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Abstract. The annealing algorithm (Ref. 1) is modified to allow for noisy or imprecise

measurements of the "energy" cost function. This is important when the energy cannot

be measured exactly or when it is computationally expensive to do so. Under suitable

conditions on the noise/imprecision, it is shown that the modified algorithm exhibits the

same convergence in probability to the globally minimum energy states as the annealing

algorithm (Ref. 2). Since the annealing algorithm will typically enter and exit the

minimum energy states infinitely often with probability one, the minimum energy state

visited by the annealing algorithm is usually tracked. The effect of using noisy or

imprecise energy measurements on tracking the minimum energy state visited by the

modified algorithms is examined.

Keywords. Simulated Annealing, Combinatorial Optimization, Noisy Measurements,

Markov Chains.
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1. Introduction

Motivated by hard combinatorial optimization problems such as arise in computer

design and operations research, Kirkpatrick, Gelatt, and Vecchi (Ref. 1) and indepen-

dently Cerny (Ref. 3) have proposed a random optimization algorithm called simulated

annealing. The annealing algorithm stands in contrast to heuristic methods based on

iterative improvement in which only decreases in the cost function are allowed at each

iteration. In the annealing algorithm increases in the cost function are allowed with

certain probability. This probability is slowly decreased to zero. Simulated annealing is

based on an analogy to a physical system which is first melted and then cooled or

"annealed" into a low energy state. In this analogy the cost of the optimization problem

is identified with the energy of an imaginary physical system; see Ref. 1. The annealing

algorithm has been applied with mixed success to a variety of difficult problems (Ref.

4-7). In addition, the annealing algorithm has sparked considerable theoretical interest,

and investigations into its convergence have generated fundamentally new results in the

theory on nonstationary Markov chains; see Refs. 2, 8-10, and see Ref. 11 for a review.

The annealing algorithm may be described as follows. Let E be a finite set and

U(-) a real-valued function on E, the cost or energy function. The goal is to find an ele-

ment of E which minimizes or nearly minimizes U(.). Let {Tk} be a sequence of posi-

tive numbers, the temperature schedule. Tk will tend to zero at a suitably slow rate.

Let Q= [qij] be a ExE stochastic matrix. Typically Q is irreducible and may also

satisfy a reversibility condition such as qij = qji for all i, jEE. The annealing algorithm

consists of simulating a random process {Xk} which takes values in A, and whose suc-

cessive values are determined in the following manner. Suppose Xk = i. Then select a

candidate state j with probability qij. If U(j) - U(i) < 0 set Xk+l =j; if

U(j) - U(i) > 0 set Xk+l = j with probability exp [- (U(j) - U(i))/Tk]; otherwise set

Xk+l = i. It is seen that {Xk } is in fact a nonstationary Markov chain with 1-step tran-

sition probabilities

P{Xk+l IXk = i} qi exp U(j) - () if U(j) - U(i) > (1),

9ij, if U(j) -U(i) < 0,

for all i, jEE with j 0 i4 . We shall call {Xk} the annealing chain. Note that Tk > 0

4This also specifies P{Xk+l = i IXk = i} when P{Xk = i} > 0; similar definitions will be
made in the sequel without further comment.
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implies that the annealing chain can with positive probability make transitions to

higher energy states and so escape from local minima of the energy function. Note also

that since Tk-O the probability of the annealing chain making a transition to a higher

energy state tends to zero. Intuitively, if Tk is decreased to zero at a suitably slow rate

then the annealing chain eventually spends most of its time amongest and hopefully

converges in an appropriate probabilistic sense to the minimum energy states.

Much of the theoretical interest in the annealing algorithm has focused on setting

conditions on the temperature schedule such that the annealing chain converges in pro-

bability to the set of minimum energy states, i.e., setting conditions on {Tk} such that

limk-,,0 P{XkES} = 1 where S = {iEE: U(i) < U(j) V jEE}. Under a reversibility

condition on Q, Hajek (Ref. 2) has given a characterization of monotone decreasing tem-

perature schedules which obtain convergence in probability, and Tsitsiklis (Ref. 10 and

11) later removed the reversibility condition (see Theorem 3.1).

In this paper we consider modifications of the annealing algorithm to allow for

noisy (i.e. with random error) or imprecise (i.e. with deterministic error) measurements

of the energy differences which are used in selecting successive states. This is important

when the energy differences cannot be computed exactly or when it is simply too costly

to do so. Grover (Ref. 12) has applied such a modified algorithm to a circuit design

problem and achieved significant reductions in computational load with comparable

quality solutions. Here we shall rigorously describe and analyze these modified algo-

rithms. Our approach will involve formulating the modified algorithms in such a way

as they also involve simulating Markov chains. We then show that under suitable con-

ditions on the noise/imprecision and temperature schedule, the 1-step transition proba-

bilities of the modified chains and annealing chain are asymptotically equivalent, and

using results from Ref. 10, obtain that the modified chains converge in probability to

the minimum energy states if and only if the annealing chain does. Since in general the

annealing chain will only converge in probability to the minimum energy states, it will

enter and exit the minimum energy states infinitely often with probability one. Hence

in applying the annealing algorithm one usually keep track of the minimum energy

state visited up to the current time; this may be done recursively since the energy

differences are computed at each iteration. We examine the effect of using noisy or

imprecise measurements of the energy differences on tracking the minimum energy state

visited by the modified algorithms.
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This paper is organized as follows. In Section 2 we describe the annealing algo-

rithm modified for noisy or imprecise energy measurements. In Section 3 after review-

ing a result from Ref. 10, we analyze the convergence in probability of the modified

algorithms. In Section 4 we examine the problem of tracking the minimum energy state

visited by the modified algorithms. In Section 5 we conclude with a brief discussion.

2. Modification of the Annealing Algorithm

We first describe the annealing algorithm modified for noisy measurements of the

energy differences used to select successive states (by noisy we mean with random error).

The annealing algorithm with noisy measurements consists of simulating a random pro-

cess {Yk} which takes values in E. The successive values of {Yk} are obtained in the

same fashion as the annealing chain {Xk} (see Section 1) except that at each time k the

energy difference U(j) - U(i) between the candidate state j and the current state i is

replaced by U(j) - U(i) + Wk where Wk is a real-valued random variable. More pre-

cisely, we define {Yk} as follows. Given that Y1 is defined, let W 1 be a real-valued ran-

dom variable with

P{W1 < X IY1}=F1 (X), V XEIR.

Given that Y 1,.,Yk, W 1,...,Wk have been defined, let Yk+l be a E-valued random vari-

able with

P{Yk+l =J IY1,'",Ykl, Yk = i, W1,...,Wk_1, W k = X}

q iexp U(- U(i) + XJ if U(j)- U(i) + X > 0,
Tk (2)

qj, if U(j) - (i) + x < 0,

for all i, j E E with j # i and all X E IR, and let Wk+l be a real-valued random variable

with

P{Wk+l < X IY 1 ,v,Y i k + l, Wl,...,Wk} = Fk+1(X)), V XE R. (3)

Proceeding in this way we inductively define a sequence of random variables {Yk, Wk}.

It is easy to show that {Yk } defined as above is a Markov chain with 1-step transi-

tion probabilities given by
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P(Yk+l = IY = i) = E{PYk+l =j IYk, Wk} IYk = i

= E {P{Yk+l =j iYk = i, Wk})
Wk

i e p U(j)- U(i) - + x ,
X >U(i)-U(j) - dF(

+ qij Fk(U(i) - U(j)), V j 0 i. (4)

In the sequel we shall only consider the case where Wk is Gaussian with mean 0 and

variance o2k > 0. Hence (2.3) can be written as

co [ U(j) - U(i) + X dN(Ocr~)(X)
P{Yk+l =j IYk = i} = f j exp) + jN k)()

U(i)-U(j) k

+ qj N(O,ok) (-oo, U(i) - U(j)) , V j i i, (5)

where N(m,a)(-) denotes one-dimensional normal measure with mean m and variance a.

We shall refer to {Yk} as the annealing chain with noisy measurements.

We next describe the annealing algorithm modified for imprecise measurements of

the energy differences used to select successive states (by imprecise we mean with deter-

ministic error). The annealing algorithm with imprecise measurements consists of simu-

lating a random process {Zk} which takes values in E. The successive values of {Zk}

are obtained in the same fashion as the annealing chain {Xk} (see Section 1) except that

at each time k the energy difference U(j) - U(i) between the candidate state j and

current state i is replaced by U(j) - U(i) + /k where /k is a number. It is seen that the

process {Zk} is a Markov chain with 1-step transition probabilities

P{Zk+l i Zk = i}= qjj exp- (j ) T + if U(j) -U(i) + ik > (6)

j , if U(j) - U(i) + 1k < 0,

for all i, j E E with j # i. We shall refer to {Zk} as the annealing chain with imprecise

measurements.
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3. Convergence of the Modified Algorithms

In this section we shall give conditions such that the modified annealing chains con-

verge in probability to the set of globally minimum energy states. We first state a

result from Ref. 10 on the convergence of a class of nonstationary Markov chains.

Theorem 3.1 (Ref. 10): For each e E [0,1) let {N'} be a Markov chain with state

space r which satisfies

cl f a(i' j) < P{(N+ 1 =j jN' = i} < c2ei (i j ) (7)

for all i, jE, with j # i, where a(i,j) E [0, 0c] and cl, c2 are positive constants. Suppose

that {Nf} is irreducible for all E > 0 and the irreducible components of {N } are

aperiodic. Let {Ek} be a sequence of numbers with k E(O,1) and Ek 0, and {Nk} be a

Markov chain with state space E which satisfies

P{Nk+l = INk = i = P{Nk+1 = j N k = i} V j Zi.

Let A CE. Then there exists a 3* E[O, oo] depending only on oa(,.) and A such that

lim P{NkEA }=liff
k -oo

Ek = 00 .
k=-

Remark 3.1: The statement of Theorem 3.1 in Ref. 10 assumes that (7) holds for all

i, jEE, but it is enough that (7) hold only for j7i as stated above.

Remark 3.2: For each T > 0 let {XT} be the constant temperature (Tk = T)

annealing chain. Suppose Q is irreducible. Then {XkT } is irreducible for all T > 0 and

the irreducible components of {Xk} must be aperiodic. Let E = exp(-1/T),

Ek = exp(-1/Tk), and

ce(i,j) = {max{ U(j) - U(i)}, if ij > 0,
if qjj = 0,

for all i, jEE with j # i. Then Theorem 3.1 may be applied with N' = XTk, Nk = Xk,

and A = S to obtain: there exists a o*E[0, c] such that limk.oO, P{XkES}-- iff
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exp - oo (8)
k-1 Tkj

If Q satisfies a certain reversibility condition it may be shown that 3* < oo and has a

simple interpretation as the maximum "depth," suitably defined, of all local minima of

U(.) which are not global minima; see Ref. 2.

We next apply Theorem 3.1 to the modified annealing chains {Yk} and {Zk}. We

shall treat {Yk} in detail and then state the corresponding results for {Zk} without

proof.

Proposition 3.1: Suppose that Tk-*O and

-k = o(Tk) as k-.oo.

Then

P{Yk+l =j Yk =i} P{Xk+l =j IXk =i) as k-ooc (9)

for all i, jEl with j $ i.

Proof: Fix i, jEE with j $ i and qij > 0. Let

a=(i)-(j ep U(j) - U(i) + x dN(0,c)(X)ak f qij exp - T dN(Oo-2)()
UW)-U(j) k

bk = qij N(O, 2k) (-oo, U(i) - U(j)] ,

so that (5) becomes

P{Yk+ =j IYk =i} = ak + bk (10)

Since Xk = o(1) we have

lim ak = if U(j)- U(i) < O, (11)
k--oo

lim bk = qij if U(j) - U(i) < 0. (12)
k--oo

Also
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lim bk - 2i if U(j) - U(i) = 0. (13)
k-.oo 2

We make the following claim.

Claim 3.1:

qij
ak i* if U(j) - U(i) = 0 (14)2

| U(j) -U(i) 1f U(j) U(i) (15)ak ~ exp T J if U(j) - U(i) >0 (15)

bk = oi exp U(j) -(i) if U(j) - U(i) > 0 (16)Tk

as k-+oo.

Suppose the Claim is true. Then combining (10)-(16) gives (9) as required. It

remains to prove the Claim.

Proof of Claim 3.1:

We have

ak = qex U(j) - U(i) - dN )() (17)
k (U(i)-U(j))/Tk k

after a change of variable. Observe that crk = o(Tk) implies N(0, o2k/Tk)(') converges

weakly to the unit measure concentrated at the origin. If follows that

00 1' 1
if U(j) - U(i) = 0lim ex dN(, )(X) if U(j)-U(i) (18)k--*oo (V~i)-V)/Tkf T

(U(i)-U(j))/Tk Tk 1 if U(j) - U(i) > 0.

Combining (17), (18) gives (14), (15). Finally, if U(j) - U(i) > 0 then since o'k = o(Tk)
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bk = qij N(0,) (-Co, U(i) - U(j)]

-< exp |-(U(j) - U(i))2 

o0 expt- (j (i) las k -- o
Tk

where we have used the standard estimate N(O, )(x, oo) < exp(-x 2 /2) for x > O. This

proves (16) and hence Claim 3.1 and Proposition 3.1.

Corollary 3.1: Suppose that Q is irreducible, Tk0O, and

Xk =o(Tk) as k-oo .

Then

lim P{YkES} = 1 iff lim P{XkES =1
k-+oo k--+oo

Proof: In Remark 3.2 following Theorem 3.1, we showed that Theorem 3.1 may be

applied to {Xk} to obtain that limk-oo P{XkES} = 1 iff (8) holds. In view of Proposi-

tion 3.1, Theorem 3.1 may also be applied to {Yk} to obtain that limk_, P{YkES} = 1

iff (8) holds with the same value of 6*.

Remark 3.3: It is not possible to assert in general that

P{Yk+l = i IYk = i} P{Xk+l = i IXk = i}. For example, if qii = 0 and qij = 0 for

all jEE with U(j) - U(i) > 0, then P{Xk+l = i jXk = i} is zero but

P{Yk+l = i ¥Yk = i} is strictly positive, corresponding to the positive probability of not

making a transition to a state with the same or lower energy. This is why we must only

require (7) holds for j $ i in Theorem 3.1 to obtain Proposition 3.1 and hence Corollary

3.1.



The corresponding results for {Zk } are as follows.

Proposition 3.2: Suppose that Tk-*O and

k = o(Tk) as k-moo

Then

P{Zk+l =j IZk =i} P{Xk+l =j IXk =i} as k-+oo

for all i, jEE with j $ i.

Corollary 3.2: Suppose that Q is irreducible, Tk4O and

Ok = o(Tk) as k-eoo.

Then

lim P{ZkES} = 1 iff lim P{XkES} = 1.
k-- oo k-*oo

4. Tracking the Minimum Energy State

As pointed out above, when implementing the annealing algorithm one normally

keeps track of the minimum energy state visited by the annealing chain up to the

current time. The reason for this is that only convergence in probability of the anneal-

ing chain to the set S of minimum energy states can be guaranteed, and typically the

annealing chain will enter and leave S infinitely often (with probability one). The

energy differences which are used to select the successive states of the annealing chain

may also be used to recursively compute the minimum energy state visited by the

annealing chain. For the modified algorithms, noisy or imprecise measurements of the

energy differences are used to select the successive states of the modified chains. In this

Section we examine the effect of using these same noisy or imprecise measurements on

computing the minimum energy state visited by the modified chains.

We introduce the following notation. For every m > n let
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i(n,m) = arg min [U(Xk) - U(Xn)] (19a)

k-1
j(n,m) = arg min [U(Yk) - U(Yn) + E We1{Y,+iy,} ] (19b)

n-k<m e=n

k-1
k(n,m) = arg min [U(Zk) - U(zn) + E Pe l{z,,+z,}] , (19c)

n'<k-<m e=n

and

Xn,m = Xi(n,m), Yn,m = Yj(n,m), Zn,m = Zk(n,m) ,

and

Xm = Xl,mI Ym =-Yl,m, Zm = Zi,m

In words, xn,m is the minimum energy state visited by Xk between times n and m, while

Yn,m and Zn,m are estimates of the minimum energy states visited by Yk and Zk, respec-

tively, between times n and m. Note that {Xn,m}m_ n may be computed recursively

from the values of the energy differences U(Xk+l) - U(Xk) which are generated in simu-

lating {Xk}, and that {Yn,m}m> n and {Zn,m}m> n may be computed recursively from

the values of the noisy/imprecise energy differences U(Yk+)--U(Yk) + Wk and

U(Zk+l) - U(Zk) + lk which are generated in simulating {Yk} and {Zk}, respectively.

Note also that the noise/imprecision on self-transitions of {Yk} and {Zk} is ignored since

it is known when a self-transition is made.

If limkc P{XkES} = 1 then limnoo P{xkES V k > n} = 1, or equivalently,

xkES for large enough k with probability one. It is also clear that this implication does

not hold in general with Xk,xk replaced by Yk,yk or Zk,zk. The problem is that large

initial noise/imprecision can result in Ykj S or zk4 S for all k with positive probability.

A less useful but still relevant result is that if limk_,,o P{XkES} = 1 then

limnoo P{xn,kES V k > n} = 1. We shall show that under suitable conditions this
implication holds with Xk,Xk replaced by Yk,yk or Zk,zk. As in Section 3 we treat {Yk}

in detail and then give the corresponding results for {Zk} which require little proof.

Let

k-1

Mn,k = E We l{Y,+lY,,,) V k > n. (20)
ith large probability, then

Intuitively, if P{YnES} is large and mink>, M,,k 2 0 with large probability, then



- 13 -

P{yn,kES V k > n} should be large. If the indicator functions in (20) were absent

then since the {Wk} are independent, {Mn,k }k_ n would be a martingale. However, it is

not hard to see that the presence of the indicator functions biases Mn,k towards nega-

tive values (see (2)). Let 9n,k be the c field generated by {Yn,...,Yk, Wn,...,Wk-l} for

k > n. Also let Pn('}=P( IYuES} and E.n{}=E({ IYnES} (assume that

P(YnES} > o).

Lemma 4.1: {Mn,k}k_ n is an ({Jn,k)k_ n, Pn) supermartingale.

Proof: First observe that if {Mn,k}kŽ n is an ({Zn,k}k- n, P) supermartingale then

clearly Ej{ in,k } < oo00 and for AE;n,k

E {Mn, k+l 1An {Y¥ES} } E{Mn, k 1An {Y¥eS} }
En {Mn,k+l 1A} = P{YnES} } P{YnES} = En{Mn,klA}

since {YnES}E:n,k, and so {Mn, k}k2 n is an ({n,k}k2-- n Pn) supermartingale.

We show that {Mn,k}k, n is an ({n, k}k2 n, P) supermartingale. Clearly Mn,k is

9n,k measurable and E{NIn,k 1I < oo. Furthermore

E{Mn,k+l - Mn,k I -n,k}

= E{Wk' l{Yk+l#Yk} I Yn,., Yk,Wn,...,Wk-l 

= E{WkP{Yk+l Yk IYn,...,Yk, Wn,...,Wk} IYn ,.,Yk,Wn, ... Wk-1}

= E{WkP(Yk+l O Yk IYk,Wk}|Yn,.,Yk, Wn ... ,Wk-1)

=E {WkP Yk+l $ Yk I Yk,Wk}}
Wk

= f X(P{Yk+l Yk IYk, Wk = X} - P{Yk+ # Yk IYk,Wk = -X)) dN(, a2k)(X)
0

<2 1 E{WkL sup [P{Yk+l #YklYk,Wk = X) -P{Yk+l YklYk, Wk =-X}]2 -w.p.o

_< 0 w.p. 1
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Here the third equality follows from (2), the fourth equality from (3), and the final ine-

quality from (2). Hence {Mn,k})k n is indeed an ({$9n,k)}k n, P) supermartingale and

so an ({fn,k}k2 n, P,) supermartingale.

Proposition 4.1: Suppose that

oo

, ak < o.
k=1

Under this condition, if limk.oo P{YkES} = 1 then

limn ooP{Yn,kES V k > n} = 1.

Proof: Let

= min U(j) - min U(i). (21)
jEE\s iEE

Then for m 2 n

P{yn, kES V n k < m}

> P{YnES, min [U(Yk) - U(Yn) + Mn,k] > O}
n<k_<m

P P{YnES, min M, k > - Y}
n<k_<m
YkEI\S

2 P{YnES, min Mn, k > -'}
n<km

= P{YES} Pf{ min M,k > -}. (22)
n<km

Now by Lemma 4.1 {Mn,k}k_ n is a Pn-supermartingale. Hence by the supermartingale

inequality Ref. 13, Theorem 35.2

n<k<m '

-1--±Er, Wk 1 {Ykl'Yk} I
k-n
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1 - - En {Wk l{Yk+lYk})

k-n
>_ 1--E (23)

' k=n

Combining (22), (23) and letting m--oo gives

1
P{Yn,kES V k >_ n} > P{YnES} (1 - - k)

r k=n

and so

lim inf P{yn,kES V k > n} > lim inf P{YnES}
n-0oo n--*oo

and the Proposition follows.

The corresponding result for {Zk} is as follows.

Proposition 4.2: Suppose that

o I
, 1k I < X .

k=1

Under this condition, if limk_.oo P{ZkES} = 1 then limn- 0 0 P{zn, kES V k >- n} = 1.

Proof: Let q be given by (21). It is easy to see that

P{Zn,kES V k > n}=P ZnES} if E PkI <Y
k=n

and so

lim inf P{zn,kES V k > n} = lim inf P{ZnES}
nl--o0 n--+oo

and the Proposition follows.

n
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5. Conclusions

We have considered modifications of the annealing algorithm which allow for noise

or imprecision in the measurements of the energy differences which are used to select

successive states. These modified algorithms like the annealing algorithm involve the

simulation of nonstationary Markov chains. We showed that under suitable conditions

these modified chains exhibit the same convergence in probability to the minimum

energy states as the annealing chain. We also investigated the effect of using the noisy

or imprecise energy differences to track the minimum energy state visited by the

modified chains.

We believe that our results may be relevant to implementing the annealing algo-

rithm in a semi-parallel fashion. For example, consider the problem of updating the

state of a finite lattice, each site of which has a number associated with it (this situation

arises in the problem of image reconstruction from noisy observations where the sites

are pixels and the numbers correspond to grey levels; c.f. Ref. 4. There are many ways

to update the state. It may be done asynchronously with the sites updated sequentially

in either a fixed or random order, or it may be done synchronously with the sites

updated in parallel. Our results suggest that if the state is updated synchronously but

with sufficiently many asynchronous updates (as time tends to infinity and temperature

tends to zero), then the same convergence to the global minima is obtained as with a

purely asynchronous implementation. It is known that in the zero-temperature algo-

rithm the asymptotic behavior of asynchronous and synchronous implementations is

different (in the synchronous case there may not even be convergence to a local

minimum; c.f. Ref. 14. Furthermore, it is not clear in the zero-temperature algorithm

whether sparse asynchronous updates are sufficient for convergence to a local minimum.

It seems that the randomness in the annealing algorithm is helpful in this way.
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