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Abstract

A classical method for solving the variational inequality problem is the projection

algorithm. We show that existing convergence results for this algorithm follow from one

given by Gabay for a splitting algorithm for finding a zero of the sum of two maximal

monotone operators. Moreover, we extend the projection algorithm to solve any

monotone affine variational inequality problem. When applied to linear complementarity

problems, we obtain a matrix splitting algorithm that is simple and, for linear/quadratic

programs, massively parallelizable. Unlike existing matrix splitting algorithms, this

algorithm converges under no additional assumption on the problem. When applied to

generalized linear/quadratic programs, we obtain a decomposition method that, unlike

existing decomposition methods, can simultaneously dualize the linear constraints and

diagonalize the cost function. This method gives rise to highly parallelizable algorithms

for solving a problem of deterministic control in discrete time and for computing the

orthogonal projection onto the intersection of convex sets.
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1. Introduction

Let X be a nonempty closed convex set in 39n and let f:X-49 n be a continuous

function. Consider the following problem:

Find an x*e X satisfying (f(x*), x - x*) 2 0, V xe X. VI(X,f)

This problem, called the variational inequality problem, has numerous applications to
optimization, including the solution of systems of equations, constrained and
unconstrained optimization, traffic assignment, and saddlepoint point problems. [See for
example [Aus76], [BeT89], [CGL80], [GLT81], [KiS80].]

We make the following standing assumptions regarding f and X:

Assumption A:
(a) The function f is monotone, i.e. (f(y) - f(x), y - x) > 0, V xe X, V ye X.

(b) The problem VI(X,f) has a solution.

Let D be an nxn positive definite matrix D. Consider the following algorithm for
solving VI(X,f) whereby the original variational inequality is approximated by a sequence
of affinme variational inequalities:

Asymmetric Projection (AP) Algorithm
Iter. 0 Start with any x°E X.
Iter. r+l Given an xre X, compute a new iterate xT+"1 X satisfying

(D(x + l - xr) + f(xr), x- xr+l) > 0, Vxe X. (1.1

[The iteration (1.1) is well defined because D is positive definite [BeT89, §3.5], [KiS80,
§2].] We have called the above algorithm the asymmetric projection (AP) algorithm
because if D is symmetric, then it reduces to the well-known projection algorithm [Sib70]
(also see [BeT89], [Daf83], [KiS80], [PaC82])

xr+l = argmin xX { lix - x + D-lf(xr)llD }, r = 0, 1, 2,
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where "1IllD denotes the norm IlxllD = (x,Dx)1/ 2.

It has been shown that if D and f satisfy a certain contraction condition [PaC82],
[Daf83], then {xr} generated by the AP iteration (1.1) converges to a solution of VI(X,f).
Unfortunately, this condition implies that f is strictly monotone, which excludes from
consideration important special cases of VI(X,f) such as linear complementarity problems
and linear/quadratic programs. The goal of this paper is two-fold: First we show that the
existing convergence conditions for the AP algorithm follow as a corollary of a general
convergence condition given by Gabay [Gab83] for a forward-backward splitting
algorithm. This leads to a unified and a much simpler characterization of the convergence
conditions. Second, we show that the convergence condition for the AP algorithm can be
broadened such that it is applicable to all monotone (not necessarily strictly monotone)
affinme variational inequality problems. In particular, we apply this algorithm to linear
complementarity problems (for which X is the non-negative orthant) to obtain a matrix
splitting algorithm that is simple and, for linear/quadratic programs, massively
parallelizable. Unlike existing matrix splitting algorithms [Man77], [Pan84], [LiP87], this
algorithm requires no additional assumption (such as symmetry) on the problem data for
convergence. We also apply this algorithm to generalized linear/quadratic programming
problems to obtain a new decomposition method for solving these problems. This method
has the important advantage that it can simultaneously dualize any subset of the constraints
and diagonalize the cost function; hence it is highly parallelizable. We describe
applications of this method to a problem of deterministic control in discrete time and to
computing the orthogonal projection onto the intersection of convex sets.

This paper proceeds as follows: In §2 we describe the forward-backward splitting
algorithm and a convergence result of Gabay for this algorithm. In §3 we show that the
AP algorithm is a special case of this splitting algorithm and that Gabay's result contains as
special cases existing convergence results for the AP algorithm. In §4 we show that the
AP algorithm can be applied to solve any monotone affine variational inequality problem.
In §5 we further specialize the AP algorithm to a decomposition method for generalized
linear/quadratic programming. In §6 we further specialize the AP algorithm to a matrix
splitting algorithm for solving linear complementarity problems.

In our notation, all vectors are column vectors and superscript T denotes transpose.
We denote by (.,.) the usual Euclidean inner product and by IIII its induced norm. [The
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argument of 11-11 can be either a matrix or a vector.] For any nxn matrix D, we denote its

symmetric part by

D = (D + DT)/2.

For any set YC 9in, we denote by by(.) the indicator function for Y, i.e. by(y) is zero if
ye Y and is oo otherwise. For any closed convex function h:9Rn--(-oo,oo] and any xe 9"n,
we denote by Dh(x) the subdifferential of h at x. For any closed set Y in 9in we say a
function h:Y-* n1 is co-coercive with modulus a > 0 if

(h(y) - h(x), y - x) > ollh(y)-h(x)ll2, V xe Y, V ye Y.

[Note that a co-coercive function is Lipschitz continuous and monotone.]

2. A Splitting Algorithm

A multifunction T:9n1"-9Rn is said to be a monotone operator if

(y-y',x-x') > 0 whenever ye T(x), y'e T(x').

It is said to be maximal monotone if, in addition, the graph { (x,y)e 9n"x91n I ye T(x) } is
not properly contained in the graph of any other monotone operator T'r:9"Rn-- n. [A
classical example of a maximal monotone operator is the subdifferential of a closed proper
convex function (see [Min64] or [Mor65]). General discussion of maximal monotone
operators can be found in [Br673], [Dei85], [Roc76].] We denote by T-' the inverse of T,
i.e.

(T-l)(y) = { x 9in I yeT(x) }, V y.e 9 n .

It is easily seen from symmetry that the inverse of a maximal monotone operator is also a
maximal monotone operator.
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Let Y be any closed convex set in 9Vn. Let T:91n-9tn be a maximal monotone
operator whose effective domain is Y (i.e. Y = { ye 91n I T(y) * 0 ]) and let h:Y--91n be
any function. Consider the following problem

Find an y*eY satisfying 0 e T(y*) + h(y*). (2.1)

Suppose that (2.1) has a solution and consider an algorithm for solving (2.1) that uses the
following iteration

yrl = [ I + T ]-l[I- h ](yr), r = 0, 1, 2, .... (2.2)

[It has been shown [Min62] that the proximal mapping [ I + T ]-1 is a single-valued
mapping and its effective domain is all of E9n. Furthermore the range of [ I + T ]-1 is Y so

that the iteration (2.2) is well defined.] The iteration (2.2), in the terminology of [LiM79],
is a splitting iteration that alternates between a forward step with respect to h and a
backward step with respect to T. Convergence of this iteration has been extensively
studied [Bru75], [Gab83], [Pas79], [Lem88], [Tse88]. The result that is most useful to
us is the following given by Gabay:

Proposition 1 ([Gab83, §6]) If h is a co-coercive function with modulus greater than
1/2, then the sequence {yr) generated by the iteration (2.2) converges to a solution of (2.1)
from any starting point y0 in Y.

The iteration (2.2), despite its simplicity, is a very powerful tool for the development of
decomposition methods. Both a projection algorithm of Goldstein [Gol64] and an
algorithm of Han and Lou [HaL88] can be shown to be special cases of this iteration (see
[Tse88]). 'A number of new decomposition algorithms for solving variational inequality
problems and convex programs can also be derived from it [Gab83], [Tse88]. We will
presently derive many more algorithms of this kind.

It should be noted that a function is co-coercive if and only if its inverse is a
coercive (i.e. strongly monotone) operator. Hence it would appear that the splitting
iteration (2.2) is restricted to problems having some strongly monotone component. For
example, the applications given in [HaL88], [Lem88, Theorem 1], [Tse88] for convex
programming are restricted to problems having some strongly convex component in the
cost function. However, we shall see that this is not the case.
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3. Relation to Splitting Algorithm

Let D be an nxn positive definite matrix. To simplify the notation, let

L = -/2(D-D)D'-/ 2, (3.1)

and Y = { D 1/ 2x I xeX }. Also let f:Y--9- n be the function

f(y) = D-1/2f(D-1/2y), V ye Y. (3.2)

We have the following result:

Proposition 2 If T - L is co-coercive with modulus greater than 1/2, then the AP

iteration (1.1) is a special case of (2.2) and ({xr) generated by (1.1) converges to a solution
of VI(X,f).

Proof: From (1.1) we have

o E Dxr+l + a)(xr+1) - Dxr + f(xr),

or equivalently,

o e Dxr+l + (D-D)xr+l + aDx(xr+l) - Dxr + f(xr).

By making the substitution yr = Dl"2xr, we can express the above equation as

o0 yr+l + Lyr+l + Day(yr+l) - (I + L)yr + ?(yr).

This in turn is equivalent to

yr+l = [I + L + aSy]-lE I + L- ? ](yr).

Now we have that (Lz, z) = ((D-D)D-'/2z, D-/2z)/2 = O for all ze 9 n. Hence (cf.
[Roc70b]) L + ay is a maximal monotone operator with effective domain Y, and the
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above iteration is a special case of (2.2). Since by assumption f - L is co-coercive with

modulus greater than 1/2, it follows from Proposition 1 that the sequence {yr) converges
to an y'e Y satisfying

0 e asc(y") + f(y").

Since x" = D-1/2y" is easily seen to be a solution of VI(X,f), this completes the proof.
Q.E.D.

We show below that if f is Lipschitz continuous, then the hypothesis of Proposition 2 are
implied by the convergence conditions given by Pang and Chan [PaC82, Theorem 2.9]
(also see [BeT89], [Daf83]).

Proposition 3 If f is Lipschitz continuous and there exists a Pe (0,1) such that

IfF(y) - f(x) - D-1/2DD-1 /2(y-x)ll < illy-xil, V xE Y, V ye Y,

then f - L is co-coercive with modulus greater than 1/2.

Proof: It suffices to show that

(f(y) - Ly - f(x) + Lx, y - x) > cYllf(y) - Ly - ?(x) + Lx112, V x Y, V yeY,

for some a > 1/2. Consider any x, ye Y. Since IIf(y) - ?(x) - )D-/2DD-l/2 (y-x)ll <

[lly-xll, we have (also using the definition of L (3.1))

IIf(y) - Ly - f(x) + Lx112 = II(y-x) + T(y) - f(x) - D-'/2DD-1/2(y-x)1l 2

= lly-x112 + 2(y-x, f(y) - f(x) - [-1/2D)-'/2(y-x))

+ Iff(y) - f(x) -D-/2DD-l/2(y-x)ll2

< (1+p)lly-xll2 + 2(y - x , ?(y) - f(x) - D-1/2DD-1/2(y-x))

= 2(y - x , f(y) - Ly - f(x) + Lx) - (l-[)lly-xll2.
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Since f is Lipschitz continuous (with modulus say p), we have that IIf(y) - Ly - f(x) +

Lxl < (IILll+pllII'lll)lly-xll and the above inequality implies

[1 + (l-P)/(IIL+pllD-111) 2].11f(y) - Ly - f(x) + Lx112 < 2(y - x, f(y) - Ly - f(x) + Lx).

Q.E.D.

4. Application to Affine Variational Inequalities

Consider the special case of VI(X,f) where f is affine, i.e.

f(x) = Qx+ q, V xe X, (4.1)

where Q is an nxn positive semi-definite matrix and q is an n-vector. We choose a

positive definite matrix D as before and denote

E = Q- D, H = D'-/2EDI1/ 2. (4.2)

Let L and f be given by, respectively, (3.1) and (3.2). We strengthen Proposition 3 as
follows:

Proposition 4 If III + HII < 2 and E is symmetric, then 1 - L is co-coercive with

modulus greater than 1/2.

Proof: Let P = I + H. Then (by (3.1)-(3.2), (4.1)-(4.2)) f(y) - Ly - f(x) + Lx = P(y-x)
and P is symmetric positive semi-definite (since H is symmetric and (z , Pz) =

(D-1/2z, QD-'/2z) > 0 for all ze gn), so that P 1/2 exists. Hence

IIPzii2 < IIPII.Ilp1/ 2z1i2

= IPII-(z , Pz), V ze9i n,

and f - L is co-coercive with modulus 1/IPII. Q.E.D.
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[Notice that if both D and Q are symmetric, then I + H = D-1/2QD-1/ 2.] We show below
that the condition III + HII < 2 can always be satisfied by choosing D appropriately. This is
a crucial step towards the development of useful algorithms.

Proposition 5 Let D = yI - F, where F is any nxn matrix. Then, for all y sufficiently
large (y depends on F and Q only), III + Hil < 2.

Proof: First note that D = yI - F. Hence, for all y> IIFII, we can expand D-1/2 as

D-1/2 = 'l/2-[ I- F/-I/2

-f£1/2-[ I + a -F/Y + a2-.(F/y)2 + a3.(F/Y) 3 + .. ],

where 0ak = (1.3-....-(2k-1l))/(k!.2k), k = 1, 2,.... Since the ak's are bounded (in fact
between 0 and 1/2), we can write

D-1/2 = -l1/2.[ I + al-F/y+O(l/) ],

where O(e) -+ 0 as e -- 0 (the constant in the 0(-) notation depends on F and Q only).
Direct multiplication yields (cf. (4.2))

D-1/2ED-l/2 = y'l.[ I + al.F/ly+ O(1/j 2) ].[Q+ F- yI].[ I+ ,l-yP/+ O(1/y2) ]
= -I + O(1/y).

Hence, for all y sufficiently large, III + D-1/2ED-1/211 < 2. Q.E.D.

[A more refined analysis shows that y> 4(IIQIII+IIFII+IIF1) is sufficient.] Also, more
generally, we can choose D = yM - F, where M is any nxn symmetric positive definite
matrix, and the conclusion of Proposition 5 can be seen to hold still.

Propositions 2, 4 and 5 motivate the following strategy for choosing the matrix D
in the AP iteration (1.1): First choose an F for which Q + F is symmetric; then choose D =
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yI - F, where y is any positive scalar for which III + Hil < 2 (H is given by (4.2)). [In

practice, y must be estimated, perhaps dynamically.] Since we are free to choose F, we

may choose F to simplify the AP iteration. In particular, we may choose F to be either

upper or lower triangular (e.g. F = RT - S, where R (S) denotes the upper (lower)

triangular part of Q). For linear complementarity problems, this gives rise to a method that

is simple and, for quadratic programs, highly parallelizable (see §6).

How does Proposition 3 compare with Proposition 4 in this affine case? It can be

seen from (3.1), (4.1)-(4.2) that f(y) - f(x) - D-l/2DD-'/2(y-x) = H(y-x), so that the

convergence condition in Proposition 3 is equivalent to IIHII < 1, which is stronger than the
condition III + HI! < 2. In fact, IIHII < 1 implies

Qz , z) = -lb/2izl
2 + (HD1/2z, D1/2z)

2 ilD1/2z1i 2 IIHI.)D1l/2zI12

> 0, V ZE ",

so that Q is positive definite. [However, the contraction condition IIHII < 1 can be extended

to general linearization methods (see [PaC82], [Daf83]) while an analogous extension does

not seem possible with the condition III + Hll < 2.]

The condition IIHII < 1 is not always easy to verify, especially if the size of H is

large. Below we show that if Q is also positive definite and E is symmetric, then IIHII < 1
is equivalent to the simpler condition that D - E be positive definite. This result is a slight

generalization of that stated in [LiP87, §3.2] for the case where D is symmetric and

diagonal. For completeness we include it here.

Proposition 6 For any nxn symmetric matrix E and any nxn positive definite matrix

D such that D + E is positive definite, IID-'/2ED'l/211 < 1 if and only if D - E is positive

definite.

Proof: Suppose that IID-l/2ED-/211 < 1. Then

((D - E)z, z) = (Dz, z)-(Ez, z)

> IID1/z 2 - lD-1'/2ED -1/2llIID1/2z112



> (1 - IID-'l/2ED-'1/2II)-p.llzII2, V ze 9 n,

where p denotes the smallest eigenvalue of D and the first inequality follows from the

Cauchy-Schwartz inequality.

Now suppose that D - E is positive definite. Since D + E is also positive definite,
there exists some c > 0 such that

(Dz, z) > (Ez, z) + collz12, V ze 9in ,

(Dz, z) > -(Ez, z) + yIlz1 2, V zE 9"n.

Letting w = B'/2z and using the inequality IID-1/2w112 > llw112/11DII, we obtain

(1-c0/IIDlI)'IIwII 2 > I(D-/ 2Eb-1/2w, w)l, V we 9 n.

Since for any nxn symmetric matrix A, IIAil = maxllwll=l I(Aw, w)l, this implies

(1-a/lID!I) 2_ IID-/2ED-1/211.

Q.E.D.

5. Decomposition in Generalized Linear/Quadratic Programming

Consider the the affine variational inequality problem (cf. (4.1))

Find an x*eX satisfying (Qx* + q, x - x*) > 0, V xe X, (5.1)

and suppose that Q, q and X have the following special form

r r
I G A -b 

Q= I I, q = I I, X=VxW, (5.2)
I-A T H I c
L J L J
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where A is an kxm matrix, G and H are, respectively, kxk and mxm symmetric positive

semi-definite matrices, b is an k-vector, c is an m-vector, and V and W are closed convex
set in, respectively, 9Rk and 9 tm. The matrix Q can be seen to be positive semi-definite

(but not positive definite). This problem contains a number of important problems as

special cases. For example, if both V and W are polyhedral sets, then this problem

reduces to the generalized linear-quadratic programming problem considered by

Rockafellar [Roc87] (see Application 3 below). As another example, if G = 0 and V =

91
k, then this problem reduces to the following convex program with quadratic costs

Minimize (w, Hw)/2 + (c, w) (5.3)

subject to Aw = b, we W.

[This can be seen by attaching a Lagrange multiplier vector to the constraints Aw = b and

writing down the corresponding Kuhn-Tucker conditions for (5.3).] If G = 0 and V is the
non-negative orthant in t9 k, then this problem reduces to (5.3) with the equality constraints

Aw = b replaced by the inequality constraints Aw > b. The convex program (5.3) is an

important problem in optimization, including as special cases ordinary linear/quadratic

programs as well as the problems of projecting on to a convex set [Han88] and of finding

a point in the intersection of convex sets [GPR67] (see Applications 1 and 2 below).

The special structures of Q and X motivate a number of very interesting
applications of the AP algorithm. Suppose that we choose D = yI - F (cf. Proposition 5),

where y is some yet to be determined scalar and F is the (k+m)x(k+m) matrix

I2 01. 0
1 2AT o I

Then Q - D is symmetric, and the AP iteration (1.1) applied to solve (5.1)-(5.2) reduces to

the following:

pr+l = argminpEv{ fylp -prll 2 /2+(Gpr -b+Awr, p) }, (5.4a)

wr+ 1 = argminwww{ ylw - wrlI2/2 + (Hwr + c - 2ATpr +l + ATpr, w) . (5.4b)
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From Propositions 2, 4 and 5 we have the following result:

Proposition 7 Suppose that (5.1)-(5.2) has a solution. Then, for all y sufficiently
large (y depends on A, G and H only), the sequence { (wr,pr ) generated by (5.4a)-(5.4b)

converges to a solution of (5.1)-(5.2).

Notice that the iteration (5.4a)-(5.4b) involves the minimization of a separable, strictly
convex quadratic function over, respectively, V and W. The separability of the cost
function is an important feature of this iteration. For example, if W has special structures,
say, W is a Cartesian product of sets in lower dimension spaces, i.e.,

W = W 1lXW 2 X...XWh,

where each W i is a closed convex set in gtmi (ml + m2 + ... + mh = m), then (5.4b)

decomposes into h separate problems. As another example, if W is a polyhedral set given
by W = { we SRm I Bw = d, 0 < w < u ) for some matrix B and vectors d and u of

appropriate dimensions, then (5.4b) is a special case of monotropic programming problem
[Roc84] and can be solved by one of many methods.

Some alternative choices of F also lead to interesting methods. For example, if we
choose F to be the (k+m)x(k+m) matrix comprising -2A in its top right corner and zero

entries everywhere else, then the AP iteration (1.1) reduces to the following:

wr+l = argminwwt{ ylw - wr112/2 + (Hwr + c - ATpr , w) 1, (5.5a)
pr+l = argminpEv{ yl)p - prl12/2 + (Gpr - b + 2Awr+ l - Awr , w) . (5.5a)

As another example, we can choose F to have the form

r I
I-F' 0 |

I 2AT -" I

where F' and F" are, respectively, some kxk and mxm symmetric positive semi-definite
matrices. For certain choices of F' and F" (e.g. F' = G, F" = H), this may significantly
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improve the rate of convergence. Problem decomposition can still be achieved if we
choose F' and F" to be block diagonal according to the Cartesian product structure of,

respectively, V and W.

We can also alternate between the two iterations (5.4a)-(5.4b) and (5.5a)-(5.5b)
similar to Aitken's double sweep method. This typically accelerates the convergence in
practice (although we do not have a convergence proof for this mixed method).

Application 1 (Linear/Quadratic Programming)

Consider the convex program (5.3). As we noted earlier, this program can be
formulated in the form of (5.1)-(5.2) with G = 0 and V = 9i k. Hence by applying (5.4a)-

(5.4b) we obtain the following iteration for solving (5.3):

p"+i = pr + (b- Awr)/y, (5.6a)

Wr+1 = argminw { yllw - wrll2 /2 + (Hwr + c - 2ATpr+l + ATpr, w) . (5.6b)

By Proposition 7, if (5.3) has an optimal solution and there exists an optimal Lagrange
multiplier vector associated with the constraints Aw = b, then, for all y sufficiently large,
the sequence { (wr,pr) ) generated by (5.6a)-(5.6b) converges to an optimal primal dual
pair. The iteration (5.6a)-(5.6b), in constrast to existing decomposition methods for
solving (5.3), has the important feature that it simultaneously dualizes the constraints and
diagonalizes the cost function. This allows the problem to be decomposed according to the
structure of W only, independent of the structures of H and A. [This feature of
diagonalizing the cost function is reminiscent of an algorithm of Feijoo and Meyer
[FeM88], but the Feijoo-Meyer algorithm cannot dualize any constraint and must use an
additional line search at each iteration to ensure convergence.]

To illustrate the computational advantages of the iteration (5.6a)-(5.6b), consider
the special case of (5.3) where W is a box in 9im (this is the convex quadratic program in

standard form). In this case the iteration (5.6a)-(5.6b) reduces to:

pr+l = pr + (b- Awr)/y,

wr+l = [w r + (-Hwr -C + 2ATpTr)/y +,
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where [.]+ denotes the orthogonal projection onto W. The above iteration is simple and

massively parallelizable.

Application 2 (Projection onto the Intersection of Convex Sets)

Consider the problem of computing the orthogonal projection of a vector z in 9zm

onto the intersection of a finite number of closed convex sets Z 1, Z2, ... , Zh in 9 tm (m > 1,

h > 1) [Han88]. This problem can be written in the form of (5.3) as

Minimize 11 z-i11 2 + lz2- z 12 + ... + 11zh -z112

subject to Z1 - z2 = 0, z 1 - z 3 = 0, ... , l- Zh = 0,

z IE Z1, z2E Z2 , ... * ZhE Zh ,

where each zi is an auxiliary vector in 9 tm . Direct application of (5.6a)-(5.6b) to this

problem produces the following iteration:

pir+l = pir + (zir - zlr)/¥, i = 2, 3, ... , h,
zL = [ -zir - ( zi - + 2p i +l- pir ) /y ] i+, i = 2, 3,...,h,

Z1 r+l = [ Z r - ( Zlr - -Z - (2pr+l + Pr ))/Y ]1+

i=2

where [.]i+ denotes the orthogonal projection onto Zi. This iteration is highly

parallelizable and, by Proposition 7, the sequence (zl r) converges to the orthogonal

projection of z onto Zln...nZh if (i) y is sufficiently large, (ii) Zln...rnZh • 0, and (iii)

there exists an optimal Lagrange multiplier vector associated with the constraints zl - zi =

0 for all i. [The latter holds under a certain constraint qualification [Roc70, Theorem 30.4]

(also see [Han88]).]

We can alternatively use an iteration based on (5.5a)-(5.5b) or use a different
problem formulation (e.g., change the cost function or replace the constraints zl - zi = 0
by zi_ 1 - z i = 0 for all i = 2, 3, ... , h).
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Application 3 (Deterministic Control in Discrete Time)

Consider the following optimal control problem considered in [RoW87]

Minimize _ (UT , Pruc)/2 + (pt , ut) + (C+1 , xT) (5.7)
'r=0

+ i Pv Qt(qu - Cxx-1 - Doug) + PVT+,QT+l(qT+l - CT+IXT)

subject to xt = Alxl + Btut + bt, = 1, ..., T, (5.8a)
xO = BOuO+b 0, (5.8b)

u U, = O,..., T,

where each Pt is an mxmr symmetric positive semi-definite matrix, each Qt is an ltxlc

symmetric positive semi-definite matrix, each AT is an krxnr matrix, each B. is an ktxmx

matrix, each CT is an lxxnx matrix, each Dx is an lxxmt matrix, each UT is a polyhedral set

in 9 t "x, each V t is a polyhedral set in %4, and bx, cr, PT, q% are vectors of appropriate

dimensions. The function pVQX: 9X---(-oo,oo] denotes the polyhedral function

PVt,QT(5) = maxvE VT{ ( , l) - (q, Qlr)/2 ).

The vectors x0, x1, ... , xT are the states and the vectors u0, u l, ..., UT are the controls.

By attaching Lagrange multipliers to the system dynamic constraints (5.8a)-(5.8b)
and writing each function Pvt,Qt explicitly in terms of the Lagrangian that defines it, we

can formulate the problem (5.7) in the form of (5.1)-(5.2), where

r I r '

|O0I -I Bo I
0 Al -I B,1

0 ... A2 ... 12 .

I 0 I I AT -I BTI

Q1 j|C 1 0 D1 I
Q2 . I C 2 .. D 2 ... I

QT I I CT DTI
QT+1I I CT+1 o I

L = I
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l O 0...
0

0
H =

Po
JP1

P2 ...

PT

V = ko x... X9 kTx 1 x... XVT+1, W = 9inx....x9.nT xUox... XUT,

and the vectors b and c are defined analogously using, respectively, the vectors {b}), {q})

and the vectors {cz), {Px}. Let us apply the iteration (5.4a)-(5.4b) to solve this special

case of (5.1)-(5.2). Then from the structures of V and W it can be seen that each (5.4a)
and (5.4b) involves 2(T+1) separate subproblems, which can be solved in parallel. [For

simplicity, we omit writing down this iteration. It suffices to notice that each subproblem

involves the minimization of a separable, strictly convex quadratic function over either 9jkt

or Vx or 9tnr or Us, for some t, which typically is easy to solve.] By Proposition 7, if

(5.7) has an optimal solution and there exists optimal Lagrange multipliers associated with
the constraints (5.8a)-(5.8b), then, for all y sufficiently large, the sequence of iterates

generated by the iteration (5.4a)-(5.4b) (applied to solve this special case of (5.1)-(5.2))

converges. [Conditions for the existence of an optimal primal dual pair can be found in

[Roc87].]

Notice that, in the above formulation, all of the system dynamic constraints are

dualized (i.e., incorporated into the matrix A). Alternatively we can dualize only a subset

of these constraints. For example, we can dualize only those constraints describing the
system dynamic at odd time units. In this case, W becomes W 0xW2 x...xW2h, where h =
LT/2j and

WO = { (XO,uO) I XO = BOUO + bo, uOE UO },
W x = { (x,,x,_1,u x) I x z = Atx,_1 + Bu, + bx, uE U2 }, z = 2, 4,..., 2h.
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[Of course, G, H, A, V, b and c also change accordingly.] Then the minimization
problem in (5.4a) decomposes into h+l separate subproblems. Although the number of

separate subproblems is less in this formulation, the iteration will likely converge faster
since only about half of the system dynamic constraints are dualized.

6. A Matrix Splitting Algorithm for Linear Complementarity Problems

Consider the problem

Find an x*E gn satisfying x* > 0, Qx* + q > 0, (Qx* + q, x*) = 0. (LCP)

where Q is an nxn positive semi-definite matrix and q is an n-vector. [The more general

case where upper bound constraints are present may be treated analogously.] This
problem, called the linear complementarity problem, is a classical problem in optimization
(see [BaC78], [CGL80], [Man77], [Pan84]).

It is easily seen that (LCP) is a special case of VI(X,f) with f(x) = Qx + q and X
being the non-negative orthant in 9Rn. Let D = yI - F (cf. Proposition 5), where y is some
yet to be determined scalar and F = RT - S, where R (S) denotes the upper (lower)
triangular part of Q. Then Q - D = R + K + RT - yI, where K denotes the nxn diagonal
matrix whose j-th diagonal entry is the j-th diagonal entry of Q; hence Q - D is symmetric.

Consider applying the AP iteration (1.1) to solve this special case of VI(X,f) with the
above choice of D. Then we obtain the following Gauss-Seidel iteration:

xir+l = [ xir + (j<i (Qji-Qij)j r +_ -j<i Qjixjr - ji Qijx - qi)/ ]+,
i = 1, 2, ... , n,

where Qij denotes the (i,j)-th entry of Q, qi denotes the i-th coordinate of q, and [-]+

denotes the projection onto the interval [O,oo). The above iteration is simple and, if Q has a
certain special structure (e.g. Q given by (5.2) with G = 0 and q given by (5.2), which
corresponds to the (LCP) formulation of the quadratic program min {(w , Hw)/2 + (c , w) I
Aw > b, w > 0 }), also highly parallelizable. Since Q - D is symmetric, it follows from
Propositions 2, 4 and 5 that if (LCP) has a solution, then, for all sufficiently large y (y

depends on Q only), {xr} generated by the above iteration converges to a solution of
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(LCP). The algorithm based on this iteration, in the terminology of [Pan84] (also see
[LiP87]), is a matrix splitting algorithm. However, in contrast to existing matrix splitting
algorithms, this algorithm converges without any additional assumption on the problem
data (such as symmetry of Q).

We can alternatively choose F to be the matrix F = ST- R. Depending on the
structure of the matrix A, this choice may be more advantageous.
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