducible rational form.

Proof: Straightforward for n=2. Rest follows by induction.

Q.E.D.

Lemma 3.4: Let d=d(z) be any 1-D self-reciprocal polynomial.

Then there exists a polynomial n such that n/d is a 1-D

discrete pseudo-reactance 4 function in irreducible rational

form.

4A rational function Z=Z(z1 ) is discrete pseudo-positive if

ReZ>0 on Izll=l and is discrete pseudo-reactance if,

additionally, Z + Z = 0 [25].
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Proof: Note that d is necessarily of the form:

m. n.
d = n(ci+z) 1 n [(z+j)(l+ ) (3.3)

i ij

where ai and 1j are distinct and Iai1llIjI <l for all i and

j. Consider next the irreducible rational functions Zi and Yi

as:

m.

Zi = hi[( i-z)/( Ji+z)] ; 1(Xj+Xj (3.4)

n.
where Xj=1/(z+.j) 3, h.=real if m.=odd, and h.=imaginary if

mi=even. Then it can be easily verified that each Zi and Yi

are discrete Rseudo-reactance functions with (ai+z) 1 and

[(+)(l+z)] 3 as their respective denominators in

irreducible rational form. It thus follows from Lemma 3.3

that the rational function E Z. + E Y. is pseudo-reactance.1 ] J
with d as its denominator 'in irreducible rational form.

Q.E.D.

Proof of Theorem 3.1: Let d=b(a.a 2 ... an), where b is the

content of a, and ai's are the irreducible non-constant

polynomial factors of the primitive part of d. Clearly, due

to Lemma 3.1(iii), b is a self-reciprocal polynomial and each

a i is a distinct self-reciprocal reactance Schur polynomial.

Due to Lemma 3.4, there exists a polynomial b' such that b'/b

is a discrete pseudo-reactance in irreducible rational form.

Conider next the rational function:

n
n/d = E % 2 (ai)/a i + b'/b (3.5)

1=1

It then follows from Lemma 3.2 above that 2 (ai)/ai for each

i, are half-plane reactance functions in irreducible rational

form. Thus, Re(n/d) >0 for Iz1 1=1, Iz2 1<1, (n/d)+(n/d)=O,

while the relative primeness of n and d follows from Lemma

3.3. Q.E.D.
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For further discussions the product of half-plane reactance

polynomial and a half-plane scattering Schur polynomial will

be called a half-plane immittance Schur polynomial.

Theorem 3.2: If Z=n/d is a half-plane positive function in

irreducible rational form then the primitive part of d (as

well as of n) is necessarily a half-plane immittance Schur

polynomial. If Z=n/d is, in addition, a half-plane reactance

function, then the primitive part of d is, in fact, a

half-plane reactance Schur polynomial, whereas the content is

a self-reciprocal polynomial.

Proof: We prove the stated property of d. Similar arguments

apply for n. The proof is trivial if d does not involve z2.

Otherwise, let d-b.a, where b is the content and a is the

nonconstant primitive part of d. Consider next the rational

function H defined as:

H=(l-Z)/(l+Z)= (n-d)/(n+d) (3.6)

Clearly, IHl<1 for Iz1 1=1, Iz2 1<l. Now, if for some 1z1 0 1=l,

Iz2 0 1<1, a=0 then since (Zl-z 1 0 ) is not a factor of a, due to

the continuity property of zeros of a polynomial as a

function of its coefficients, it follows that there exists a

continuous set of values of z10 on 1z11=l such that for some

Iz2 0 1<l we may have a(z1 0 ,z2 0 )=O i.e., JH(z1 0 ,z 2 0 )1=l.
However, since d and thus H involves z2, the last conclusion

has been shown to be impossible in Property 2.2a. Thus, a is

half-plane Schur and consequently, due to Lemma 3.1(i), can

be written as a=ef, where e is half-plane self-reciprocal

Schur and f is half-plane scattering Schur. We thus have

(3.7a).

z=n/(bef); Zl=nl/(blelfl) (3.7a, b)
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Let (3.7b) be obtained from (3.7a) by freezing z1 in the

corresponding polynomials and rational functions at Zl z1 0 on

Iz1 1=1. Consider a z10 such that b 1 O and the one-variable

polynomials n1 and e1 are relatively prime. The existence of

such z1 0 is guaranteed since due to relative primeness of n

and e, n1 and e1 may have a nonconstant common factor only

for a finite number of values of z 1 0.

Then since Z is half-plane positive we have that Z1 is an 1-D

positive function in z2 having e1 in its denominator in

irreducible rational form. Since e1 is clearly

self-reciprocal Schur, due to known properties of 1-D

discrete positive functions, it follows that e1 may not

contain multiple factors. Thus, e may not contain multiple

factors either. Consequently, e is half-plane reactance

Schur, which in turn imply that c-ef is half-plane immittance

Schur.

Finally, if Z=n/d is a halfnplane reactance function, then

(n/d) = -(n/d) = -(n/d)zlz 2 in irreducible rational form,

where m and n are integers. Since as shown above, neither n

nor d may have a zero for arbitrary z1 and z2 =0, we must have

n=O. Thus, if m>O then d=yd, whereas if m<O then d=rdzk

where y=constant and k=-m. In either case, the content as

well as the primitive part of d are self-reciprocal. Since

this latter factor has been shown to be half-plane immittance

Schur, due to Lemma 3.1(i), it is in fact, a half-plane

reactance Schur polynomial. The last part of the proof thus

follows. Q.E.D.

Theorem 3.3: Any product of a 1-D polynomial d involving z1

and a half-plane immittance Schur polynomial is the

denominator, (and hence also the numerator), of a half-plane

positive function in irreducible rational form.

Proof: let d=b.c, where b=b(zl) is such that all zeros of b
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are on IZ1 1=1 and c does not have any zero on 1z1 1=1

independent of z2. Furthermore, let c-e.f, where f is the

primitive part and e is the content of c. Let f-g.h, where

g=half-plane reactance Schur, and h=half-plane scattering

Schur. Clearly, b is self-recipocal and thus there exists a

polynomial b' such that b'/b is a pseudo-reactance function

in irreducible rational form. Furthermore, due to Theorem

3.1, there exists a polynomial g' such that g'/g is a

half-plane reactance function in irreducible rational form.

Next note that since h is half-plane scattering Schur, h/h is

half-plane bounded (cf. Theorem 2.1). Also, since efO on

Z 11=l1, e is relatively prime with e we have Ie/el=1 for

Iz1 =l. Thus, u/u is a half-plane bounded function in

irreducible rational form, where u=e.h. Consequently,

Re[l+(u/u)] > 0 for Izl1 =1, Iz2 1<1. Consider next the

rational function:

n/d = 1 + (u/u) + (b'/b) + (g'/g) (3.8)

Clearly, Re(n/d) > 0 for Iz1 l11, Iz2 1<1. Finally, the

relative primeness of n and d follows from Lemma 3.4 and

mutual coprimeness of b, g, and u, which in turn follows by

invoking Lemma 3.1. Q.E.D.

Theorems 3.1, 3.2 and 3.3 together characterize the

denominators and numerators of half-plane positive and

half-plane reactance functions in irreducible rational form.
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4. Fully recursive symmetric half-plane lossless two-ports:

Characterizations of fully recursive symmetric half-

plane passive as well as lossless one-ports have been

established in the previous section in terms of the transfer

function of the filter. In this section we make use of the

results of Sections 2 and 3 to characterize fully recursive

symmetric half-plane lossless multi-ports. In particular, a

convenient representation for two-ports analogous to the

Belevitch canonical representation of continuous time 1-D

lossless circuits of classical network theory [8] is

developed. This representation is then subsequently used in

Section 5 to synthesize the filter in a specific structure.

A system consisting of n-ports (i.e., 2n terminal)

having recursive structure of the type under consideration is

lossless if (4.1) holds true for any finite (pseudo) energy

inputs x1 (nl,n2 ) and x2 (nl,n 2 ).

n 2 n
c [ZE lYi(nln 2 )I ] = f [EE Ixi(nl,n 2) 12

i=1 i=l (4.1)

Consider next xi(n 1,n 2) E 0 for all i = 1 to n except k.

We then have from (4.1) that for any finite (pseudo) energy

xk(n1,n2 ):

£ lYi(nl,n2 )1 < Ixk(nl,n 2)I (4.2)

On the otherhand, if the (n x n) rational matrix S = S(z 1,z 2)

- [Sij(z 1 1z2 )] is the transfer function of the n-port then
for Xi(z1,z 2 ) 0 for all i = 1 to n except k we have

Yi(Z1 ,Z 2) = Sik(Zl,Z2)Xk(Z1,Z2). Thus, due to (4.2) the

transfer functions Sik = Sik(zl,z2) for each i,k are (pseudo)

passive, and thus satisfy Property 2.1.
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Furthermore, by considering 2-D Parseval's theorem (4.1) can

be made to yield (4.3), where the column vector X(w1l,x2) =

(X1(Wrl,2)...Xn('lr2)) , and the superscript * denotes the
combined operation of complex conjugation and matrix

transposition denoted by t.

n * *
f f X (W1,r2)(In - S (W1,r2)S(wl1,2))X(W1,~2) = 0

-n-l

(4.3)

Since (4.3) holds for any X(wl,x2) it follows that for any

2-tuple ("1, 2) except possibly finitely many, we have

S (W1,n2)S(l 1,2) In which due analytic continuation
principle yields that for all zl, z2:

S(zl'Z2) S(Z1'Z 2) = In (4.4)

Next, a rational matrix S = S(zl,z2) is said to be fully
recursive half-plane lossless if: (i) each entry of S in

irreducible rational form has a half-plane scattering Schur

denominator and S satisfies property (4.4).

Note that the transfer function of a fully recursive half-

plane lossless n-port is necessarily of the above type. As

a consequence of Property 2.2, we then have the following
important conclusion.

Proposition 4.1: Each entry of a fully recursive half-plane

lossless matrix S = [Sij] satisfies ISij < 1 for all Iz11=1

and Iz2 1<l.

Proof: With the possible exception of finitely many points

on Iz11 = Iz2 l=l, we have from (4.4) S S = In, and thus

n 2
r ISijI =1 for all j, which in turn imply ISij I < 1 for

i=1 ij
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all i,j. The result then follows from Property 2.2a.

Q.E.D.

Consider next a fully recursive half-plane lossless bounded

matrix S. Since each entry of S satisfies Property 2.1, the

rational function (detS) also satisfies Property 2.1. Also,

it follows from (4.4) that (det S)(det S) = 1. Thus, S is a

fully recursive symmetic half-plane all-pass function as

defined in Section 2 and admits of the representation (2.15)

described in Theorem 2.1, i.e., (4.5) holds.

det S = -D.(A/A) (4.5)

We next claim the following:

Lemma 4.1: If S is the transfer function matrix of a fully

recursive half-plane lossless n-port and A is as in (4.5)

then each entry of AS is a pseudo-polynomial.

Proof: From (4.4), (4.5) along with DD = 1 (cf. Theorem 2.1

(ii)) if follows after some manipulations that

AS = - DA (Adj S) (4.6)

If the ij-th entry of AS is not a pseudopolynomial then its

denominator would have a factor, necessarily half-plane

scattering Schur (by virtue of Corollary 3.1), involving z2,

which must also be the denominator of ij-th entry of AdjS.

Thus, in view of Assertion 2.1(ii), [Adj S]ij would then have

a singularity in Iz11 = 1, 1z21 > 1. However, since S is

analytic in 1z21 < 1 for all 1z11 = 1, Adj S must be analytic

in 1z2 1 > 1 for all 1z11 = 1, which is a contradiction. Thus,

the ij-th entry of AS is a pseudopolynomial for all i,j.

Q.E.D.

Due to Lemma 4.1, S can be expressed as S = n/A, where n is a

matrix of pseudopolynomials. If, in addition, n = 2, i.e.,
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for two-ports, it follows from (4.4) that S - (S-1 ).

Consequently, we have (4.7) via the use of (4.5) and DD - 1

(cf. Theorem 2.1 (ii)).

n11 n12 n22 -n21

(1/A)L 
2 = - (D/A)

n21 n22 -12 n11
1 1 (4.7)

If we designate the pseudopolynomials n11 by B and n2 1 by C

respectively then we have (4.8a) and (4.9a) in the following.

Furthermore, by equating the (1,2) and (2,2) terms in (4.7),

it respectively follows that (4.9b) and (4.8b) holds true.

Sl = B/A, S22 = - D(B/A) (4.8a,b)

S21 = C/A, S12 = D(C/A) (4.9a,b)

Inserting (4.8) and (4.9) in the expression for (det S) in

(4.5) we then have

AA = BB + CC (4.10)

Also, since S22 and S12 are analytic in 1zll=1, 1z2 1<1 we
have from (4.8b) and (4.9b) that:

deg2B < deg2A ; deg 2C < deg2 A (4.11)

The above discussion can be succinctly expressed in the

following representation of a fully recursive symmetric half-

plane lossless bounded matrix.

Property 4.1: Any fully recursive symmetric half-plane

lossless bounded (2x2) matrix (i.e., transfer function of a
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fully recursive half-plane lossless two-port) can be

represented in terms of three pseudopolynomials A, B and C as

in (4.8) and (4.9), where A is half-plane scattering Schur,

and furthermore (4.10), (4.11) hold true.

Conversely, any matrix, which admits of the above

representation is fully recursive symmetric half-plane

bounded.

Proof: Necessity has been proved in discussions preceeding

Property 4.1. For sufficiency, note that SS = 1 trivially

follows via routine algebraic manipulations with (4.8),

(4.9). The proof is then completed by noting that A is

half-plane scattering Schur. Q.E.D.

For convenience of exposition any S expressed as in

(4.8) and (4.9) will be referred to as in standard form.

A fully recursive half-plane lossless two-port as in

figure 4.1 can be alternatively described by means of a chain

matrix T = T(z1 ,z 2) defined as in (4.12).

[ = T[ (4.12)

It can be easily shown from (4.8) through (4.12) that

the following property characterizes the chain matrices of

the type described above.

Property 4.1': The chain matrix T = [Tij] associated with a

fully recursive half-plane two-port is lossless if and only

if it can be expressed as

T1l = DA/C ; T1 2 = B/C (4.13a,b)

T21 = DBznA/C ; T22 = A/C (4.14a,b)21 2 22
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where nA - deg2 A, and A, B, C and D satisfies the same

restrictions described in Property 4.1. Also, any T as in

(4.13), (4.14) is said to be in standard form.

Proof: Follows from known relation between elements of chain

matrix and transfer function matrix of a two-port and

equations (4.8) through (4.10) along with DD = 1.

Q.E.D.
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5. Synthesis of fully recursive half-plane lossless

two-ports:

A procedure for synthesizing fully recursive half-plane

lossless two-ports as an interconnection of more elementary

building blocks of the same type will be developed in this

section. The synthesis algorithm can be viewed as a

generalization of the algorithm for synthesizing 1-D discrete

lossless two-ports as described by Rao and Kailath in [6].

Our synthesis procedure exploits the unique feature of the

algorithm described in [6] that (in 1-D) given (polynomials)

A, B, C the arithmetic operations needed to be performed on

the coefficients of A, B and C in each cycle of the

repetitive algorithm requires rational operations only. To

the best of our knowledge this is the only algorithm of the

above mentioned type available for synthesis of 1-D discrete

as well as continuous domain lossless two-ports including

those in classical network theory [8] (all other algorithms

known prior to [6] required nonrational operations e.g.,

polynomial factorization). The basic structure of the filter

to be presently synthesized would thus be the same as in [6],

whereas the elementary building blocks are certain 1-D two

port sections to be referred to as the generalized

Gray-Markel sections (GGM section) and z2 -type delays, each

of which are fully recursive half-plane lossless.

A generalized Gray-Markel section is a 1-D two port as shown

in Figure 5.1 where the 1-D transfer functions (assumed

rational)- k1 k 1(z1 ) and k2 = k2(z1) satisfy the

relationship:

klkl + k2k2 = 1

(5.1)

and are such that k1 (and thus k2 in view of (5.1)) satisfies
1 almost everywhere on k1 k1 = 1kll < 1 almost everywhere on 1z1 1 = 1.
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We first note that given any rational function k1 of zl

satisfying the above conditions it is always possible to find

a rational function k2 satisfying the same conditions as that

of k1 along with (5.1). (The role of k1 and k2 can obviously

be interchanged in the present considerations). To show this

let k1 = n1/dl where n1 , d 1 are polynomials in z1. Then (1 -

kk1 ) = N 1/(dldl), where N 1 = d 1dl-nln1 . Thus, N1 = N 1, and

for all zl on Iz1 1 = 1, N 1(Z1 ) is real and we have that

N 1(z1 ) > 0 as a consequence of k kl < 1. Therefore, the

(spectral) factorization N1 = n2 n2, where n2 is a polynomial,

in z1 holds. Also, by (possibly) rearranging the irreducible

factors of (dld 1 ) to write dld1 = d2d 2, where d2 =

polynomial, we can have k2 = n2/d 2 such that (5.1) is

satisfied. Note that since the factorizations N2 = n2 n2 and

d1 d1 = d 2d 2 are not unique the k2 so obtained is not unique

unless further restrictions are imposed.

The transfer function matrix SG = SG(z1 ) associated with such

a GGM section can be expressed as in (5.2a), whereas the

corresponding chain matrix T is given in (5.2b).

SG = k2kl T G = (1/k2 ) (5.2a,b)

2 1

Since SG in (4.2a) satisfies the representation described in

property 4.1 with A = 1, B = k1, C = k2 and D = 1 the GGM

section is indeed a fully recursive half-plane lossless

two-port.

Remark: To proceed with the synthesis. of a prescribed fully

recursive half-plane lossless bounded matrix S or,

equivalently, corresponding chain matrix T as described

respectively in Property 3.1 or 3.1', we first note that Sll

(or S22 ) is fully recursive half-plane all pass if and only
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if S21 5 S1 2 E 0. To show this, observe that if S1 1 (or S22)

is fully recursive half-plane all pass then for all Izlj -

Iz2 1 = 1, IS1 1 1 = 1 (or corresp. IS221 - 1) and thus, due to

(4.4), IS211 = 0 (or corresp. IS12 1 = 0), which in turn imply

that C E 0 i.e., S12 - S21 O0. Conversely, if S12 = S21 

then it is obvious from (4.4) that both Sl and S12 are fully

recursive half-plane all pass. Similary, it can be shown that

S21 (or S12) is fully recursive half-plane all pass if and

only if Sl = S22 S 0 i.e., B - 0. In either case, the

synthesis of S reduces to that of synthesis of fully

recursive half-plane all pass one-ports as described in the

appendix as an extension of 1-D Schur algorithm. Thus, it

will henceforth be assumed without loss of generality that

neither of Sij's in the prescribed two-port or in the

two-ports resulting in subsequent stages of synthesis is

identically zero.

Next, in view of Proposition 4.1 the rational function: k =

k l(z1 ) = S 11(Zl,0) satisfies Ikll < 1 a.e. on Izll=1.

Therefore, in view of the preceeding discussion kl defines a

GGM section i.e., a rational function k 2 can be found such

that Ik2 1<1 a.e. on Izll=land that (5.1) is satisfied.

Step 1: The first step is to extract a GGM section with k =

S 11 (zl,0) from prescribed S or T as shown in Figure 5.2.

Since a cascade connection of two two-ports amounts to

multiplication of the corresponding chain matrices, the chain
-1

matrix of the remaining two-port is then T' = TG T. From

(4.13), (4.14) and (5.2b) we can write:
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~nA
D(A-k1BZ 2 ) B-kA

T' = (1/Ck2) (5.3)

D(Bz2 -k1 A) A-kIB

We next define the pseudopolynomials A', B', C' and the 1-D

rational function D' as in (5.4) and (5.5) below, where

p=p(z1 ) is the self-reciprocal polynomial factor of largest

degree present in the numerator of A-k1 B, when expressed in

irreducible rational form.

~wv ~ ~~~ nA

pA' = A(1-kSll) = A-klBZ 2 ; pC' Ck2 (5.4a,b)

pB' = A(S 1 1-k1 ) = B-k 1A ; D' = D(p/p) (5.5a,b)

We claim that deg2A' = deg2 A. To prove this, clearly deg2 A'

< deg 2A and note that (5.4a) yields pA'/A = 1-k1Sll, which

implies that if deg2A' < deg2A then for arbitrary z1 we would

have klk 1 = k 1(z 1)S 1 1 (Z1 ,0) = 1. As a consequence of this we
can write T' as in (5.6) and (5.7), where nA, = deg2A' =

deg 2A.

Til = D'A'/C' ; T'2 = B'/C' (5.6a,b)

=nA,'

T'i = D'B'z2 /C' ; T22 = A'/C' (5.7a,b)

We next claim that the pseudopolynomial A' satisfies the

properties that A' • 0 for z1 1=1, Iz2 1<1 and that A' is

coprime with A'. To prove this we write A' = Al/Al in
N D

irreducible rational form, and thus A' = (Al/Ah).z where

a = integer and AN/AD is in irreducible rational form. Thus,

since pA'=A-klB it follows from the definition of p that A'

is devoid of self-reciprocal polynomial factors in z1 only.

If we assume for the purpose of a proof by contradiction that

for some value of Z1 =Z1 0 ,z2 =z2 0 with iz1 0 j=l, Iz2 0 1<1 we have

A'=0 i.e., A=O0 then since A' cannot have a factorN ~~~~~~N
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(Z1 -z 1 0 ), by changing the value of zl from z1 0 along an

arbitrarily small arc rl of the unit circle Iz1 1l1 it would

be possible to find a continuous [12] set (zl,z2) of zeros of

AN i.e., also of A' with zlCFlc{zl;1zll=l} and Iz21<l. Also,

since it follows from (5.4a) and deg2 B<nA=nA' that

pA'=A(1-kSl1 1) and ARO in 1z1 1=1, 1z2 l<l (cf. Property 4.1)

we would then have that for all zl r1 some z2 in Iz2 1<1 such

that klS 1 1 = 1. Since Ik1 1<l,1S 1 1 1<1 if IZll=, 1z 2 1<l (cf.
Proposition 4.1) the last conclusion would then imply

existence of z2 in Iz2 1<l1 such that Ikllj=lSl(zl,0)j=l and

ISll(zlz2)l=l for all zler 1 . However, this in view of

Property 2.2a, yields that S l is independent of z2 with

IS1 1 (z 1lz2)1 = IS11 (z1)I = 1 for all Izlj = 1, which is ruled

out. Thus, A'•O i.e., AT•O for Izll=l,lz2l<l.

Further, since due to Property 2.2a Ikll=lSll(z 1,0)1=l

may hold for at most finite number of values of Zl, we have

IS1 11jl, and A#O forlzll = Iz2 1 = 1 with at most finite

number of exceptional points, we conclude from pA'=A(1-k1Sll)

that A', thus Al, may have at most finite number of zeros on

1z11=1z2 1=1. Since as shown earlier A10, and thus A17O in

Iz1 1=l,lz 2 1<l it follows from Assertion 2.1 that the

primitive parts of AN and AN are relatively prime

polynomials. Consequently, the pseudopolynomials A and A' are

relatively prime.

Finally, straightforward algebraic manipulation along

with (5.4), (5.5a) and (4.8a) yield A'A' = B'B' + C'C',

whereas deg2A' > deg2 B', deg2A' > deg2C' follow from

(5.4a,b), (5.5), (4.11) and nA=nA,. Since, clearly D' as in

(5.5b) possesses the requisite properties for T' to be in

standard form, in view of Property 3.1' all the conditions

necessary for T' = [T' ij], as given in (5.6), (5.7), to be a

fully recursive half-plane lossless two-port chain matrix are

satisfied.
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We further note that as a consequence of the choice

k 1 =Sl1 (z11 0) we have from (5.5a) that B'(zl,) - 0 for

arbitrary z1 i.e., the pseudopolynomial B' contains z2 as a

factor. Also, from (5.4b) if C contains a pseudopolynomial

factor z2 then so does C'.

We thus have the following theorem as a result of the

previous discussion.

Theorem 5.1: Let S be the transfer function matrix of a fully

recursive half-plane lossless two-port as in Property 4.1. If

S' is obtained by extracting from S a GGM section

parametrized by k1(zl)=Sll(zl,O) as in Figure 5.1 then S' is

also the transfer function of a fully recursive half-plane

lossless two-port. Furthermore B' associated with S' has a

pseudo-polynomial factor z2. Also, if C has a pseudo

polynomial factor z2 then so does C'.

Step 2: In the next step we form a fully recursive half-

plane two port T( 2) by interchanging the two output terminals

in each port of T' as shown in Figure 5.3. It can be easily

shown that T(2 ) can then be written in terms of

pseudopolynomials A (2), B2 C2) and the rational function

D(2) in standard form as expressed in Property 3.1', where

A(2 ) A' B( 2 ) = C', C( 2 ) = B', D(2) -D' (5.8)
A , - , - D,

Step 3: A GGM section is then extracted from the two-port

with chain matrix T(2) by iterating step 1 on T(2) to get a

fully recursive half-plane lossless two-port chain matrix

T (3 ) . As a result, if the pseudopolynomials A( 3) B (3 ) C(3 )

and the rational function D (3 ) represent T (3 ) in standard

form as in property 3.1' then B (3 ) would have a factor z2.
(3) (2) (3) (3) (3Also, we have C(3 ) = C(2)k B'k (where k is2 2 2

associated with the GGM section extracted in Step 3), in

which the first equality follows from (5.4b) in the context
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of Step 3, whereas the second equality follows from (5.8).

Since the pseudopolynomial B' has a factor z2 we conclude

that C (3 ) has a factor z From this and the fact that

A(3)A( 3) = B(3)B( 3) + C( 3 C(3 ) (which is a consequence of

losslessness of T( 3 )) it follows that A( )A( ) O for Z2 
jjk(3) * 1 0 2and for arbitrary z1. Since(3)# 0 for Iz I = 1 and Iz2 1 <

1, due to lossless of T ( 3 ) we conclude A ( 0) = O for z2 = 0

and for arbitrary z1. Consequently, A ( 3 ) has a factor z2 and
(4)

it is possible to write, for some pseudopolynomials A

B ( 4 ) and C ( 4 ) that

A ( 4 ) z2 A(3) B (4 ) = z2B(3) C (4 ) = z2C(3) (5.9)

Step 4: The next step in the synthesis cycle is to extract a

z2 type delay from T( 3 ) as in Figure 5.4 to produce a

two-port with chain matrix T(4), which can be expressed in
(4 ) (4 ) ( 4 )

terms of A B , C , as in (4.13) and (4.14).
-(4) -(3)

Furthermore, since from (5.9) A(4) = z2A we have A ( 4 ) 0 O

for Iz11 = 1, Iz21 < 1 and A(4) can have at most finitely

many zeros on Iz I = Iz21 = 1 due to the same properties

possessed by A(). Also, it follows from (5.9) and

losslessness of T (3 ) (in particluar, counterpart of (4.10)

associated with T (3 )) that

A(4) (4) = (4) (4)4) = B((4) (4)

and de2Bh(4) deg 2A
( 4) de 2 (4) deg 2A(4)

Thus, the two-port associated with T(4) is fully recursive

half-plane lossless. Furthermore, note that

deg2 A(
4 ) = deg2 A(3)-1 = deg 2A)-1 = deg2A'-i = deg 2A-1,

where the first equality follows from (5.9); the second and

the fourth from the fact that in step 1 we have nA = nA,; and

the third from (5.8).
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Consequently, after iterating deg 2A times the cyclic algoritm

described in Steps 1 through 4, we obtain a lossless chain

matrix Tf independent of z2, which in standard form is

described by Af Af(z1 ), Bf = Bf(Z1 ), Cf = Cf(z1 ) and D =

Df(z 1).

The main contents of Steps 3 and 4 can be combined into the

following theorem.

Theorem 5.2: If S is the transfer function matrix of a fully

recursive half-plane lossless two-port as in Property 4.1

such that both B and C has a pseudo-polynomial factor z2 then

A must also have the same factor. Furthermore, a z2 type

delay can be extracted from S thus yielding another fully

recursive half-plane two-port S' such that the z2 -degree of

the pseoudo-polynomial A' associated with S' is exactly one

less than that associated with S.

Terminal Step: In the final step we extract another GGM

section as in Step 1 to produce a fully recursive half-plane

lossless two-port SO with A0, B0, CO and DO in standard form.

Since Af, Bf are functions of z1 only it follows from (4.5a)

that B0 O0. Also, since AOAO = B0B0 + C0C0 and A 0 = A 0~ 0

for all Iz11 = 1 the 1-D transfer functions (S0)12 = DoCO/AO

and (SO)21 = C0/AO are both well defined and of unit modulus

on 1Z11 1 i.e., they are all-pass functions. The

realization for such a two-port is shown in Figure 4.5.

Remark: Before iterating the entire synthesis cycle after

the completion of Step 4 it is once again possible, but not

Note that (S0)12 and (S0)21 are not necessarily stable

rational functions, i.e., may have poles in z1 1<l1 and Iz11>1

as well.
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necessary, to carry out the operation of interchanging the

pseudopolynomials B and C as described in Step 2. However,

the resulting structures are different depending on whether

or not this step is incorporated in the synthesis cycle. The

structure shown in Figure 4.6 is obtained when this latter

step is incorporated in the synthesis cycle. In 1-D the same

structure has been reported as being pipelineable in [6].

An example illustrating the above synthesis procedure

will be given next.

Example 5.1: Consider the transfer function S of a fully

recursive half-plane lossless two-port as given in the

following in terms of the pseudo-polynomials A, B, C and D.

A=2[(z1 -1)/z 1 (z1 +4) + z2 (z1 +2)/(2Z1 +1)]

B=4(z 1+l)(2z1+l)/(z 1+4)(z 1+2) - z2(z 1 -1)

C=3(zl+l)(2zl+1)/(4zl+1)(z 1 +2)

D=-(z 1+3)(2Zl+l)/(3Zl+1) (z1 +2)

It can be routinely verified that the A, B, C, and D

specified above satisfy the conditions required in Property

4.1. The first step in the synthesis is to compute

kl(Zl)=Sll(Zl,0), where S1 1 =B/A. It follows that we have:

k1(z1 ) = 2(z1+l)/(z 1+4)

We then compute k2(z 1) from (5.1) by effecting a 1-D spectral

factorization. We have:

k2 (zl)k 2 (z1 )=9zl/(zl+4)(4zl+l)

An obvious choice of k 2(z 1) is as follows (other choices are
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also possible).

k 2 (Z1 )=3/(Zl+4)

We then extract the GGM completely specified by k 1(zl) and

k 2 (z1 ) above to obtain the fully recursive half-plane

two-port having chain matrix T'=TG T (cf. equation (5.2b)),

where TG is the chain matrix of the GGM just obtained. The

resulting T' has pseudo-polynomials A', B', C' and D' as

follows.

A'=2z2(z 1 +2)/(2Z 1+1)

B'=-(Z 1 -1)z 2

C'=(Zl+l) (2Zl+l)/z1 (z 1+2)

D'=-(2Z1 +1)(z 1+3)/(z1+2)(3Z1 +1)

The next step is to interchange the polynomials B' and C' and

reverse the sign of D'. This corresponds to twisting the

input and output terminals of the two-port and results in the

chain matrix T (2 )with A (2)B( 2) C( 2) and D(2 ) given by:

A(2 ) A (2 ) C' C (2 ) B' D(2 ) -D'

The extraction of a second GGM then follows. The parameter

k 1(z1 ) describing this GGM is obtained by setting z 2=0 in the

S element of the two-port obtained thus far i.e., in

B )/A ( 2). We then have the following:

-1
k1 (Z 1 )=(l+z )/2

The corresponding k2 can then be obtained by factoring 1-klk1

(cf. equation (5.1)). A specific choice of this factor for

k2 (z2 ) is
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k1 (zl)=(1-z 1)/2

The GGM with chain matrix TG just described, when extracted

from the two-port having chain matrix T(2), yields a two-port

with a chain matrix T(3)=T 1TG(2 (cf. equation (5.2b)) having

pseudo-polynomials A (3 ), B(3) C( 3 ) and D( 3 ) associated with

it, where

(3 )
A (=z2(zl+2)/(2zl+l)

B(3)=0

C(3)=z2

D()=( 1z+3)(2Z1+1)/(3Z1+1)(Z1+2)

Notice that all of the pseudo-polynomials A( 3) B( 3) and C

have the factor z2, which when extracted in the form of a z2
type delay, will yield the two-port T(4) with associated
A ( 4 ) B (4 ) C (4 ) and D ( 4 ) given by:

(4) 

D ( =(Z1+3)(2Z1+1)/(3Z1+1)(Z1+2 )

This completes one entire synthesis cycle. Note further that

the degree of A in z2 has reduced by exactly one. In this

specific instance, however, synthesis is essentially complete
due to the f act that A(4 ) (4) (4)due to the fact that A B , C are each independent of

z2. Thus, Af=A (4 ) Bf=B( 4 ) C f=C and Df=D . Also, the
extraction of another GGM, as described in the terminal step,
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yields a trivial GGM with k 1 (zl)-O, k2(z 1)=1. Thus, we also

have in this case Af-A 0, Bf-Bo, CfCC0 and Df=D0 . The 1-D

all-pass functions (S0)12 and (S0)21 are consequently given

by:

(S0)12 = (Z 1+3)/(3z1 +1)

(S0)21 = (Zl+2)/(2z1 +l)

Having described the synthesis procedure the basic

reason why an analogous method does not work for the

synthesis of quarter plane lossless two-ports may now be

commented on. Recall that in the quarter plane case A, B, C

are polynomials whereas D is a unimodular constant and the

transfer function S is analytic in Iz11<l, 1z2 1<1 [2]. From

this it can be shown that although k1 (zl)=Sll(z1 ,O) is a

bounded function (i.e., Iklll< in 1z1 1<1) and a bounded

k 2(z 1 ) satisfying (5.1) can be found, extraction of the

corresponding GGM leaves us with a two-port that is not

necessarily analytic in 1z1 1<l, Iz2 1<1, which is thus not of

the quarter plane lossless type. In other words, Theorem 5.1

is not valid in this case, and hence Step 1 of the synthesis

procedure does not go through. The alternate strategy of

extracting a constant Gray-Markel section of the conventional

type parametrized by k1 =S 1 1(0,0) does not, however, suffer

from this last drawback i.e., a quarter plane two-port is

indeed obtained after extraction. Thus, Steps 1 though 3 can

be carried out without any difficulty. However, at the end of

Step 3 we are left with a quarter plane lossless two-port

such that A(3)=B(3)=C(3 )=0 for Zl=z 2=0, but this does not

necessarily imply that z1 or z2 is a factor of A ( B( and

C ( 3 ) i.e., an analog of equation (5.9) does not hold.

Consequently, a z2 type delay cannot be extracted from the

two-port and synthesis again breaks down.
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6. Comments and Conclusions

Two-dimensional filters with various different

symmetries in their magnitude responses, e.g., fan type

symmetry and the circular symmetry are of practical interest.

The loci of constant gain in the 01-X2 plane for the fan

filters are required to be approximate straight lines,

whereas those for the circularly symmetric filters are

required to be closed circles in an approximate sense. In

addition, we also require the pass (or the stop) region of

the fan filter to be the region approximately lying within

the straight lines l1 = aw2 and I = a- 2 for some 0<a <1.

A design methodology for filters of above type may

proceed by requiring the transfer function S 21 = C/A (cf.

equation (4.9a)) of the lossless two-port S to have the

desired characteristics. However, unlike the corresponding

problem in 1-D, due to nonfactorability of m-D polynomials it

is in general not possible to find'a pseudopolynomial B

satisfying (4.10) from A and C. To circumvent this problem

it may be further assumed that the two-port is either

symmetric i.e., S11 = S22' S21 = S12 or antimetric i.e., S1

S S22 S12' Thus, in the symmetric and in Ahe

antimetric case we respectAvely have B = -DBz2A, B = DBz 2 ,

whereas we also have C = DCz2 in both cases. We next define

two rational functions S1 and S2 as in (6.1) and (6.2)

respectively for symmetric or antimetric two ports.

S1 = (B + C)/A, S2 = (B - C)/A (6.1a,b)

S1 = (B + jC)/A, S2 = (B- jC)/A (6.1'a,b)

From (6.1) it is easily verified that SS1 = S2S 2 = 1. Thus

for each i, ISil = 1 for all 1z11 = Iz2 1 = 1 except possibly

finitely many values where it is undefined. Furthermore,

A • 0 for Iz11 = 1, z21 < 1. Thus via Property 2.2a it
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follows that Si, for each i = 1,2 in (6.1) must be a fully

recursive half-plane all-pass function. Exactly same

conclusions hold for S1 and S2 in (6.1'). Consequently, S1,

S2 can be expressed as in (6.3), where D1, D2 and A1 , A2
satisfy properties analogous to D and A in Property 2.3.

S1 = - D 1A 1/A 1, S2 = - D2 A 2/A 2 (6.3a,b)

Note that even if A, B, C are real rational functions, S1 and

S2 are real in (5.lab) but not in (5.1'a,b). Thus, a

symmetric filter can be realized by making use of the

relation S21 = C/A = (S1 -S 2 )/2, where the one-ports S1 and S2
are realized as in Appendix A. Although S21 = C/A = -

j(S1-S 2 ) holds true in the antimetric case, a realization in

terms of this last mentioned equation is not feasible due to

the presence of the factor j unless complex filter

realizations are called for. In this case, the

pseudopolynomials A, B, C which are real, can be found from

(6.1'a,b) and subsequently S21 can be realized as being

embedded in a real two-port S described by A, B, C in

standard form. The design problem then boils down to

appropriately choosing the real 1-D rational functions D1,

D 2, and real pseudopolynomials A1 , A 2 so that the frequency

response requirements on IS211 are satisfied. This latter

step may be carried out by using numerical optimization (e.g.

Levenberg-Marquadt). For the purpose of numerical

optimization, however, the following symmetry observations

have the effect of reducing the number of parameters to be

optimized.

Note that the above strategy of representing a symmetric or

an antimmetric lossless. two-port by means of two all-pass

functions has been crucially exploited in the design of

quarter plane filters having circularly symmetric and fan

type frequency response [7], [16]. Additionally, in [7],

[16] the symmetry dictates certain separability properties of



53

the all-pass functions which further facilitates the solution

to the approximation problem. Further investigation is

needed to determine the nature of separability property, if

any, imposed on S1 and S2 in (6.3) by the symmetries in

frequency response and to take benefit of these properties in

numerical approximation.

Next, a few comments on the implementational aspects of our

filters will be made. The filter synthesis procedure

described here is clearly minimal in terms of the number of

delays of the z2 type. Specifically, if the pseudopolynomial

A in prescribed filter transfer function has degree n2 then

precisely n 2 of z2 type delays are needed. The number of GGM

needed is at most 2(n2+1). However, the order of the 1-D

filters k1 (zl), k2(z 1 ) etc. contained in each GGM can be

quite large and grows rapidly not only with the degree n 1 of

the specified transfer function in zl, but with n2 as well

(Example 5.1 was purposely taylored to be simple, and thus,

does not exhibit this phenomenon very well). Note however,

kl(z1 ), k2(z 1) and the GGMs are not necessarily causal 1-D

filters. They can be implemented to process rows of data from

left to right or from right to left or simultaneously from

both directions. Since GGMs can be viewed as 1-D row

processors, and in many 2-D applications complete rows of 2-D

signal are naturally available as blocks of data, the set of

data in an entire row can be processed simultaneously by a

GGM. The parallelism so available can thus be potentially

used to overcome the drawback resulting from large filter

order of k 1 (zl)'s and k 2 (z 1)'s. The fact that the present

acausal filtering scheme allows us to process rows of data

simultaneously without much difficulty can be viewed as a

major benefit, as opposed to quarter plane filtering schemes

where any concurrent processing, if possible at all, must be

accompanied by cumbersome sampling schemes presently not used

in practical situations. Furthermore, since our filters share

the same modular structure as that of 1-D Rao-Kailath
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structure, and it has been noted in [6] that data flow in

such 1-D structures are pipelineable, it follows after a

closer examination that blocks of data in the form of 1-D

rows of the 2-D signal can also be made to flow through our

filter structure in an analogous fashion. Thus, in summary

while the rows themselves are to be processed in parallel,

the sequence in which they are to be processed are

pipelineable.

Recursive structures of the type considered in the

present paper can be easily extended to 3-D by requiring in

(1.1) xn(.)'s and yn(-)'s to be 2-D signals and wi[.], 1i [ - ]

to be 2-D convolutional operators. Alternately, the 3-D

transfer function H(z1 ,z 2,z 3 ) of the filter would be then

given as in (1.2) with Ai(.) and Bi(.) being rational

functions of two-variables. In computational terms, this

amounts to "frame recursion" i.e., in order to compute an

output frame (which is now a 2-D signal), a set of previously

computed frames as well as a set of input frames is needed.

Such a recursive scheme, when endowed with the property of

passivity or losslessness, yields to a development entirely

analogous to that reported in the present paper. However,

since in (5.1), which would now involve 2-variables, a

rational k1 would not necessarily determine a rational k 2 due

to non factorability of 2-D polynomials. Thus, the

implementation of corresponding GGM's may involve

non-rational (i.e., infinite order) filtering. However, a

rational approximation for k2 which renders the associated

GGM strictly passive, but not necessarily lossless, may be

adopted. More importantly, symmetries in frequency response

referred to earlier may potentially dictate the factorability

of (1-klk 1) into k 2k2, where k2 is rational. A detailed

investigation of these issues are once again left out of the

present paper.

Finally, the excellent behavior such as freedom from
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limit cycles, forced response stability etc. of 1-D

internally passive digital filters on the face of rounding

and overflow truncation can be attributed to the fact that

(see [16] for details) their internal building blocks i.e.,

the Gray-Markel sections or adaptors behave as strictly

passive elements for a large variety of roundoff and

truncation schemes. In. the present context of 2-D fully

recursive half plane filters, the row outputs of 1-D

convolution operators represented by ki(z1 ), i = 1,2 in each

GGM section have larger support than the corresponding inputs

to them. Thus, in practical implementation, the supports of

these 1-D rows must be truncated at the two boundaries. This

is similar to the 1-D situation, in which the role of

convolution is played by multiplication of two binary numbers

-- an operation that can also be interpreted as a convolution

at the bit level. On the basis of this analogy, it may be

conjectured that a scheme for controlled truncation of

lengths of 1-D row signals can be devised so that GGM's

behave as strictly passive building blocks, and thus the

advantages of internally passive realization is fully

exploited. However, the details of this issue remains to be

worked out.
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Appendix A:

In this appendix we prove that a fully recursive symmetric

half-plane all-pass function H=H(zl,z 2) can be synthesized as

an interconnection of GGM sections (cf. Section 5) and

z2 -type delays. This can be considered to be a generalized

form of Schur's algorithm [9].

Let k1 = k1(z 1) = H(z1 ,0). Since H is as in Theorem 2.1 it

follows from Property 2.2a that Ikll<1 for all Jz1 =l with

the possible exception of finite number of values of zl,

where Jk11=l. Thus, a k2 satisfying (4.2) can be found i.e.,

k1 and k2 defines a GGM section. Consider next the function

H1 = H1(ZlZ 2 ) defined as in (A1.1), which can be interpreted

as the residual transfer function after extraction of the GGM

section just mentioned from H1.

H' = (H - k1 )/(l - kH) (Al.1)

From (2.15) it then follows that H' = - pA'/B', where pA'

DA + k 1A, B' = A + k1DA, p being the self-reciprocal factor

of largest degree present in the numerator of (DA + k1A) when

expressed in irreducible rational form. Next, since we have

D = D it follows that pA'/A = D(l-klH). Consequently, if

deg2 A' < deg A then we would have klH(zl,O) =-H(zl,0)l2 = 1

for arbitrary Zl, which is impossible (cf. Property 2.2a).

Thus, deg2 A'= deg2A. It then clearly follows that pA' = D(A

+ klDA) = DB', thus H' = - D 1(A'/A'); D 1 = D(p/p). Also,

since pA' = - A(H-k1 ) it follows that pA' = 0 for z2 =0 and

arbitrary z1. Thus, the pseudopolynomial A' has a factor z2.

By defining A 1 via zA 1 = A' we can write H 1 = z2H', where H1

D 1 (A 1/A 1). Note that H 1 can be constructed simply by

extracting a z2-type delay from H'. Clearly, D 1 satisfies

condition (ii) of Theorem 2.1. Also, by following arguments

similar to that used after (4.7a,b) it can be shown that A1

is half-plane scattering Schur. Thus, conditions (iii) and
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(iv) of Theorem 2.1 are satisfied by H1, which has now been

proved to be fully recursive symmetric half-plane lossless.

Since d&92A1 = dceg 2Al 1 -I deg 2A - 1 the procedure just

described when applied deg 2A times yields a circuit as shown

in Figure A.1, in which the terminating section is an

all-pass (not necessarily stable) in z1 only.
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