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Abstract

A current topic of great interest is the multi-resolution analysis of signals and the devel-

opment of multi-scale or multigrid algorithms. In this paper we describe part of a research

effort aimed at developing a corresponding theory for stochastic processes described at mul-

tiple scales and for their efficient estimation or reconstruction given partial and/or noisy

measurements which may also be at several scales. The theories of multi-scale signal rep-

resentations and wavelet transforms lead naturally to models of signals(in one or several

dimensions) on trees and lattices. In this paper we focus on one particular class of processes

defined on dyadic trees. The central results of the paper are three algorithms for optimal

estimation/reconstruction for such processes: one reminiscent of the Laplacian pyramid

and the efficient use of Haar transforms, a second that is iterative in nature and can be

viewed as a multigrid relaxation algorithm, and a third that represents an extension of the

Rauch-Tung-Striebel algorithm to processes on dyadic trees and involves a new discrete Ric-

cati equation, which in this case has three steps: predict, merge, and measurement update.

Related work and extensions are also briefly discussed.
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1 Introduction

The investigation of multi-scale representations of signals and the development of

multi-scale algorithms has been and remains a topic of much interest in many ap-

plications for a variety of reasons. In some cases the motivation has directly been

the fact that the phenomenon of interest exhibits patterns of importance at multiple

scales. One well-known example is the use of fractal models for images[4] [25] but many

others exist, such as in the modeling of layering structures in the earth using for exam-

ple self-similar processes as the basis for geophysical signal processing algorithms[9].

A second motivation has been primarily computational: many problems, especially

those in several spatial dimensions, are of enormous computational complexity, and

thus extremely efficient, possibly highly parallel and iterative algorithms are essential.

Multigrid methods for solving partial differential equations[7,20,28] or for performing

Monte Carlo experiments[18] are a good example.

A third motivation stems from so-called "sensor fusion" problems in which one is

interested in combining together measurements with very different spatial resolutions.

Geophysical problems often have this character as do problems of combining multi-

spectral measurements(IF, radar, millimeter wave, ... ) or of combining gravity-related

measurements from different sources(inertial system vertical deflections, gravimeters,

gradiometers, ... ). Finally, renormalization group ideas, developed originally to assist

in the difficult study of near-critical phenomena in statistical mechanical systems, also

now find application in methods for improving convergence in large-scale simulated

annealing algorithms for Markov random field estimation[17].

One of the more recent areas of investigation in multi-scale analysis has been the

development of a theory of multi-scale representations of signals[22,23] and the closely

related topic of wavelet transforms[27,14]. These methods have drawn considerable

attention in several disciplines including signal processing because they appear to be

a natural way to perform a time-scale decomposition of signals and because examples

that have been given of such transforms seem to indicate that it should be possible to

develop efficient optimal processing algorithms based on these representations. The
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development of such optimal algorithms - e.g. for the reconstruction of noise-degraded

signals or for the detection and localization of transient signals of different durations -

requires, of course, the development of a corresponding theory of stochastic processes

and their estimation. The research presented in this and several other papers and

reports[5,6] has the development of this theory as its objective.

In the next section we introduce multi-scale representations of signals and wavelet

transforms and from these we motivate the investigation of stochastic processes on

trees and lattices, the former of which has been the focus of all of our work to date.

In that section we also introduce the processes studied in this paper. In Section III

we formulate a multi-scale estimation problem and present three algorithms for its

solution. The first, which is a fine-to-coarse algorithm is reminiscent of the so-called

Laplacian pyramid[10] for image coding and can be implemented efficiently via the

Haar transform. The second is an iterative, relaxation algorithm resembling multigrid

methods. The third is a fine-to-coarse-to-fine algorithm that represents a generaliza-

tion of the Rauch-Tung-Striebel smoothing algorithm. The Riccati equation in this

case has a fine-to-coarse prediction step, a merging step in which predicted estimates

from neighboring regions of fine data are merged, and a measurement update step.

Finally, in Section IV we discuss extensions of this work and briefly describe some

related research.
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2 Multiscale Representations and Stochastic Pro-

cesses on Trees

2.1 Multiscale, Wavelets, and Trees

As developed in [23,24], the multi-scale representation of a continuous-time signal'

x(t) consists of a sequence of approximations of that signal on finer and finer subspaces

of functions. The entire representation is completely specified by a single function

+(t), where the approximation of x(t) at the mth scale is given by

+00

Xm(t) = E x(m, n)q(2 m t - n) (2.1)
n=---00

Thus as m -- oo the approximation consists of a sum of many highly compressed,

weighted, and shifted versions of q. This function is far from arbitrary in its choice. In
+ +

particular +(t) must be orthogonal2 to its integer translates q(t - n), n =- 1, - 2, ...,

and also, in order that the (m + 1)st approximation is indeed a refinement of the mth,

we require that q(t) be exactly representable at the next scale:

q(t) = E h(n)q(2t - n) (2.2)
n

As developed in [14], the sequence h(n) must satisfy several conditions for the

desired properties of +(t) to hold and for Xm(t) to converge to x(t) as m --+ oo. One

of these is that h(n) must be the impulse response of a so-called quadrature mirror

filter[14,29]. The simplest example of such a q, h pair is the Haar approximation in

which

+(t)= I <0t< 1 (2.3)
otherwise

and

h(n) ={ I n=O.,1 (2.4)
h(n)= 0 otherwise

1This entire theory, and ours as well, extends easily to signals in several spatial dimensions. For
simplicity of discussion and notation we focus here on the 1D case.

2 Actually, it is possible to relax this by requiring only the so-called condition of quasi-
orthogonality[16].
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As shown in [14] there exists a family of FIR h(n)'s and corresponding compactly

supported q(t)'s, where the degree of smoothness of +(t) increases(albeit slowly) with

the length of h(n).

The representation just described is closely connected to the wavelet transform,

which is based on a single function +'(t) that has the property that the full set of its

scaled translates {2m/2-b(2mt - n)} form a complete orthonormal basis for L 2 . In [14]

it is shown that if q and b are related via an equation of the form

+(t) = Eg(n)q(2t - n) (2.5)
n

where g(n) and h(n) form a conjugate mirror filter pair[29], then

Xm+l(t) = Xm(t) + E d(m,n)o/(2mt - n) (2.6)

and indeed Xm(t) is simply the partial orthonormal expansion of x(t), up to scale m,

with respect to the basis defined by b. For example if q and h are as in eq.(2.3),

eq.(2.4), then

1 0< t < 1/2

+(t>)= 1 -1 1/2 <t <1 (2.7)

0 otherwise

1 n=0

g(n) = -1 n= 1 (2.8)

0 otherwise

and {2m/20b(2mt - n)} is the Haar basis.

Using eq.(2.1), eq.(2.2), eq.(2.5), and eq.(2.6) we see that we have a dynamical

relationship between the coefficients x(m, n) at one scale and those at the next. Indeed

this relationship defines a lattice on the points (m, n), where (m + 1, k) is connected

to (m, n) if x(m, n) influences x(m + 1, k). For example the Haar representation

naturally defines a dyadic tree structure on the points (m, n) in which each point

has two equally-weighted(i.e. h(O) = h(1)) descendents corresponding to the two

subdivisions of the support interval of 0(2mt - n), namely those of 0(2(m+l)t - 2n)

and 0(2(m+l)t - 2n - 1).
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The preceding development provides the motivation for the study of stochastic

processes x(m,n) defined on the types of lattices just described. In our work to

date we have focused attention on the case of the dyadic tree. Let us make several

comments about this case. First, as illustrated in Figure 1, with this and any of

the other lattices, the scale index m is time-like. For example it defines a natural

direction of recursion for our representation: from coarse-to-fine in the synthesis of a

signal and from fine to coarse in the analysis(e.g. in the Haar case x(m, n) is directly

obtainable from x(m + 1, 2n), x(m + 1, 2n + 1). In the case of our tree, with increasing

m - i.e. the direction of synthesis - denoting the forward direction, we then can define

a unique backward shift y-l and two forward shifts ac and P,(see Figure 1). Also, for

notational convenience we denote each node of the tree by a single abstract index

t and let T denote the set of all nodes. Thus if t = (m,n) then cat = (m + 1,2n),

St = (m + 1,2n + 1), and 7 -lt = (m -1, [n]) where [x] =integer part of x. Also we use

the notation m(t) to denote the scale(i.e. the m-component of t). Finally, it is worth

noting that while we have described multi-scale representations for continuous-time

signals on (-oo, oo), they can also be used for signals on compact intervals or in

discrete-time. For example a signal defined for t = 0, 1, ... , 2 M-1 can be represented

by M scales, each of which represents in essence an averaged, decimated version of

the finer scale immediately below it. In this case the tree of Figure 1 has a bottom

level, representing the samples of the signal itself, and a single root node, denoted by

0, at the top. Such a root node also exists in the representation of continuous-time

signals defined on a compact interval.

2.2 Dynamic Stochastic Models on Trees

As in the synthesis description of multi-scale representations, the stochastic models

we consider are naturally described as evolving from coarse-to-fine scales. Specifically,

we consider the following class of state-space models on trees:

x(t) = A(m(t))x(y-lt) + B(m(t))w(t) (2.9)
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where {w(t), t E T} is a set of independent, zero-mean Gaussian random variables. If

we are dealing with a tree with unique root node, 0, we require w(t) to be independent

of x(0), the zero-mean initial condition. The covariance of w(t) is I and that of x(0) is

Px(0). If we wish the model eq.(2.9) to define a process over the entire infinite tree, we

simply require that w(t) is independent of the "past" of x, i.e. {x(r)lm(r) < m(t)}.

If A(m) is invertible for all m, this is equivalent to requiring w(t) to be independent

of some x(r) with r $/ t, m(r) < m(t).

Let us make several comments about this model. Note first that the model does

evolve along the tree, as both x(cat) and x(ft) evolve from x(t). Secondly, we note

that this process has a Markovian property: given x at scale m, x at scale m + 1 is

independent of x at scales less than or equal to m - 1. Indeed for this to hold all

we need is for w to be independent from scale to scale and not necessarily at each

individual node. Also while the analysis we perform is easily extended to the case

in which A and B are arbitrary functions of t, we have chosen to focus here on a

translation-invariant model: we allow these quantities to depend only on scale. As

we will see this leads to significant computational efficiencies and also, when this

dependence is chosen appropriately, these models lead to processes possessing self-

similar properties from scale to scale.

Note that the second-order statistics of x(t) are easily computed. In particular

the covariance Px(t) = E[x(t)xT (t)] evolves according to a Lyapunov equation on the

tree:

Px(t) = A(m(t))P(-y- 1t)AT (m(t)) + B(m(t))BT (m(t)) (2.10)

Note in particular that if P,(r) depends only on m(r) for m(r) < m(t) - 1, then P,(t)

depends only on m(t). We will assume that this is the case and therefore will write

Px(t) = Px(m(t)). Note that this is always true if we are considering the subtree with

single root node 0. Also if A(m) is invertible for all m, and if P (t) = Px(m(t)) at

some scale(i.e. at all t for which m(t) equals m for some m), then Px(t) = Px(m(t))

for all t. Let KxI(t, s) = E[x(t)xT (s)]. Let s A t denote the least upper bound of s

and t, i.e. the first node that is a predecessor of both t and s. Then

IK (t, s) = D(m(t), m(s A t))P(m(s A t))T(m(s), m(s A t)) (2.11)
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where for m1 > m 2

(ml,2) = I m = (2.12)

A(ml )4(ml - 1,m 2 ) ml > m 2

Also, let d(s, t) denote the distance from s to t, i.e. the number of branches on the

shortest path from s to t. Then d(s,t) = d(s,s A t) + d(t,s A t) = d(t, s) and if

A(m(t)) = A, then

Kxx(t, s) = Ad(tsAt)Px(m(s A t))(AT)d(s"sAt) (2.13)

Furthermore, if A is stable and if B(m(t)) = B, let Px be the solution to the algebraic

Lyapunov equation

P, = APxAT + BBT (2.14)

In this case if P,(O) = Px(if we have a root node), or if we assume that Px(r) = Px

for m(r) sufficiently negative 3, then Px(t) = P~ for all t, and we have the stationary

model

KxI(t, s) = Ad(t"sAt)p (AT)d(ssAt)

= Kx(d(t, s A t), d(s, s A t)) (2.15)

As a final note, we point out that there is one class of scalar stochastic processes

on trees that has been the subject of substantial analysis. In [3] these are referred

to as stationary processes but we prefer to use that terminology for the larger class

of processes for which KIx(t,s) depends only on d(t,s A t) and d(s,s A t). The

class of processes considered in [3] is characterized by the condition that Kx,(t, s)

depends only on d(s, t) and we refer to these as isotropic processes. Note that eq.(2.15)

represents an isotropic covariance if AP. = PxAT, which shows the connection to the

class of reversible stochastic processes[1]. For example in the scalar case

K (t, s) = { 1 A2 d(st) (2.16)

Some of our other research has examined the modeling of isotropic processes on trees,

and we briefly describe this in Section IV.

30Once again if A is invertible, if Px(t) = Px at any single node, Px(t) = P, at all nodes.
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3 Optimal Estimation on Trees

In this section we consider the estimation of the stochastic process described by

eq.(2.9). For simplicity we assume that there is a root node 0 and M scales on which

we have data and wish to focus4 . The measurements on which our estimates are based

are of the form

y(t) = C(m(t))x(t) + v(t) (3.1)

where {v(t),t E T} is a set of independent zero-mean Gaussian random variables

independent of x(O) and {w(t), t E T}. The covariance of v(t) is R(m(t)). The model

eq.(3.1) allows us to consider multiple resolution measurements of our process. The

single resolution problem, i.e. when C(m) = 0 unless m = M(the finest level), is also

of interest as it corresponds to the problem of restoring a noise corrupted version of

a stochastic process possessing a multi-scale description.

In the following three subsections we describe three different algorithmic struc-

tures. The first of these deals with single scale measurements and a batch algorithm

from scale-to-scale. The latter two allow multi-scale measurements and yield iterative

multigrid and recursive fine-to-coarse-to-fine algorithms, respectively.

3.1 Noisy Interpolation and the Laplacian Pyramid

Consider the model eq.(2.9) with a single scale of measurements:

y(n) = Cx(M, n) + v(n) n = 0,1, ... 2M - 1 (3.2)

where without loss of generality we assume that the covariance of v(n) is I. Let us

look first at the batch estimation of x at this finest scale. To do this we define the

stacked vectors and block matrices

yT = [T( 0 ),...,yT( 2 M _ 1)] (3.3)

XMT = [X T(M, ),..., xT(M, 2 M _- 1)]

VT = [VT(o),...,VT(2 M - 1)]

4 Steady-state properties as M --+ oo will be reported in a subsequent paper.
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C = diag(C, ... , C) (3.4)

PM = E[XMXM] (3.5)

The optimal estimate is given by

XM = PMCT[CPMCT + I]-ly (3.6)

Furthermore, suppose that we consider estimates at coarser scales, i.e. interpolation

up to higher levels in the tree. For example from eq.(2.9) we see that

Xk+1 = Ak+lXk + Bk+lWk+l (3.7)

where Xk+l, Xk, and Wk+l are defined in a similar manner with Xk+1 and Wk+l of

dimension 2k+1 and

A(k+l1) 0 0 ... 0

A(k+l) 0 0 ... 0

O A(k+1) 0 .. 0

Ak+1 = 0 A(k + 1) 0 ... 0 (3.8)

O 0 0 ... A(k + 1)

O 0 0 ... A(k + 1)

Bk+1 = diag(Bk+l,...,Bk+l) (3.9)

Pk+l = E[Xk+XkT+l] (3.10)

An iterated expectation computation applied to eq.(3.7) then yields a recursive pro-

cedure for computing Xk from fine to coarse scales, starting with XM in eq.(3.6).

Xk = PkAk+1 Pk+l 1 Xk+ (3.11)

The computation of these coarse-scale estimates is of importance if one wishes

to consider efficient coding of data possessing multiple-scale descriptions. Indeed the

algorithm, eq.(3.6) and eq.(3.11), possesses structure reminiscent of the Laplacian
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pyramid approach[10] to multiscale coding. To see this and to obtain insight into

efficient implementations of eq.(3.6) and eq.(3.11) requires a careful examination of

the structure of 'Pk. It turns out that the eigenstructure of Pk is directly related

to the Haar basis, which should come as no surprise considering the correspondance

between the dyadic tree and the Haar wavelet basis.

The covariance matrix at any given level, Pk, can be described as follows. For all

pairs k > 1, let S(k, I) denote the block matrix with 2
k - 1-1 X 2

k - l- 1 blocks each of

which equals

T(k, 1) = (k, l)P(l)IT (k, 1) (3.12)

Note that these matrices can be computed recursively.

T(k + 1,1) = A(k + 1)T(k, I)AT(k + 1) (3.13)

The 2k x 2k block matrix Pk can then be constructed recursively.

U(k, k) = P,(k) (3.14)

U(k,l) = U(k, l 1) S(k, 1) (3.15)

-k = U(k, 0O) (3.16)

For example,

PT(2) T(2, 1) ' T(2, 0) T(2, 0)

T(2,1) P,(2) ' T(2,0) T(2,0)
P 2 = . ... ... ... (3.17)

T(2, 0) T(2, 0) P(2) T(2, 1)

T(2,0) T(2,0) ' T(2,1) P (2)

so that off the main diagonal Pk has block submatrices of geometrically growing size

each of which has its blocks equal to T(k, 1).

The 2k x 2k+l block matrix JPk,k+l -= PkATk+l = E[XkIXk+l], has a very similar

structure. For k > 1, let S(k, 1) denote the block matrix with 2 k - -1 X 2
k -1 blocks

each of which equals

T(k, I)AT(k + 1) = (k, l)P (I),T(k + 1, 1) (3.18)



3 OPTIMAL ESTIMATION ON TREES 13

The 2k x 2k+ l block matrix 'Pk is then constructed recursively as follows.

U(k, k) = [P.(k)AT(k + 1) P,(k)AT(k + 1)] (3.19)

1(),) [ U(k, + 1) S(k, 1) ] (3.20)U(k, [ S(k, 1) U(k, I +1)]

Pk,k+l = U(k, 0) (3.21)

For example,

M 1 M1M M 2 M2 M3 M3 M3 M3

M2 M2 M1 M . M3 M3 M 3 M 3

-P2,3 -- . .. . ............. (3.22)

M M3 M3 M 3 M M1 M 2 M2

M 3 M 3 M 3 M 3 M 2 M2 M1 M1

where

M1 = Px(2), M 2 = T(2, 1)AT(3), M 3 = T(2, 0)AT(3) (3.23)

The structure of these matrices directly provides us with insight into the form

of the estimation equations. In particular let us examine eq.(3.11) component by

component. Then from the structure of the matrices and the tree, we can deduce

that the contribution of x(t) with m(t) = k + 1 to x(s) with m(s) = k depends only

on d(s, s At)(or equivalently on d(s, t) which since s and t are on adjacent levels equals

2d(s, s A t) + 1). Furthermore, there are exactly 2 nodes at scale k + 1(namely as and

,3s) satisfying d(s, s A t) = 0 and for any other values of d(s, s A t) there are exactly

2d(s,s^t) nodes at level k + 1. Thus, eq.(3.11) has the following form for each node s

with m(s) = k.
k

x(s) = H(k,i) y x(t) (3.24)
i=O tEO(k,i)

where

8O(k,i) = {t'lm(t') = k + 1,d(s,s A t') = i} (3.25)

This computation from level to level, as we successively decimate our estimated signal

and in which processing from scale to scale involves averaging of values bears some
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resemblance to the Laplacian pyramid, although in this case the weighting function

H(k, i) is of full extent and in general varies from scale to scale. Note that if A(m) =

A, B(m) = B and P,(m) = P, H(k, i) = H(i).

Eq.(3.24) provides one efficient algorithm for the recursion eq.(3.11). A second

also comes from the exploitation of the structure of the matrices 'Pk and Pk,k+l,

and the fact that the discrete Haar transform block diagonalizes both of them. For

simplicity let us first describe this for the case in which x and y are scalar processes.

Definition 3.1.1 The discrete Haar basis is an orthonormal basis for RN where

N = 2 k. The matrix Vk whose columns form this basis consists of vectors representing

"dilated, translated, and scaled" versions of the vector [1, -1]T. For example for k = 3,

1 0 0 0 0 1 1
V/5 ° 2 272 2T/2

0 0 0 1 0 1 12 272 2 2o 1 ~ -i ~ 1 1
0 0 0 1 - 7v1-2 2 2V7 2V2

0 1 - 0 1 0 1 1
V3/0 k2 =2v2 Vk (3.26)

0 0 0 0 1 1 1o7 o 7 2- 2,2 2V-7
0 0 ~ 1 0 0 1 1 1-~ 2 22-2

0 0 0 1 0 - 1 1 1

0 0 0 I 1 1
L - 2 - 2/-

We now state the following two lemmas without proof5 , providing a link between

the discrete Haar basis and Pk.

Lemma 3.1.1 Consider the case in which x(t) is a scalar process. The discrete Haar

matrix Vk provides a complete orthonormal set of eigenvectors for the matrzx 'Pk; i.e.

Pk = Vk AkVkT (3.27)

where Ak is a diagonal matrix.

Lemma 3.1.2 Given Pk,k+i and Vk+1,

Pk,k+lVk+l = [o I VkAk] (3.28)

5See [13]
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where Ak is a diagonal matrix of dimension 2 k .

Note that the matrix Pk,k+l is 2 k x 2k+ l . Lemma 3.1.2 simply says that the first 2 k

columns of Vk+l, i.e. the part that lives on scale k + 1, are orthogonal to 'Pk,k+l.

Meanwhile, the remaining columns of Vk+1 are quasi-eigenvectors of Pk,k+l. Note also

that the previous two lemmas are easily extended to the case of vector processes x(t).

In this case we must consider the block version of the discrete Haar matrix, defined as

in Definition 3.1.1 except we now consider "dilated, translated, and scaled" versions

of the block matrix [I - J]T instead of the vector [1, - 1]T, where each block is of size

equal to the dimension of x. It is important to note that the discrete Haar transform,

i.e. the computation of Vkz can be performed in an extremely efficient manner(in the

block case as well), by successive additions and subtractions of pairs of elements.

Returning to eq.(3.11) we see that we can obtain an extremely efficient transform

version of the recursion. Specifically, let

Zk = VkTkXk (3.29)

Then

Zk = [0 I Ak]Ak-lZk+l (3.30)

Thus, we see that the fine scale components of Xk are unneeded at the coarser scale;

i.e. only the lower half of Zk+l, which depends only on pairwise sums of the elements

of Xk, enters in the computation. So, if we let

Ak+1 = diag(Mk+1 , Dk+1 ) (3.31)

Zk+ = 1k+ (3.32)

where Mk+l and Dk+l each have 2 k x 2 k blocks, we see that

Zk = AkDk-lZk+l (3.33)

Finally, while we have focused on the structure of eq.(3.11), it should be clear

that analogous algorithmic structures - i.e. the summation form as in eq.(3.24) or
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the transform form in eq.(3.33) - exist for the initial data incorporation step eq.(3.6).

Thus, once we perform a single Haar transform on the original data Y, we can compute

the transformed optimal estimates ZM, ZM-1,... in a block-diagonalized manner as in

eq.(3.33), where the work required to compute eq.(3.33) is only 0(2k x dim. of state ).

Also, it is certainly possible to consider multi-scale measurements in this context,

developing filtering(fine-to-coarse) and full smoothing(multigrid or fine-to-coarse-to-

fine) algorithms in the transform domain. These will be described in detail in [13].
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3.2 A Multigrid Relaxation Algorithm

In this section we use the Markov structure of eq.(2.9) to define an iterative algorithm

for the computation of the optimal estimates at all scales given measurements at all

scales. As in the multigrid solution of partial differential equations, this approach

may have significant computational advantages even if only the finest level estimates

are actually desired and if only fine level measurements are available.

Let Y denote the full set of measurements at all scales. Then, thanks to Marko-

vianity we have the following: For m(t) = M, the finest scale

E[x(t)IY] = E {E[x(t) jx( 1-'t),Y] IY

= E {E[x(t) Ix(/-lt), y(t)] Y} (3.34)

For m(t) < M

E[x(t)IY] = E {E[x(t) Ix(/-lt), x(at), x(dt), Y]IY}

= E {E[x(t) Ix(--1t), x(at),x(Qt), y(t)] IY} (3.35)

The key now is to compute the inner expectations in eq.(3.34) and eq.(3.35), and

to do this we need to view x(y-lt), x(at), and x(Pt) as measurements of x(t). For

the latter two, this comes directly from eq.(2.9). For x(y-lt), however, we need the

reverse-time version of eq.(2.9). Assuming that A(m) is invertible for all m we can

directly apply the results of [30]:

x(-'-lt) = F(m(t))x(t) - A-l(m(t))B(m(t))iz(t) (3.36)

with

F(m(t)) = A-l(m(t))[I - B(m(t))BT (m(t))Prxl(m(t))] (3.37)

and where w(t) is a white noise process with covariance

E[=(t)LT(t)] = I- B T (m(t))P l(m(t))B(m(t)) (3.38)

_ Q(m(t))
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Let us now focus on the computation of the inner expectation of eq.(3.35). We

can write the following equations for x(-y-'t), x(aot) x(l/t), y(t).

y(t) = C(m(t))x(t) + v(t) (3.39)

x(y-lt) = F(m(t))x(t) - A-l(m(t))B(m(t))zi(t) (3.40)

x(act) = A(m(at))x(t) + B(m(at))w(at) (3.41)

x(Ot) = A(m(/t))x(t) + B(m(/t))w(/3t) (3.42)

which can be rewritten as

Y = Hx(t)+ + (3.43)

where
C(m(t)) v(t)

A F(m(t)) A-l(m(t))B(m(t))'w(t)
- = (3.44)

A(m(eat)) B(m(at))w(ait)

A(m(dt)) B(m(/3t))w(3t)

and6

x(t) I ~ (3.45)

Note the covariance of 5 has the following structure.

R(m(t)) 0 0 0

0 R l,(m(t)) 0 0
E[~T] (3.46)

0 0 R 2(m(at)) 0

O O O R 2(m(at)) 

= 7

where

Rl(m(t)) - A-l(m(t))B(m(t))Q(t)B T (m(t))A T (m(t)) (3.47)

R2(m(at)) _ B(m(at))BT(m(at)) (3.48)

= B(m(/t))BT (m(p/t)) (3.49)
6We denote I to denote orthogonal in the sense that a I b if E[abT] = 0.
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The inner expectation in eq.(3.35) can now be computed as follows.

E[x(t)lY] = (P'-l(t) + HTg-IlH)-IHTR-ly

= P - 1 {Kly(t) + K 2x(-l 1 t) + K 3 x(at) + K 4 x(13t)) (3.50)

where

K1 = CT(m(t))R-l1 (m(t)) (3.51)

K 2 = F T (m(t))Rl1(m(t)) (3.52)

K 3 = AT(m(cxt))R2l(m(at)) (3.53)

K 4 = A T (m(#t))R21(m(aet)) (3.54)

P = Pg l(t) + KIC(m(t)) + K 2F(m(t)) + K 3A(m(act)) + K 4A(m(f/t))

(3.55)

We can use a similar procedure for computing E[x(t)lx(y-lt),y(t)] so that we can

now carry out the outer expectations in eq.(3.34) and eq.(3.35) to yield the following

formulas for x(t) = E[x(t)IY] .

For m(t) = M

x(t) = (P) -1 {CT(m(t))R-(m(t))y(t) + FT(m(t))RL1(m(t))x(y-1t)} (3.56)

For m(t) < M

x(t) = 'P-' {Kly(t) + IK2x(y-lt) + K 3 x(at) + K 4 (flt)} (3.57)

where

I -= P )l (t) + C T (m(t))R-l(m(t))C(m(t)) + FT (m(t))Rl (m(t))F(m(t)) (3.58)

Thus, eq.(3.56) and eq.(3.57) are an implicit set of equations for {x(t)lt E T}. Note

that the computation involved at each point on the tree involves only its three near-

esest neighbors and the measurement at that point. This suggests the use of a

Gauss-Seidel relaxation algorithm for solving this set of equations. Note that the

computations of all the points along a particular scale are independent of each other,
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allowing these computations to be performed in parallel. We could then arrange the

computations of the relaxation algorithm so that we do all the computations at a

particular scale in parallel, i.e. a Jacobi sweep at this scale, and the sweeps can be

performed consecutively moving up and down the tree. The possibilities for paral-

lelization are plentiful; the fact that the computations can now be counted in terms of

scales rather that in terms of individual points already reduces the size of the problem

from 0(2 M+1), which is the number of nodes on the tree, to O(M). The following is

one possible algorithm(recall our previous notation where Xk denotes the vector of

points along the kth level of the tree; Xk now denotes the smoothed estimate of Xk).

Algorithm 3.2.1 Multigrid Relaxation Algorithm:

1. Initialize XO, ... , XM to O.

2. Do Until Desired Convergence is Attained:

(a) Compute in parallel eq. (3.56) for each entry of ~XM

(b) For k = M -1 to 0

Compute in parallel eq. (3.57) for each entry of Xk

(c) For k = 1 to M -1

Compute in parallel eq. (3.57) for each entry of Xk

Essentially, Algorithm 3.2.1 starts at the finest scale, moves sequentially up the tree

to the coarsest scale, moves sequentially back down to the finest scale, then cycles

through this procedure until convergence is attained. In multigrid terminology[8] this

is a V-cycle. The issue of convergence is normally studied via the analysis of the

global matrix formed from the set of implicit equations, eq.(3.56)-(3.57). However,

our problem has a particular structure that allows us to give the following relatively

simple argument for the convergence of a Gauss-seidel relaxation algorithm under any

ordering of the local computations. We can think of the computation of E[x(t)lY]

for all t E T as performing the minimization of a convex quadratic cost function with

respect to {x(t): t E T} and each Gauss-Seidel step is the local minimization with
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respect to a particular x(t) with the remaining x's held constant. Since each local

minimization results in a reduction of the overall cost function and this function is

convex, then the limit of the sequence of local minimizations results in the global

minimization of the cost function.
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3.3 Two-Sweep, Rauch-Tung-Striebel Algorithm

In this section we consider the same problem as in Section 3.2, but the algorithm

structure we define is recursive, rather than iterative, and in fact is a generalization

of the well-known Rauch-Tung-Striebel(RTS) smoothing algorithm for causal state

models. The algorithm once again involves a pyramidal set of steps and a considerable

level of parallelism.

To begin, let us recall the structure of the RTS algorithm for a state model with

state x(t). The first step of the process consists of a Kalman filter for computing

x(tjt), predicting to obtain x(t + lIt) and updating with the new measurement y(t).

The second step propagates backward combining the smoothed estimate &s(t+ 1) with

the filtered estimate at the previous point in time x(t t)(or equivalently x(t + lit)) to

compute xS(t). In the case of estimation on trees, we have a very similar structure;

indeed the backward sweep and measurement update are identical in form to the RTS

algorithm. The prediction step is, however, somewhat more complex, and while it can

be written as a single step, we prefer to think of it as two parallel prediction steps,

each as in RTS, followed by a merge step that has no counterpart for state models

evolving in time. One other difference is that the forward sweep of our algorithm is

from fine-to-coarse and thus involves the backward version eq.(3.36) of our original

model eq.(2.9).

To begin let us define some notation:

Yt = {y(s)ls = t or s is a descendent of t}

= {y(s)Is E (a, 3)*t , m(s) < M} (3.59)

Yt+ = {y(s)ls E (a,t )*t , t < m(s) < M} (3.60)

(- It) = E[x(.)IYt] (3.61)

(. It+) = E[x(.)IYt +] (3.62)

The interpretation of these estimates is provided in Figure 2.

To begin, consider the measurement update. Specifically, suppose that we have

computed x(tlt+) and the corresponding error covariance, P(m(t)lm(t)+); the fact
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x(tlt) is based on measurements in

t 
x(tlt+) is based on
measurements in

j / 0

9 tt 0Pt
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Figure 2: Representation of Meaurement Update and Merged Estimates9 9 F 
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that this depends only on scale should be evident from the structure of the problem.

Then, standard estimation results yield

&(tlt) = x(tIt+) + K(m(t))[y(t) - C(m(t))x(tlt+)] (3.63)

K(m(t)) = P(m(t) Im(t)+)CT (m(t))V-l(m(t)) (3.64)

V(m(t)) = C(m(t))P(m(t)Im(t)+)CT (m(t)) + R(m(t)) (3.65)

and the resulting error covariance is given by

P(m(t) Im(t)) = [I - K(m(t))C(m(t))]P(m(t) Im(t)+) (3.66)

Note that the computations begin on the finest level(m(t)=M) with x(tlt+) = 0,

P(MIM+) = P(M).

Suppose now that we have computed (atlcat) and x(/tljpt). Note that Yt and Ypt

are disjoint and these estimates can be calculated in parallel. Furthermore, once again

they have equal error covariances, denoted by P(m(at)Im(at)) = P(m(t)+ 1 m(t)+1).

We then compute x(tlat) and x(tlflt) which are given by

x(tlat) = F(m(t) + 1)a(cttlat) (3.67)

x(tl/t) = F(m(t) + 1)(3(PtlPt) (3.68)

with corresponding identical error covariances P(m(t)lm(t) + 1) given by

P(m(t)lm(t) + 1) = F(m(t) + 1)P(m(t) + lJm(t) + 1)FT(m(t) + 1) + Q(m(t) + 1)

(3.69)

Q(m(t) + 1) = A-l(m(t) + 1)B(m(t) + 1)Q(m(t) + 1)BT(m(t) + 1)A- T(m(t) + 1)

(3.70)

Eq.(3.67) and eq.(3.68) follow from projecting both sides of our backward model

eq.(3.36) onto Yat and Yft, respectively. By noting that the dynamics of the one-step

prediction error are identical to the dynamics of our backward model eq.(3.36), we

arrive at eq.(3.69) by squaring both sides of the equation and taking expectations.
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These estimates must then be merged to form x(tlt+). The derivation of this

computation can be given as follows. By definition

5(tlt+) = E[x(t) Yat, Yot] (3.71)

But from our model, eq.(2.9), we can decompose Y,t and Ypt in the following way.

YVat = Matx(t) + l (3.72)

YPt = Mptx(t) + 2 (3.73)

where the matrices Mat and Mpt contain products of A(m(s)), m(s) > m(t), and the

vectors ~1 and 62 are functions of the driving noises w(s) and the measurement noises

v(s) for s in the subtree strictly below at and s in the subtree strictly ft, respectively,

the latter fact implying j1 _2. We also let

Rat = EZ[l T ] (3.74)

RPt = E[522/ ] (3.75)

We then write eq.(3.72) and eq.(3.73) as a single equation in the following way.

y = Tx(t) + (3.76)

where

1= Mat j, E[:- ] (3.77)

and x(t) I E. As we did for the computations producing the implicit equations for

the multigrid algorithm we can write the optimal estimate of x(t) given y in the

following way.

X(tlt+) = [P-l(t) + HTR-1-1-l1TR-1y

= [P;l(t) + MjTR. Mat + [MTRY + MT

(3.78)

But since

P(tcat) = [Px-l(t) + MtR.tlMeat]- (3.79)

P(tl/t) = [Pz-'(t) + MpTtRtlMt]- (3.80)
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we can rewrite eq.(3.78) as

x(tlt+) = P(m(t)lm(t)+)P-l(m(t)lm(t) + 1)[x(tlat) + x(tlPt)]

(3.81)

P(m(t)lm(t)+) = [2P-'(m(t)lm(t) + 1) -p-l(t)]- (3.82)

where we have used the fact that P(tlcat) = P(tlPt) = P(m(t)lm(t) + 1).

We now derive the formulas for the second part of the RTS algorithm involving

the propogation downward along the tree combining the smoothed estimate 5 8(y-lt)

with the filtered estimate x(tjt) to produce ,8(t). Our derivation relies essentially on

the following orthogonal decomposition of Yo(the measurements at every node on the

tree).

For each t, Yt, as defined in eq.(3.59) is the set of measurements in the subtree

beneath t(and including the measurement at t). Let t- denote all the remaining

measurements, and viewing this as one large vector, define

v't = Yf - E[YEIYt] (3.83)

so that vtlt I Yt and the linear span of the set of all measurements, Yo, is given by

span Yo = span {Yt, Y-} = span {Yt, Vtlt} (3.84)

Then

s,(t) = E[x(t)lYt,vtlt]

= :(tlt) + E[x(t)Ivtlt] (3.85)

If we write x(t) as

x(t) = x(tlt) + x(t t) (3.86)

and note that

k(tjt) vflt (3.87)

then we can write the following.

5s(t) = x(tlt) + E[x(t t) vtlt] (3.88)
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Using the same argument on s,(y-lt) allows us to write

xs(fY-lt) = (7-lt It) + E[i(7i-'tlt) vtft] (3.89)

Suppose the following equality were to hold.

E[i(tIt) Ivtlt] = LE[i(-y-'tIt)Ivtit] (3.90)

Then eq.(3.88) and eq.(3.89) could be combined to yield the following formula.

s (t) = :(tlt) + L [si(y-lt) - :(/-ltlt)] (3.91)

We now proceed to show that eq.(3.90) indeed holds and compute explicitly the

matrix L. We begin with the following iterated expectation.

E[i(tlt) lvlt] = E[E[x(tlt)l ((f-ltlt), vjlt] lvtlt] (3.92)

We now examine the inner expectation, E[i(tlt)li(y-lttlt), vtlt], in detail. In particular

the linear span of {((f-'tlt), vt-lt has the following structure.

span (=-ltlt),vtlt} = span {x(y-l'tt), S.IX, ws'v, sv)} (3.93)

(y-ltlIt) _I ZlslS, wss, vS (3.94)

where

s, s', s'" subtree under t (3.95)

To show this we note the following decomposition of Yt-.

Yf = Llx(7y-lt) + f(dZtsl, w8 s, vu,) (3.96)

where f is a linear function of its arguments. Substituting eq.(3.96) into eq.(3.83)

yields

Vttlt = Llx(7-ltIt) + f(slzX,ws,', vs3,) (3.97)

where we have used the fact that f(z@vls, w,l, vs,l) I Yt. The fact that 5Q(t-ltlt) I

f(z2bsl 8 , ws,, v,uV) verifies eq.(3.93). Using eq.(3.93) we have that

E[i·(t It)Ii(-/-1tlt), vfl] = E[;i(tlt)Ili(yj-1tt)] (3.98)
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where we have also used the fact that f(wiS ', ws,,,) I (tlt). Substituting eq.(3.98)

into eq.(3.92) we get

E[x(tIt) vflt] = E[E[x(tIt)I[x('-lt It)][vltt] (3.99)

But by using our backward equations, eq.(3.36), eq.(3.67)(in the latter case with

at - t and t - 'y-lt) we find that

E[x(tIt) Iix(-ltlt)] = P(m(t) Im(t))FT (m(t))P-l(m(t)- 1Im(t))((y-lt It)
(3.100)

This leads to our desired result.

E[xJ(tjt) Ivt] = P(m(t)[m(t))FT(m(t))P-l(m(t)- lm(t))E[x(7-1tlt)lvfit]

(3.101)

Finally, eq.(3.90), eq.(3.91), and eq.(3.101) yield the following smoothing formula.

`k(t) = x(tlt) + P(m(t)lm(t))FT (m(t))P-l(m(t)- lIlm(t)) [Xs(y-l1t) - x(y-ltlt)]

(3.102)

We now summarize the overall two-sweep algorithm:

Upward Sweep

Measurement Update:

'(tIt) = x(tlt+) + K(m(t))[y(t) - C(m(t))5x(tlt+)] (3.103)

K(m(t)) = P(m(t) Im(t)+)CT (m(t))v-l(m(t)) (3.104)

V(m(t)) = C(m(t))P(m(t) Im(t)+)CT (m(t)) + R(m(t)) (3.105)

P(m(t)Im(t)) = [I - IK(m(t))C(m(t))]P(m(t)Im(t)+) (3.106)

One-step Prediction:

Q(V-'ltjt) = F(m(t))x(tlt) (3.107)

P(m(t) - lIm(t)) = F(m(t))P(m(t)Im(t))FT (m(t)) + Q(m(t)) (3.108)

Q(m(t)) = A-1(m(t))B(m(t))Q(m(t))B T (m(t))A-T (m(t)) (3.109)
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Merge Step:

5(tlt+) = P(m(t)lm(t)+)P-l(m(t)lm(t) + l)[x(tIat) + x(tl/t)]

(3.110)

P(m(t)lm(t)+) = [2P-l(m(t)lm(t) + 1)-P-l(t)]- l (3.111)

Downward Sweep

s(t) = (tlt) + P(m(t)lm(t))F(m(t))P-l(m(t) - llm(t)) [s(-y-lt) - (3y-ltlt)]

(3.112)
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4 Discussion

In this paper we have introduced a class of stochastic processes defined on dyadic

trees and have described several estimation algorithms for these processes. The con-

sideration of these processes and problems has been motivated by a desire to develop

multi-scale descriptions of stochastic processes and in particular by the deterministic

theory of multi-scale signal representations and wavelet transforms. The algorithms

we have described have connections with Laplacian pyramids, Haar transforms, multi-

grid relaxation algorithms, and the Rauch-Tung-Striebel form of the optimal smoother

for linear state-space models.

In addition to open questions directly related to the models we have considered

here there are a number of related research problems under consideration. We limit

our comments here to three of these.

1. Modeling of scalar isotropic processes on trees

As we mentioned in Section II, isotropic processes have correlation structures

that depend only on the distance between points on the tree. A natural ex-

tension of a classical ID time series modeling problem is the construction of

dynamic models that match a given isotropic correlation function K~z(k) for a

specified number of lags k = 0, 1, ... N. This problem is studied in detail in[5,6]

and in particular an extension of classical AR modeling is developed and with

it a corresponding generalization of the Levinson and Schur recursions for AR

models as the order N increases. A few comments about this theory are in

order. First, the sequence IK((k) must satisfy an even more strict set of condi-

tions to be a valid correlation function for an isotropic tree process than it does

to be the correlation function of a time series. In particular, since the sequence

x(t), x(y-t), x(y-2t), ... is a standard time series, we see that IfK(k) must be

a positive definite function. Moreover, considering the covariance of the three

points x(cat), x(/3t), x(-l 1t), we conclude that the following condition must be
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satisfied:
K..(O) K..(2) K..(O)

K.(2) K..(O) K.(O) > 0 (4.1)
K..(O) K..(2) K.(O) _

Such a condition and many others that must be satisfied do not arise in usual

time series. In particular an isotropic process x(t) is one whose statistics are

invariant to any isometry on the index set T, i.e. any invertible map preserving

distance. For time series such isometries are quite limited: translations, t -

t + n, and reflections t F-* -t. For dyadic trees the set of isometries is far richer,

placing many more constraints on Kx. Referring to the Levinson algorithm,

recall that the validity of K.,(k) as a covariance function manifests itself in

a sequence of reflection coefficients that must take values between - 1. For

trees the situation is more complex: for n odd Iknl < 1 while for n even -2 <

kn < 1, k(n) being the nth reflection coefficient. Furthermore, since dyadic

trees are fundamentally infinite dimensional, the Levinson algorithm involves

"forward"(with respect to the scale index m) and "backward" prediction filters

of dimension that grows with order, as one must predict a window of values at

the boundary of the filter domain. Also, the filters are not strictly causal in

m. For example, while the first-order AR model is simply the scalar, constant-

parameter version of the model eq.(2.9) considered here, the second order model

represents a forward prediction of x(t) based on x(y-lt), x(y-2t) and x(St),

which is at the same scale as x(t)(refer to Figure 1). The third-order forward

model represents the forward prediction of x(t) and x(St) based on x(7-lt),

x(7-2t), x(7-2 t) and x(6&-lt). We refer the reader to [5,6] for details.

2. Models on lattices and more complex correlation structures

As discussed in Section II, it is the Haar wavelet decomposition that most di-

rectly suggests the investigation of processes on trees. While these models can

certainly be used to generate stochastic processes using other scaling functions

q(t), such functions more naturally suggest lattice structures on the set of in-

dices (m, n). The investigation of processes and algorithms analogous to those
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considered here but for such lattices are of obvious interest. In this case we

expect more complex algorithms since any two points have least upper bounds

and greatest lower bounds so that the correlation structure of the resulting pro-

cesses will be more involved. If, however, the filter impulse response h(n) is

FIR we expect that finite-dimensional algorithms analogous to those in Sec-

tion III can be developed, with considerable parallelism, as we have here, but

with additional connectivity. An additional extension which should yield simi-

lar algorithmic structures is to consider the model as in eq.(2.9) but with w(t)

independent from scale to scale but correlated along each scale. Indeed one can

argue that the model eq.(2.6) naturally suggests at least a finite length correla-

tion structure for w(m, n) as a function of n. Results related to these ideas will

be forthcoming.

3. The problems we have considered in this paper are fundamentally discrete in

nature; i.e. there is a finest level scale M at which processes are defined and con-

sidered. Given the motivation from and setting of wavelets and multi-resolution

representations it is of interest to understand the stochastic version of the limit

in eq.(2.1) and the properties and statistics of the limit process. Results along

these lines will also be described in future papers as will relations to self-similar

processes and fractals.
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