
January 1989 LIDS - P - 1847

Optimal Communication Algorithms for Hypercubes'

by

D. P. Bertsekas, C. Ozveren, G. D. Stamoulis, P. Tseng, and J. N. Tsitsiklis2

Abstract

We consider several basic communication problems in a hypercube network of processors. These

include the problem of simultaneous broadcast of the same packet from every processor to all other pro-

cessors and the problem of simultaneous exchange of different packets between every pair of processors.

The algorithms proposed for these problems are optimal in terms of execution time and communication

resource requirements, that is, they require the minimum possible number of time steps and packet

transmissions. This is a particularly strong form of optimality, which has not been considered in earlier

investigations.

l Research supported by NSF under Grants ECS-8519058 and ECS-8552419, with matching funds

from Bellcore Inc., the ARO under Grant DAAL03-86-K-0171, and the AFOSR under Grant AFOSR-

88-0032.

2 Laboratory for Information and Decision Systems, M.I.T, Cambridge, Mass. 02139.

1

1. INTRODUCTION AND PROBLEM FORMULATION

When algorithms are executed in a network of processors, it is necessary to exchange some

intermediate information between the processors. The interprocessor communication time may

be substantial relative to the time needed exclusively for computations, so it is important to

carry out the information exchange as efficiently as possible. There are a number of generic

communication problems that arise frequently in numerical and other algorithms. In this

paper, we describe new algorithms for solving some of these problems on a hypercube. An

important characteristic of these algorithms is that they are optimal, in the sense that they

execute the required communication tasks in the minimum possible number of time steps and

link transmissions.

To define a hypercube network (or d-cube), we consider the set of points in d-dimensional

space with each coordinate equal to zero or one. We let these points correspond to processors,

and we consider a communication link for every two points differing in a single coordinate.

We thus obtain an undirected graph with the processors as nodes and the communication

links as arcs. The binary string of length d that corresponds to the coordinates of a node

of the d-cube is referred to as the identity number of the node. We recall that a hypercube

of any dimension can be constructed by connecting lower-dimensional cubes, starting with a

1-cube. In particular, we can start with two (d - 1)-dimensional cubes and introduce a link

connecting each pair of nodes with the same identity number (see e.g. [BeT89], Section 1.3).

This constructs a d-cube with the identity number of each node obtained by adding a leading

0 or a leading 1 to its previous identity, depending on whether the node belongs to the first

(d- 1)-dimensional cube or the second (see Fig. 1). When confusion cannot arise, we refer to a

d-cube node interchangeably in terms of its identity number (a binary string of length d) and

in terms of the decimal representation of its identity number. Thus, for example, the nodes

(00 .-. 0), (00 ... 1), and (11 ... 1) will also be referred to as nodes 0, 1, and 2 d - 1, respectively.

The Hamming distance between two nodes is the number of bits in which their identity

numbers differ. Two nodes are directly connected with a communication link if and only if their

Hamming distance is unity, that is, if and only if their identity numbers differ in exactly one

bit. The number of links on any path connecting two nodes cannot be less than the Hamming

distance of the nodes. Furthermore, there is a path with a number of links that is equal to

the Hamming distance, obtained, for example, by switching in sequence the bits in which the

identity numbers of the two nodes differ (equivalently, by traversing the corresponding links of

2

110 111

010 011

101
100

000 001

0110 1110

1" 0111 11Ol1-001 i.oo l

00010000* _0 1101

0001 1001

Figure 1: Construction of a 3-cube and a 4-cube by connecting the corresponding nodes of two identical
lower-dimensional cubes. A node belongs to the first lower-dimensional cube or the second depending on
whether its identity has a leading 0 or a leading 1.

the hypercube). Such a path is referred to as a shortest path in this paper and a tree consisting

of shortest paths from some node to all other nodes is referred to as a shortest path tree.

Information is transmitted along the hypercube links in groups of bits called packets. In our

algorithms we assume that the time required to cross any link is the same for all packets, and is

taken to be one unit. Thus, our analysis applies to communication problems where all packets

have roughly equal length. We assume that packets can be simultaneously transmitted along

a link in both directions, and that their transmission is error free. Only one packet can travel

along a link in each direction at any one time; thus, if more than one packets are available at

a node and are scheduled to be transmitted on the same incident link of the node, then only

one of these packets can be transmitted at the next time period, while the remaining packets

must be stored at the node while waiting in queue.

Each node is assumed to have infinite storage space. We will consider two different cases

regarding the availability of links for transmission at each time period. In the first case, called

the Multiple Link Availability (or MLA) assumption, we assume that all incident links of a

node can be used simultaneously for packet transmission and reception. In the second case,

called the Single Link Availability (or SLA) assumption, we assume that at any time, a node

can transmit a packet along at most one incident link and can simultaneously receive a packet

along at most one incident link. Finally, we assume that each of the algorithms proposed in this

paper is simultaneously initiated at all processors. This is a somewhat restrictive assumption,

3

essentially implying that all processors can be synchronized with a global clock.

We will be concerned with several communication problems, which we now describe:

Single Node and Multinode Broadcast

In the first problem, we want to send the same packet from a given node, called the root, to

every other node (we call this a single node broadcast). In a generalized version of this problem,

we want to do a single node broadcast simultaneously from all nodes (we call this a multinode -

broadcast).

A typical example of a multinode broadcast arises in linear iterations of the form

x := Ax + b,

where A is an n x n matrix and b is an n-dimensional vector. Here we assume that each node

i of an n-processor system holds the ith row of A and the ith coordinate of b, and updates xi.

Thus at the end of an iteration, it is necessary for every node i to send the updated value of

xi to every other node, which is a multinode broadcast.

Clearly, to solve the single node broadcast problem, it is sufficient to transmit the packet

along a directed spanning tree emanating from the root node, that is, a spanning tree of the

network together with a direction on each link of the tree such that there is a unique directed

path on the tree from the root to every other node (all links of the path must be oriented away

from the root). To solve the multinode broadcast problem, we need to specify one spanning

tree per root node. The difficulty here is that some links may belong to several spanning trees;

this complicates the timing analysis, because several packets can arrive simultaneously at a

node, and require transmission on the same link with a queueing delay resulting.

Single Node and Multinode Accumulation

There are two important communication problems that are dual to the single and multinode

broadcasts, in the sense that the spanning tree(s) used to solve one problem can also be used

to solve the dual in the same amount of communication time. In the first problem, called

single node accumulation, we want to send to a given node a packet from every other node; we

assume, however, that packets can be "combined" for transmission on any communication link,

with a "combined" transmission time equal to the transmission time of a single packet. This

4

problem arises, for example, when we want to form at a given node a sum consisting of one term

from each node as in an inner product calculation; we can view addition of scalars at a node

as "combining" the correspcnding packets into a single packet. The second problem, which is

dual to a multinode broadcast, is called multinode accumulation, and involves a separate single

node accumulation at each node.

It can be shown that a single node (or multinode) accumulation problem can be solved in.

the same time as a single node (multinode, respectively) broadcast problem. To see this, note

that any single node broadcast algorithm consists of the list of links on which the packet is

transmitted, together with the time that transmission begins on each link of the list. From this

information, one can construct a set of times for starting transmission of a packet along each

link of the list in the reverse direction, which specifies a single node accumulation algorithm.

The process is illustrated in Fig. 2; the detailed mathematical proof is left for the reader. A

similar argument shows that any algorithm for single node (or multinode) accumulation can

be used to produce a single node (multinode, respectively) broadcast algorithm that takes the

same amount of time.

SINGLE NODE BROADCAST SINGLE NODE ACCUMULATION

a) 1 b) a,

5 9

(which is node in the figure). The ti etime at which transmission of the ombined"

2latter problem corresponds to a scalar in the former problem.
26(a) (b)

Single Node Scatter and Gather; Total Exchange

Another interesting communication problem is to send a packet from every node to every

other node (here a node sends different packets to different nodes in contrast with the multin-

ode broadcast problem, where a node sends the same packet to every other node). We call

this the total exchange problem, and note that it arises frequently in connection with matrix

computations. A related problem, called the single node scatter problem, involves sending a

separate packet from a single node, called the root, to every other node. A dual problem,

called single node gather, involves collecting a packet at a given node from every other node.

An algorithm that solves the single node scatter (or gather) problem consists of a schedule

of packet transmissions on each link that properly takes into account queueing. By reversing

this schedule as discussed in connection with the single node accumulation problem, it can be

seen that for every algorithm that solves the single node scatter (or gather) problem, there is

a corresponding algorithm that solves the single node gather (scatter, respectively) problem,

and takes the same amount of communication time.

Note that in a multinode broadcast, each node receives a different packet from every other

node, thereby solving the single node gather problem. Note also that the total exchange problem

may be viewed as a multinode version of both a single node scatter and a single node gather

problem, and also as a generalization of a multinode broadcast, whereby the packets sent by

each node to different nodes are different. We conclude that the communication problems

of the preceding discussion form a hierarchy in terms of difficulty, as illustrated in Fig. 3. An

algorithm solving one problem in the hierarchy can also solve the next problem in the hierarchy

in no additional time. In particular, a total exchange algorithm can also solve the multinode

broadcast (accumulation) problem; a multinode broadcast (accumulation) algorithm can also

solve the single node gather (scatter) problem; and a single node scatter (gather) algorithm can

also solve the single node broadcast (accumulation) problem. Therefore, the communication

requirements for these problems decrease in the order just given, regardless of the network

being used.

Our results are summarized in Tables 1 and 2. Table 1 gives the number of time units

required to solve the communication problems described earlier on a d-cube. We show that

each of these numbers is a lower bound on the number of time units taken by any algorithm

that solves the corresponding problem, and we describe an algorithm that attains the lower

bound. Similarly, Table 2 gives the number of packet transmissions required to solve the

6

Multinode broadcast Multinode accumulation

Single node scatter Single node gather

Single node broadcast Single node accumulation

Figure 3: Hierarchy of communication problems. A directed arc from problem A to problem B indicates
that an algorithm that solves A can also solve B, and that the optimal time for solving A is not more than the
optimal time for solving B. A horizontal bidirectional arc indicates a duality relation.

corresponding communication problems. These numbers are lower bounds on the number of

packet transmissions taken by any algorithms that solve the corresponding problems, and the

lower bounds are attained by the same algorithms that attain the corresponding lower bounds

of Table 1. We have thus obtained algorithms that are simultaneously optimal in terms of

execution time and number of packet transmissions for our communication problems.

Problem Number of Transmissions (MLA and SLA)

Single node broadcast
(or single node accumulation) 2 d - 1

Single node scatter
(or single node gather) d2d- 1

Multinode broadcast
(or multinode accumulation) 2 d(2 d - 1)

Total exchange d22d- 1

Table 2: Optimal number of packet transmissions for solving the basic communication prob-

lems on a d-cube.

7

Problem Time (MLA) Time (SLA)

Single node broadcast
(or single node accumulation) d d

Single node scatter

(or single node gather) 2d - 1

Multinode broadcast

(or multinode accumulation) [2] 2d _ 1

Total exchange 2 d-1 d2d- 1

Table 1: Optimal times for solving the basic communication problems on a d-cube for the

case where simultaneous transmission along all incident links of a node is allowed (the MLA

assumption), and for the case where it is not (the SLA assumption). We assume that each

packet requires unit time for transmission on any link.

Algorithms for the communication problems of this paper were first considered in [SaS85],

which also discusses the effects of the transmission times of the packet overhead and the packet

data (denoted by 3 and mr, respectively, in [SaS85]). The problems are named differently in

[SaS85] than here. Also the hypercube links are assumed to be unidirectional in [SaS85], thus

increasing the algorithm execution times by a factor of 2. Thus, to compare the results of [SaS85]

with the ones of the present paper, the times of [SaS85] should be used with , = 0 and mr = 1,

and should be divided by 2. A multinode broadcast algorithm under the MLA assumption is

given in [SaS85], which is slightly suboptimal (by no more than d time units). This algorithm

is constructed by specifying a packet transmission schedule at a single node and then properly

replicating that schedule at each node, exploiting the symmetry of the d-cube. By contrast, we.

obtain optimal multinode broadcast algorithms starting from a suitable single node broadcast

algorithm and replicating that algorithm at each node. This approach was first introduced

for meshes in general in [Ozv87], where a slightly suboptimal (by no more than d - 3 time

units) multinode broadcast algorithm was given. Optimal algorithms for single node scatter

and total exchange were also given in [SaS85] under the SLA assumption (even though the SLA

assumption does not explicitly appear in [SaS85]). The single node scatter algorithm of [SaS85]

has the additional property that no node transmits and receives a packet at the same time; more

8

precisely, each node, before beginning its transmissions, waits to receive all of the packets that

are supposed to be transmitted through it. An algorithm similar to the total exchange algorithm

of [SaS85] is also given in [McV87]. An optimal ,otal exchange algorithm, given in reference

[SaS85] under the MLA assumption, assumes also that each node has m packets to send to every

other node, where m is a multiple of d; this is a different total exchange problem than the one we

are considering here. Some of the results of the present paper have also appeared in the recent

textbook [BeT89], but a complete set of optimal algorithms for the communication problem

hierarchy of Fig. 3 (particularly for single node scatter and total exchange) is given here for

the first time. Indeed, except for our own preliminary work reported in [Ozv87] and [BeT89],

the strong form of optimality for communication algorithms investigated here has not been

considered elsewhere. We also note that in addition to [SaS85] and [McV87], there are several

other works dealing with communication problems and network architectures not discussed in

the present paper; see [BhI85], [DNS81], [Joh87], [KVC88], [SaS86], [SaS87], [SaS88], [Saa86],

and [Top85].

A device that is often useful in reducing the communication delay in various algorithms is

to divide each packet into smaller packets that can travel independently through the network.

The idea here is to parallelize communication through pipelining the smaller packets over paths

with multiple links, and is inherent in proposals for virtual cut-through and wormhole routing

[KeK79], [DaS87]. A little thought shows that (as long as the associated extra overhead is

not excessive) the single node broadcast time can be reduced by dividing packets into smaller

packets. On the other hand this is essentially impossible for the other basic communication

problems under the MLA assumption; from Tables 1 and 2 it is seen that in an optimal

algorithm, there is almost 100% utilization of some critical communication resource (the d

links outgoing from the root in single node scatter, and all of the d2d directed network links in

multinode broadcast and total exchange). Any communication algorithm for these problems

that divides packets into smaller packets cannot reduce the total usage of the corresponding

critical resource and therefore, cannot enjoy any pipelining advantage. By modifying the lower

bound arguments given later in this paper, it can be shown that a similar conclusion holds

under the SLA assumption.

9

2. SINGLE NODE AND MULTINODE BROADCAST

Optimal single node broadcast algorithms for the d-cube under the MLA and SLA assump-

tions can be generated using the spanning tree in Fig. 4. With this tree, a single node broadcast

from the root node (00... 0) to all other nodes takes d time units under the MLA assumption,

because the number of links on the path from the root to any node is at most d. Under the

SLA assumption, the single node broadcast using the same tree takes also d time units by

giving priority to neighbors with larger identity numbers, that is, node (00.. 0) transmits the

packet to (10 ... 0) at time 1, to (01- -0) at time 2, etc., and finally to (00 ... 1) at time d;

node (10 ... 0) transmits the packet to (110 ... 0) at time 2, to (101 ... 0) at time 3, and so on.

Note also that d is a lower bound on the required time for any single node broadcast algorithm,

since any path joining nodes (00... 0) and (11 ... 1) has at least d links. Therefore, the single

node broadcast algorithms we gave are optimal in terms of execution time.

Regarding the number of packet transmissions, we note that under both the MLA and the

SLA assumptions, a single packet is transmitted on each link of the tree, so the number of link

transmissions for our single node broadcast algorithms is 2d - 1. This number is also a lower

bound on the number of link transmissions, since there must be at least one packet reception

by each one of the 2 d - 1 nodes. Therefore, our algorithms are optimal in terms of the number

of packet transmissions.

0000 0001
Root
node

0010 0011

0100 0101

\0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

Figure 4: Spanning tree of a d-cube rooted at node (00 · · · 0), and used in optimal single node broadcast
algorithms.

10

Multinode Broadcast Under the MLA Assumption

We first note that in a multinode broadcast each node must receive a total of 2 d - 1 packets

over its d incident links, so [(2 d - 1)/dl is a lower bound for the time required by any multinode

broadcast algorithm under the MLA assumption. We will obtain an algorithm that attains this

lower bound.

As a first step towards constructing such an algorithm, we represent any single node broad-

cast algorithm from node (00... 0) to all other nodes that takes q time units, by a sequence

of sets of directed links A 1 ,A 2 ,..., Aq. Each Ai is the set of links on which transmission of

the packet begins at time i- 1 and ends at time i. Naturally, the sets Ai must satisfy certain

consistency requirements for accomplishing the single node broadcast. In particular, if Si and

Ei are the sets of identity numbers of the start nodes and end nodes, respectively, of the links

in Ai, we must have S1 = {(00. 0)}, and Si C {((00 . 0)} U (Ujk=ilEk). Furthermore, every

nonzero node identity must belong to some Ei. The set of all nodes together with the set of

links (Uq=Ai) must form a subgraph that contains a spanning tree [see Fig. 5(a)]; in fact, to

minimize the number of packet transmissions, the sets of links A 1, A 2 , Aq should be disjoint

and should form a spanning tree.

Consider now a d-bit string t representing the identity number of some node on the d-cube.

For any node identity z, we denote by t ® z the d-bit string obtained by performing modulo 2

addition of the jth bit of t and z for each j = 1,2,.. ., d. It can be seen that an algorithm for

broadcasting a packet from the node with identity t can be specified by the sets

Ai(t) = {(t · x,t e y) I (x,y) E Ai}, i = 1,2,...,q,

where Ai(t) denotes the set of links on which transmission of the packet begins at time i-1 and

ends at time i. The proof of this is based on the fact that t ® x and t ® y differ in a particular

bit if and only if x and y differ in the same bit, so (t e x, t D y) is a link if and only if (x, y) is a

link. Figure 5 illustrates the sets Ai(t) corresponding to all possible t for the case where d = 3.

We now describe a procedure for generating a multinode broadcast algorithm specified by

the sets Ai(t) for all possible values of i and t, starting from a single node broadcast algorithm

specified by the sets A 1 ,A 2, . .. ,Aq. Let us say that a link (x,y) is of type j if x and y differ

on the jth bit. We make the following key observation: consider a single node broadcast

algorithm specified by the link sets A 1,..., Aq. If for each i, the links in Ai are of different

types, then for each i, the sets Ai(t), where t ranges over all possible identities, are disjoint. [If,

11

A, A2 A3

001 A 101

001

(a)

A,(001) A2(001) A,(001)

000 jI100 110 011 111 101 101 001 011 010 110 100

0100 000 001 100 110 111 011 001 000

101 111 \110 100 000 010 111 101

111 010 001 100 000 010 110 010 000

110 100 101 111 110 111 1 01 100

10 000 101 011

(b)

Figure 5: Generation of a multinode broadcast algorithm for the d-cube, starting from a single node broadcast
algorithm. (a) The algorithm that broadcasts a packet from the node with identity (00 · · · 0) to all other nodes
is specified by a sequence of sets of directed links Al, A2, .., Aq. Each Ai is the set of links on which
transmission begins at time i - 1 and ends at time i. (b) A corresponding broadcast algorithm for each root
node identity t is specified by the sets of links

Ai(t) = {(t e x,t D y) I (x, y) E Ai},

where we denote by t ® z the d-bit string obtained by performing modulo 2 addition of the jth bit of t and z for
j = 1, 2,..., d. The multinode broadcast algorithm is specified by the requirement that transmission of the
packet of node t starts on each link in Ai(t) at time i - 1. The figure shows the construction for an example
where d = 3. Here the set A2 has two links of the same type and the multinode broadcast cannot be executed
in 3 time units. However, if the link (000, 010) belonged to Al instead of A 2, the required time would be the
optimal 3 time units.

for t : t', two links (t 33 x,t ®) y) E Ai(t) and (t' ® x',t' e y') E Ai(t') were the same, then the

links (x, y) and (x', y') would be different (since t A t'), and they would be of the same type

because (x, y) and (x', y') are of the same type as (t e x, t E y) and (t') x',t' ® y'), respectively,

which contradicts the fact that (x, y) and (x', y') belong to Ai.] This implies that the single

node broadcasts of all nodes t can be executed simultaneously, without any further delay. In

particular, we have a multinode broadcast algorithm that takes q time units. We proceed

to give a method for selecting the sets Ai with the links in each Ai being of different types.

Furthermore, we will ensure that each one of the sets Al,... ,Aq-1 has exactly d elements,

which is the maximum possible (since there exist only d link types), thereby resulting in the

minimum possible execution time of q = [(2d -1)/d] units.

Let Nk, k = 0, 1,... , d, be the set of node identities having k unity bits and d - k zero bits.

The number of elements in Nk is (d) = d!/(k! (d - k)!). In particular, No and Nd contain

12

001 101
N, N, N2 N3

-".' ' ' ' '' ' 000 010 011
(000) (001) (010) (100) (011) (110) (101) (111)

~*~-v*--*---' "'100 ' 110 111
R,, R21

A1 A2 A3
(a)

No N1 N2 N3 N4

(0000) (0001) (0010) (0100) (1000) (0011) (0110) (1100) (1001) (0101) (1010) (1101) (1011) (0111) (1110)(1111)

R11 R21 R22 R31

m(0001)=1 m(1001)=4 m(1101)=3

m(0010)=2 m(001 1)=1 m(1011)=4 m(1111)=3
(0000) 1

0100)-3 J/ m{0110)-2 m{0101)-1 m(Ol01)=1 J d--1

m(1000)4 m1100)3 m(1010)=2 m(1110)=2
Al ,

A2 A3 A4

No N1

(00000) (00001) (00010) (00100) (01000) (10000)

RI,

N2

(00011) (00110) (01100) (11000) (10001) (00101) (01010) (10100) (01001) (10010)

N3

(00111) (01110) (11100) (11001) (10011) (01011) (10110) (01101)101)(11010) (10101)

R,31 R32

N. N5

(01111) (11110) (11101) (11011) (10111) (11111)

00001 10001 01001 11001 01101 11101

00010 00011 10010 10011 11010 11011

00000 00100 00110 00101 00111 10101 10111

01000 01100 01010 01110 01011 01111

10o000 11000 10100 11100 10110 11110 11111

Figure 6: Construction of a multinode broadcast algorithm for a d-cube that takes r(2d _ 1)/dl time.

13

one element, the strings (00 .. 0) and (11 ... 1), respectively; the sets N 1 and Nd-l contain d

elements; and for 2 < k < d - 2 and d > 5, Nk contains at least 2d elements (when d = 4, the

number of elements of N2 is 6, as shown in Fig. 6). We partition each set Nk, k = 1,..., d- 1,

into disjoint subsets Rkl, .. ., Rknk which are equivalence classes under a single bit rotation to

the left, and we select Rkl to be the equivalence class of the element whose k rightmost bits are

unity. Then, we associate each node identity t with a distinct number n(t) E {0, 1, 2,..., 2 d -1}

in the order

(00... O)R11R21 ... R2n,, Rkl .. Rknk ' R(d-2)l '. R(d-2)nd, 2R(d-1)l(11 .. 1)

[i.e., n(OO .-0) = 0, n(11.l 1) = 2 d _ 1, and the other node identities are numbered consecu-

tively in the above order between 1 and 2 d - 2]. Let

m(t) = 1 + [(n(t)- 1)(mod d)].

Thus, the sequence of numbers m(t) corresponding to the sequence of node identities

R 11 R21 R2 2 . .. R(d-l)l

is 1,2,...,d, 1,2,..., d, 1, 2,... (cf. Fig. 6 for the case d = 4). We specify the order of node

identities within each set Rk, as follows: the first element t in each set Rk, is chosen so that

the relation

the bit in position m(t) from the right is a one (1)

is satisfied, and the subsequent elements in Rkn are chosen so that each element is obtained by

a single bit rotation to the left of the preceding element. Also, for the elements t of Rkl, we

require that the bit in position m(t) - 1 [if m(t) > 1] or d [if m(t) = 1] from the right must be

a zero. For i = 1, 2,..., [(2 d - 1)/dl - 1, define

Ei = {t I (i- 1)d + 1 < n(t) < id},

and for i = 0, and i = q = [(2 d - 1)/dl, define

Eo = {(00... O)}, Eq = t I (q- 1)d+ 1 < n(t) < 2d - 1}.

We define the set of links Ai as follows:

For i = 1, 2, ... , q, each set Ai consists of the links that connect the node identities t E Ei

with the corresponding node identities of U'i-4Ek obtained from t by reversing the bit in

14

position m(t) [which is always a one by property (1)]. In particular, the node identities in

each set in Rkl are connected with corresponding node identities in R(k-1)l, because, by

construction, the bit in positions m(t) lies next to a zero for each node identity t in the set

Rkl -

To show that this definition of the sets Ai is legitimate, we need to verify that by reversing

the specified bit of a node identity t E Ei, we indeed obtain a node identity t' that belongs to

Uikl Ek, as opposed to Ei. [It cannot belong to Ek for k > i, because n(t') < n(t).]

To see this in the exceptional case where t = (11 ... 1), note that by the preceding rule, t' is

the element of R(d-1)l with a zero bit in position m(t) from the right. The elements of R(d-l1)l

are ordered so that the bit of t' in position m(t') - 1 is a zero (if m(t') > 1) or in position d

(if m(t') = 1). Since 2 d - 1 is not divisible by d (see the Appendix), we have mn(t) : d. Thus,

the zero bit of t' cannot be in position d, so it must be in position m(t') - 1, implying that

m(t) = m(t') - 1. The set R(d_1)l has d elements and as a result, its first element t" satisfies

m(t") = m(t), so t' must be the second element of R(d-1)l. Since m(t) : d, Eq has at most

d - 1 elements, and thus, we obtain the desired conclusion t' ~ Eq.

In the case where t A (11-.. 1), it is sufficient to show that n(t)-n(t') > d. We consider two

cases: a) If t E Rkn for some n > 1, then all of the d elements of Rkl are between t' and t, and

the inequality n(t) - n(t') > d follows. b) If t E Rkl, then t' E R(k-l)1, and all the elements

of the sets R(k-1)2, . R(k-l)nk_l are between t' and t. There are (kdl) - d such elements. If

2 < k < d and d > 5, it can be verified that (kdl) -d > d and we are done. The cases d = 3

and d = 4 can be handled individually (see Fig. 6). The cases k = 1, 2 create no difficulties

because Rll = E1 , R21 = E2.

We have thus shown that the sets Ai are properly defined, and we also note that any two

links in each set Ai are of different types, implying that the corresponding multinode broadcast

algorithm takes q = [(2 d - 1)/d] time units. Thus, the algorithm attains the lower bound

of execution time over all multinode broadcast algorithms under the MLA assumption and is

optimal.

Multinode Broadcast Under the SLA Assumption

We can construct a multinode broadcast algorithm under the SLA assumption by using the

optimal algorithm just given for the case of the MLA assumption. Instead of transmitting

the packet of node t over all the links of the set Ai(t) simultaneously, we transmit, for each

15

t, this packet on one link of Ai(t) at a time, taking at most d time units. In particular, if

(x, y) is a link in a set Ai and n(y) is the number associated with the node identity y as in

the preceding algorithmic construction, then at time n(y), we transmit the packet of node t on

link (t D x,t ® y). Note that at each time unit, each node will transmit one packet and will

receive one packet. The time required for the algorithm is 2d - 1 time units. This is also a

lower bound for the required time, since in a multinode broadcast, each node receives a total

of 2d - 1 packets and can receive at most one in each time unit under the SLA assumption.

A simpler alternative possibility for an optimal multinode broadcast algorithm under the

SLA assumption is to embed a ring on the d-cube (see [BeT89]) and to require each node to

transmit at each time unit, to its clockwise neighbor on the ring the packet it received at the

previous time unit from its counterclockwise neighbor. This algorithm starts with each node

transmitting its packet to its clockwise neighbor and terminates after 2 d - 1 time units.

Number of Packet Transmissions

Each of the multinode broadcast algorithms given requires 2 d(2 d - 1) packet transmissions.

This is also a lower bound on the required number, since each of the 2 d nodes must receive a

total of 2 d - 1 different packets (one from each of the other nodes). Therefore the algorithms

are optimal in terms of total required communication resource.

3. SINGLE NODE SCATTER AND GATHER IN THE HYPERCUBE

Consider the d-cube and the problem of single node scatter and gather with root node s.

Since 2 d - 1 different packets must be transmitted (in the case of scatter) or received (in the

case of gather) by the root node over its d incident links, any algorithm solving these problems

requires at least [(2 d - 1)/dl time units under the MLA assumption and 2 d - 1 time units

under the SLA assumption. These times can be achieved by using the corresponding optimal

multinode broadcast algorithms of the previous section, thereby justifying the entries of Table

1 for single node scatter and gather.

The multinode broadcast algorithms are not, however, optimal for the scatter and gather

problems with respect to number of packet transmissions. To see this, note that a packet

destined for some node must travel a number of links at least equal to the Hamming distance

16

between that node and the root. Therefore, a lower bound for the optimal number of packet

transmissions is the sum of the Hamming distances of all nodes to the root. There are (d) =

d!l/(k! (d - k)!) nodes that are at distance k from the root, so this bound is

E k (=d2d-1. (2)
k=l

The lower bound of Eq. (2) is much smaller than the 2 d(2d - 1) packet transmissions required

by a multinode broadcast.

It is possible to extract from an optimal multinode broadcast algorithm a single node gather

algorithm which attains the lower bound of Eq. (2) as follows: for each node t, consider the

single node broadcast tree of the previous section, consisting of the links Ai(t), and let p(t, s)

be the path on this tree leading from t to the root s. A single node gather algorithm is obtained

by executing the multinode broadcast algorithm of the previous section with the modification

that the packet of each node t is transmitted only on the path p(t, s). Since the number of

links on p(t, s) is equal to the Hamming distance of t and s, it follows that the total number of

packet transmissions in this algorithm is equal to the lower bound of Eq. (2), thereby justifying

the corresponding entry in Table 2. This algorithm still requires [(2d - 1)/dl time units, so

it is also optimal in terms of execution time. On the other hand, this algorithm is somewhat

complex to visualize and implement. For this reason, we present an alternative algorithm that

requires the construction of only one tree.

Single Node Scatter Under the MLA Assumption

For any spanning tree T of the d-cube, let r be the number of neighbor nodes of the root

node s in T, and let Ti be the subtree of nodes that are connected with s via a path that lies in

T and passes through the ith neighbor of s. Consider the following rule for s to send packets

to each subtree Ti:

Continuously send packets to distinct nodes in the subtree (using only links in T), giving

priority to nodes furthest away from s (break ties arbitrarily).

With this rule, s starts transmitting its last packet to the subtree Ti no later than time Ni - 1,

where Ni denotes the number of nodes in Ti, and all nodes in Ti receive their packet no later

than time Ni. [To see the latter, note that all packets destined for the nodes in Ti that are k links

away from s are sent no later than time Ni - k, and each of these packets completes its journey

17

in exactly k time units.] Therefore, all packets are received at their respective destinations in

max{Ni, N 2 ,..., Nr} time units. Hence, the above algorithm attains the optimal time if and

only if T has the property that s has d neighbors in T and that each subtree Ti, i = 1,..., d,

contains at most [(2 d - 1)/dl nodes. If T is in addition a shortest path tree from s, then each

packet travels along the shortest path to its destination and this algorithm also attains the

optimal number of packet transmissions.

We will assume without loss of generality that s = (00. 0) in what follows. To construct

a spanning tree T with the above two properties, let us consider the equivalence classes Rkn

introduced in Section 2 in connection with the multinode broadcast problem. As in Section 2,

we order the classes as

(00... 0)RllR 21' R2,,... Rkl .' Rk,,k 'R(d-2) ... ' R(d-2)nd_2R(d-1)1(l (11 1)

and we consider the numbers n(t) and m(t) for each identity t, but for the moment, we leave

the choice of the first element in each class Rkn unspecified. We denote by mkn the number

m(t) of the first element t of Rkn and we note that this number depends only on Rkn, and not

on the choice of the first element within Rkn.

We say that class R(k-1)n, is compatible with class Rkn if R(k-l)n, has d elements (node

identities) and there exist identities t' E R(k-1)n, and t E Rkn such that t' is obtained from t

by changing some unity bit of t to a zero. Since the elements of R(k-1)n, and Rkn are obtained

by left shifting the bits of t' and t, respectively, it is seen that for every element x' of R(k-1)n,

there is an element x of Rkn such that x' is obtained from x by changing one of its unity bits

to a zero. The reverse is also true, namely that for every element x of Rkn there is an element

x' of R(k-1)n, such that x is obtained from x' by changing one of its zero bits to unity.

An important fact for the subsequent spanning tree construction is that for every class Rkn

with 2 < k < d - 1, there exists a compatible class R(k-1)n'. Such a class can be obtained

as follows: take any identity t E Rk, whose rightmost bit is a one and its leftmost bit is a

zero. Let a be a string of consecutive zeros with maximal number of bits and let t' be the

identity obtained from t by changing to zero the unity bit immediately to the right of a. [For

example, if t = (0010011), then t' = (0010001) or t ' = (0000011), and if t = (0010001), then

tV = (0010000).] Then the equivalence class of t' is compatible with Rkn, because it has d

elements [t' 5 (00 .-. 0) and it contains a unique substring of consecutive zeros with maximal

number of bits, so it cannot be replicated by left rotation of less than d bits].

The spanning tree T with the desired properties is constructed sequentially by adding links

18

001 011 111

O 0 m(t)=1

000 m(t)=2

......... m(t)=3

0001 0011 0101 1011

m(t)=1
0010 0110 1010 0111

0000 m(t)=2
o100 1100 1110 1111

\,-'?__ 0 0 O 0......... m(t)=3
"-000 1001 1101

......... m(t)=4

Figure 7: Spanning tree construction for optimal single node scatter under the MLA assumption for d = 3
and d = 4.

incident to elements of the classes Rk. as follows (see Fig. 7):

Initially T contains no links. We choose arbitrarily the first element of class R1l and we

add to T the links connecting (00... 0) with all the elements of Rll. We then consider the

classes Rkn (2 < k < d - 1) one-by-one in the order indicated above, and for each Rkn, we

find a compatible class R(k-1)n, and the element t' in R(k-1)n' such that m(t') = mkn (this

is possible because R(k-l)n, has d elements). We then choose as the first element of Rki an

element t such that t' is obtained from t by changing one of its unity bits to a zero. Since

R(k-l)n, has d elements and Rkn has at most d elements, it can be seen that, for any x in

Rkn, we have m(x') = m(x), where x' is the element of R(k-1)n' obtained by shifting t' to

the left by the same amount as needed to obtain x by shifting t to the left. Moreover, x'

can be obtained from x by changing some unity bit of x to a zero. We add to T the links

(x', x), for all x E Rk, (with x' defined as above for each x). After exhausting the classes

Rkn, 2 < k < d- 1, we finally add to T the link (x,(11 ... 1)), where x is the element of

R(d-1)l with m(x) = m(11-. -- 1).

The construction of T is such that each node x 0 (00-.. 0) is in the subtree Tm,(x). Since

there are at most [(2 d - 1)/lr] nodes x having the same value of m(x), each subtree contains

19

at most [(2 d - 1)/dj nodes. Furthermore, the number of links on the path of T connecting any

node and (00 ... 0) is the corresponding Hamming distance. Hence, T is also a shortest path

tree from (00.- 0), as desired.

Single Node Scatter Under the SLA Assumption

To construct an algorithm attaining the lower bound of 2 d - 1 on the single node scatter time

under the SLA assumption, consider sending continuously packets from s along any spanning

tree T, giving priority to the packets destined for nodes that are furthest away from s (break

ties arbitrarily). It can be seen that all packets arrive at their respective destination at time

2d _ 1 or earlier. [The argument for this is analogous to the one given earlier in this section.

The only difference here is that s can send a packet to only one (instead of all) of the subtrees

per time unit. Hence the time of the algorithm is the sum of the Ni's (instead of the maximum

of the Ni's).] Furthermore, if T is chosen to be a tree of shortest paths from s, then each packet

travels along the shortest path to its destination and this algorithm also attains the optimal

number of packet transmissions.

4. TOTAL EXCHANGE IN THE HYPERCUBE

Consider the total exchange problem under the MLA assumption. We showed in the pre-

ceding section that for any single node scatter algorithm in the d-cube, the number of packet

transmissions is bounded below by d2d-1, and it is equal to d2d- 1 if and only if packets follow

shortest paths from the root to all other nodes. Since a total exchange can be viewed as 2d

separate versions of single node scatter, a lower bound for the total number of transmissions is

d2 d2 d - 1
(3)

Since each node has d incident links, at most d2d transmissions may take place at each time

unit. Therefore, if Td is the execution time of a total exchange algorithm in the d-cube, we

have

Td > 2 d-1 (4)

For an algorithm to achieve this lower bound, it is necessary that packets follow shortest paths

and that all links are busy (in both directions) during all of the 2 d- 1 time units. In what

20

follows, we present an algorithm for which Td = 2 d-1. In light of the above, this algorithm is

optimal with respect to both the time and the number of packet transmissions criteria, and

achieves 100% link utilization.

We will construct the algorithm recursively. We will assume that we have an optimal al-

gorithm for total exchange in the d-cube with certain properties to be stated shortly, and we

will use this algorithm in order to perform an optimal total exchange in the (d + 1)-cube. The

construction is as follows: we decompose the (d + 1)-cube into two d-cubes, denoted as C1

and C2 (cf. the construction of Fig. 1). Without loss of generality we assume that C1 contains

nodes 0,...,2d - 1, and that their counterparts in C2 are nodes 2 d,..., 2d - 1, respectively.

The total exchange algorithm for the (d + 1)-cube consists of three phases. In the first phase,

there is a total exchange (using the optimal algorithm for the d-cube) within each of the cubes

C 1 and C2 (each node in C 1 and C2 exchanges its packets with the other nodes in C1 and C 2,

respectively). In the second phase, each node transmits to its counterpart node in the opposite

d-cube all of the 2 d packets that are destined for the nodes of the opposite d-cube. In the third

phase, there is an optimal total exchange in each of the two d-cubes of the packets received in

phase two (see Fig. 8). Phase three must be carried out after phase one, because during phase

one all the links of the cubes C1 and C2 are continuously busy (since the d-cube total exchange

algorithm is assumed optimal). On the other hand, phase two may take place simultaneously

with both phases one and three. In an algorithm presented in [BeT89], phase three starts after

the end of phase two, resulting in an execution time of 2 d - 1 units. Here, we improve on this

time by allowing phase three to start before phase two ends. To illustrate how this is possible,

consider the packet originating at some node i E C1 and destined for its counterpart node in

C2, namely i+ 2 d, and the packet originating at i+ 2 d and destined for i. These packets are not

transmitted at all during phase three. Therefore, if they are transmitted last in phase two, then

phase three can start one time unit before the end of phase two. This idea can be generalized

as follows: clearly, if it were guaranteed that packets going from C1 to C2 and from C2 to

C1 arrive sufficiently early in C2 and in C1, respectively, then phase three may be carried out

just after phase one, without completing phase two. In such a case, the first half of phase two

would be carried out simultaneously with phase one, while the second half would be carried

out simultaneously with phase three, and we would have Td+l = 2Td. Since, by assumption,

Td is equal to the lower bound 2 d- 1 of Eq. (4) for a total exchange in the d-cube, we would

have Td+l = 2d, implying that such an algorithm would achieve the lower bound of Eq. (4) for

the (d + 1)-cube. We prove that this is indeed feasible.

21

Total exchanges Total exchanges
within hypercube C, within hypercube C2
during phases 1 and 3 Communication during phases 1 and 3

during phase 2
between hypercubes
C, and C2

Figure 8: Recursive construction of a total exchange algorithm for the d-cube. Let the (d + 1)-cube be
decomposed into two d-cubes denoted C1 and C2. The algorithm consists of three phases. In the first phase,
there is a total exchange within each of the cubes C1 and C2. In the second phase, each node transmits to its
counterpart node in the opposite d-cube all of the 2d packets that are destined for the nodes of the opposite
d-cube. In the third phase, there is a total exchange in each of the two d-cubes of the packets received in
phase two.

Suppose that an optimal total exchange algorithm has already been devised for the d-cube.

Let Nd(i, n) denote the number of its own packets that node i has transmitted up to and

including time n, for n = 1,..., 2 d-1, [Nd(i,n) ranges from 1 to 2d - 1]. We can use Nd(i,n)

to express the requirement that phase three packets originating at nodes of C1 are available

in time at the appropriate nodes of C2 , so that phase three begins right after phase one and

continues without delay. In particular, it is necessary that

Nd(i,n) < 2 d1 + n-1, V n = 1 ,. .. , 2 d-1, i = 0, ... 2 d 1 (5)

To see this, note that the left-hand quantity in Eq. (5) is the number of packets of node i E C1

that must be transmitted by node i + 2d during the first n time units of phase three, while

the right-hand quantity in Eq. (5) is the number of available time units within phase two for

transferring these packets from node i to node i + 2
d . There is also a requirement analogous

to Eq. (5) for the nodes i of C2.

We will proceed by induction, using the requirement of Eq. (5) as part of the inductive

hypothesis. In particular, we will prove that for every d, there exists a total exchange algorithm

for the d-cube, satisfying

Td =2d 1 and Nd(i,n) < 2d-1 + n - 1, V n = 1 ,., 2 d-1 i= 0, , 2 d 1 (6)

22

We have T1 = 1 and N1(i, 1) = 1, for i = 0, 1, which proves the inductive hypothesis for

d = 1. Assume that for some d, we have a total exchange algorithm for the d-cube that satisfies

the inductive hypothesis (6), and let s(i,j,d) denote the time unit in this algorithm during

which node i transmits its own packet that is destined for node j. We will construct a three-

phase total exchange algorithm for the (d + 1)-cube of the type described above that satisfies

the inductive hypothesis. Suppose that packets are transmitted in phase two according to the

following rules: (In view of the symmetry of the transmissions of nodes of the d-cubes C 1 and

C2, we describe the rules for phase two packet transmissions only for the nodes of C 1.)

(a) Each node i E C 1 transmits its packets to node i + 2 d in the order in which the latter

node forwards them in phase three (ties are broken arbitrarily), i.e., the packet destined

for j E C 2, j i+ 2d, is transmitted before the packet destined for j' E C 2, j' i+ 2d,

if

s(ij - 2d, d) < s(i, j' - 2d, d).

(b) Each node i E C 1 transmits its packet destined for node i + 2d last.

We claim that, under the above rules, phase three can proceed uninterrupted after phase

one. To show this, consider any i E C 1 (the case of i E C2 can be treated analogously). At

the end of phase one, node i has received exactly 2 d- 1 packets from node i + 2d (since phase

one lasts 2d- 1 time units by induction). Hence, n time units after the end of phase one, node i

has received exactly 2d- 1 + n packets from node i + 2d. On the other hand, the total number

of packets of node i + 2d that node i forwards after n + 1 time units of phase three is exactly

Nd(i, n + 1). Since [cf. Eq. (6)] Nd(i, n + 1) < 2 d- 1 + n for all n = 0,1, .. ., 2 d - 1 - 1, and node

i + 2d transmits its packets to node i according to the above rules, node i always has enough

packets from node i + 2d for transmission if phase three begins immediately after phase one.

Since i E C1 was chosen arbitrarily, this holds for all i E C 1.

Consider the total exchange algorithm for the (d + 1)-cube whereby phase three proceeds

uninterrupted immediately following phase one as described above. Since according to the

inductive hypothesis, each of phases one and three takes time Td = 2
d -1, this algorithm takes

time 2Td = 2 d. There remains to show that the second part of the inductive hypothesis is

satisfied for d + 1. For any node i, let Nd+l(i, n) denote the number of node i's own packets

that i has transmitted up to and including time n in this algorithm. Since in the first 2 d-1

23

time units of this algorithm, phases one and two execute simultaneously, we obtain

Nd+l(i,n) = Nd(i,n)+n, V n= 1,...,2 d - 1

By combining this equation with the inequality Nd(i, n) < 2 d - 1, which holds for all n, we

obtain

Nd+l(i, n) < 2d + n-1, Vn = 1,...,2 d- 1.

Since in the next 2d-1 time units of this algorithm, phases three and' two execute simultaneously

(and i does not transmit any packet of its own in phase three), we have

Nd+l(i,n) = 2d _ 1 + n, V n = 2 d-1 + 1,...,2 d

By combining the last two relations, it follows that Nd+l (i, n) satisfies

Nd+l(i,n) < 2d + n -1, V n = 1,...,2d

Since the choice of i was arbitrary, this implies that the inductive hypothesis (6) holds for the

(d + 1)-cube.

Implementation of the Optimal Algorithm

In what follows, we present the rules used by the nodes of the d-cube for transmitting their

own packets and forwarding the packets they receive from other nodes, whenever they require

further transmission. We write the identity of node i as (id,.. ., il), where each ik, k = 1,..., d,

is a 0 or a 1. Moreover, we denote by ek the identity of node 2k-1, for k = 1,...,d. The link

between i and i ®) ek is called the kth link incident to i. Finally, ik denotes the reverse of bit

ik, namely ?k = (ik + 1) mod 2.

We first describe the order in which an arbitrary node i transmits its own packets. It can

be seen that during time units 1,..., 2 k-1, node i transmits all its packets destined for nodes

(id,.. .,ik+l,ik,Xk-1,...,Xl), where xm = 0 or 1, for m = 1,...,k- 1,

through its kth incident link, for k = 1,..., d. The last packet to be transmitted in this group

is the one destined for node i ® ek. For i = 0, the exact order in which i transmits its packets

on each of its incident links may be derived by using a sequence of d tables, which may be

constructed iteratively. The kth table consists of k columns, the mth of which contains the

destinations of the packets transmitted through link m. The first table contains only el. For

24

k = 2,..., d, the first k - 1 columns of the kth table are identical to those of the (k - 1)st

table, whereas its last column consists of ek and the entries of the (k - 1)st table with their kth

bit being set to 1. In the last column, entries corresponding to the same row of the (k - 1)st

table, appear one after the other, ordered (arbitrarily) from left to right; entries corresponding

to different rows of the (k - 1)st table are ordered from top to bottom. The last element of the

last column is ek. This scheme follows from the recursive construction of the algorithm. As an

example, we present below the scheme for d = 4.

Time Link 1

1 0001

Time Link 1 Link 2

1 0001 0011

2 0010

Time Link 1 Link 2 Link 3

1 0001 0011 0101

2 0010 0111

3 0110

4 0100

Time Link 1 Link 2 Link 3 Link 4

1 0001 0011 0101 1001

2 0010 0111 1011

3 0110 1101

4 0100 1010

5 1111

6 1110

7 1100

8 1000

For any other node i, the corresponding order of destinations may be obtained by forming

the ® operation of each entry of the dth table of 0 with i.

25

We now consider the packets arriving at some node i and present the rules under which these

packets are forwarded by i (whenever necessary). Packets arrive in i, through the kth link, in

groups of 2 k-1, for k = 1,. .., d. Each group contains all the packets originating from the same

node (Yd,.. ,Yk+l),k,ik-l, .. ,i 1) (where y, = 0 or 1, for m = k + 1,...,d) and destined for

all nodes of the form (id,...,ik,xzk-..., x1) (where xm = 0 or 1, for m = 1,...,k - 1). The

order of group arrivals is lexicographic on (Yd 9 i d, ... , Yk+l ® ik+l). Routing is accomplished

as follows:

A packet destined for node (id,..., ik, Xk-l,..., xl) is placed in the queue which contains

packets to be transmitted by i through the k0oth link, where

ko= max {mlx=,=i.}
1<m<k-1

Packets originating from different nodes j, j' and placed in the same queue, are ordered ac-

cording to the lexicographic order between j e i and j' d i. Packets originating from the same

node and placed in the same queue preserve their order of arrival. Forwarding packets in the

kth link starts at time 2k-1 + 1, for k = 1,..., d- 1; no forwarding takes place in the dth link.

The rules presented above follow from the recursive construction of the algorithm. Our

earlier analysis guarantees that packets are always in time at the intermediate nodes (if any)

of the paths they have to traverse.

Total Exchange Under the SLA Assumption

Let Td denote the time required by some total exchange algorithm in the d-cube under the

SLA assumption. Since the total number of packet transmissions is at least d2d2d- 1 [cf. Eq.

(3)], and at most 2d transmissions may take place during each time unit, we obtain

Td > d2d- 1

A total exchange algorithm that requires d2d- 1 time units and satisfies the SLA assumption

is presented in [SaS85]. This algorithm, named MTADEA by the authors of [SaS85], uses an

optimal number of packet transmissions. It may be constructed recursively, by modifying the

construction presented earlier in this section (cf. Fig. 8), in such a way that phases one, two,

and three are carried out one after the other. In this case, we have Td+l = 2Td + 2
d. Since

T1 = 1, we obtain by induction Td = d2d -1. Moreover, assuming that the algorithm in the

d-cube involves one packet transmission and one packet reception by each node per time unit,

it is straightforward to verify that the algorithm for the (d + 1)-cube also has this property.

26

5. CONCLUSIONS

Excessive communication time is widely recognized as the principal obstacle for achieving

large speedup in many problems using massively parallel computing systems. This emphasizes

the importance of optimal communication algorithms. In this paper, we have shown that

a very strong form of optimality can be achieved for some basic communication problems

in the hypercube architecture. However, some of our assumptions (all packets have equal

transmission time and all nodes initiate the algorithm simultaneously), are fairly restrictive

and it is interesting to investigate the performance of our algorithms or variations thereoff,

under weakened forms of these assumptions.

Our methodological ideas may find application in other related contexts. In particular,

some of our algorithmic constructions can be applied in other architectures to obtain optimal

or nearly optimal algorithms for the communication problems of this paper. Furthermore, it is

worth considering the potential existence of optimal algorithms for specialized communication

tasks, arising in the context of specific numerical and other methods.

27

REFERENCES

[BeT88] Bertsekas, D. P., and Tsitsiklis, J. N., "Parallel and Distributed Computation: Nu-

merical Methods", Prentice-Hall, Englewood Cliffs, N.J., 1989.

[BhI85] Bhatt, S. N., and Ipsen, I. C. F., "How to Embed Trees in Hypercubes", Yale University,

Dept. of Computer Science, Research Report YALEU/DCS/RR-443, 1985.

[DaS87] Dally, W. J., and Seitz, C. L., "Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks", IEEE Trans. on Computers, Vol. C-36, pp. 547-553, 1987.

[DNS81] Dekel, E., Nassimi, D., and Sahni, S., "Parallel Matrix and Graph Algorithms", SIAM

J. Comput., Vol. 10, pp. 657-673, 1981.

[Joh85a] Johnsson, S. L., "Cyclic Reduction on a Binary Tree", Computer Physics Communi-

cations, Vol. 37, 1985, pp. 195-203.

[KVC88] Krumme, D. W, Venkataraman, K. N., and Cybenko, G., "The Token Exchange

Problem", Tufts University, Technical Report 88-2, 1988.

[KeK79] Kermani, P., and Kleinrock, L., "Virtual Cut-Through: A New Computer Communi-

cating Switching Technique", Comput. Networks, Vol. 3, pp. 267-286, 1979.

[Ozv87] Ozveren, C., "Communication Aspects of Parallel Processing", Laboratory for Infor-

mation and Decision Systems Report LIDS-P-1721, M.I.T., Cambridge, MA, 1987.

[SaS85] Saad, Y., and Schultz, M. H., "Data Communication in Hypercubes", Yale University

Research Report YALEU/DCS/RR-428, October 1985 (revision of August 1987).

[SaS86] Saad Y., and Schultz, M. H., "Data Communication in Parallel Architectures", Yale

University Report, March 1986.

[SaS87] Saad Y., and Schultz, M. H., "Parallel Direct Methods for Solving Banded Linear

Systems", Linear Algebra and its Applications, 88/89, pp. 623-650, 1987.

[SaS88] Saad Y., and Schultz, M. H., "Topological Properties of Hypercubes", IEEE Trans. on

Computers, Vol. 37, 1988, pp. 867-872.

[Saa86] Saad, Y., "Communication Complexity of the Gaussian Elimination Algorithm on

Multiprocessors", Linear Algebra and its Applications, Vol. 77, pp. 315-340,1986.

[Top85] Topkis, D. M., "Concurrent Broadcast for Information Dissemination", IEEE Trans.

Software Engineering, Vol. 13, pp. 207-231, 1983.

28

APPENDIX: INDIVISIBILITY OF 2 d _ 1 BY d

The proof of the following result is due to David GillmaaL and Arthur Mattuck of the M.I.T.

Department of Mathematics, and is given here with their kind permission.

Proposition: For any integer d > 2, 2 d -- 1 is not divisible by d.

Proof: For any positive integers a, b, and d we use the notation a - b (mod d) to indicate

that a and b give the same remainder when divided by d; this remainder is denoted a mod d or

b mod d. We note that for all positive integers a, b, d, and t we have

a b (mod d) = ta- tb (mod d). (A.1)

(Write a = pad+w, b = pbd+w, tw = pd+r, where w = a mod d = b mod d and r = (tw) mod d,

and note that r = (ta) mod d = (tb) mod d.)

It suffices to consider odd d > 2. We will argue by contradiction. If the claim does not hold,

let d be the smallest odd integer, which is larger than one and is such that

2d = 1 (mod d). (A.2)

Let m be the smallest positive integer for which

2m - 1 (mod d). (A.3)

We claim that m < d. To see this, note that the numbers

2 mod d, 22 mod d,..., 2d mod d

belong to {1,..., d - 1}. Since there are d such numbers, some of them must repeat, i.e., for

some integers r and s with 1 <r < s < d,

2r _ 2' (mod d).

Using Eq. (A.1) with a = 2r, b = 2', and t = 2 d- ,, and using also Eq. (A.2), we obtain

2d - + + =2 d _ 1 (mod d).

Since m is the smallest positive integer for which Eq. (A.3) holds, we obtain m < d - s + r, so

finally m < d.

29

Let us now express d as d = pm + r, where r = d mod m. By multiplying with 2m in Eq.

(A.3) and by using Eq. (A.1), we obtain

22m _ 2m' 1 (modd).

By multiplying again with 2m and by using Eq. (A.3) and (A.1), we have

23 m 2ml 1 (modd),

and by continuing similarly,

2Pm =-1 (mod d).

By multiplying with 2r in this equation and by using again Eq. (A.1) together with Eq. (A.2),

we obtain

2r = 2Pm+r _ 2 d = 1 (mod d).

Since r < m, our hypothesis on m implies that r = 0. Thus, d is divisible by m. This implies

that m is odd (since d is odd) and that 2m _ 1 (mod m) (since Eq. (A.3) holds). In view

of the definition of d and the fact d > m, we must have m = 1, which contradicts Eq. (A.3).

Q.E.D.

30

