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Abstract

We consider point Gauss-Seidel and Jacobi matrix iterations subject to diagonal dominance. We

give conditions on the relaxation parameter under which the iteration mapping has the maximum

norm nonexpansive properties given in [TBT88]. It then follows from a result in [TBT88] that,

under these conditions, the associated relaxation iterations converge under asynchronous

implementation. Our conditions for convergence improve upon those given by James [Jam73] for

the special cases of strict diagonal dominance and irreducible diagonal dominance and synchronous

implementation.
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1. Introduction

Consider stationary point relaxation methods of the Gauss-Seidel and Jacobi type for solving

systems of linear equations [OrR70, Var62, You71]. For the special case where the coefficient

matrix is either strictly diagonally dominant or irreducibly diagonally dominant, James [Jam73] gave

general conditions on the relaxation parameters under which these methods converge. In this note

we expand on the work of James. In particular, we show that these methods converge under

broader conditions on the relaxation parameters and for problems where the coefficient matrix is

irreducible and diagonally dominant. Moreover, our convergence results carry over to the

asynchronous versions of these methods. Our arguments are based on the notion of maximum norm

nonexpansive mappings and are fundamentally different from the eigenvalue analysis of James and

others.

We will use the following definitions (cf. [OrR70]):

Definition 1 An nxn complex matrix A = [aij] is diagonally dominant if, for all i,

j ,ii aijl < laii I, (1.1)

and is strictly diagonallv dominant if strict inequality holds in (1.1) for all i. Similarly, A is

irreducibly diagonally dominant if it is irreducible, diagonally dominant, and strict inequality holds in

(1.1) for at least one i.

In what follows, A will denote the coefficient matrix associated with the system of linear equations

and n will denote its dimension. For simplicity we will assume that A has unity diagonal entries.

The iteration matrix for the stationary point relaxation methods corresponding to A is (cf. [Jam73])

M(a,Q) = (I + aQlL)- 1[(I - () - (1 - a)2L - QU], (1.2)

where Q2 is an nxn diagonal matrix with positive diagonal entries, o is a scalar inside [0,1], and L

(U) denotes the lower (upper) triangular part of A, i.e.

A = L+I+U.

[The familiar Jacobi (Gauss-Seidel) iteration is obtained by setting f2 = I and a = 0 (a = 1).] Under
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appropriate conditions on a and Q, all eigenvalues of M(a,fQ) lie strictly within the unit circle and

the stationary relaxation method given by M(a,Q) converges [Jam73] (see also [JaR75, Var76]).

However, the circle criterion is not sufficient to guarantee that the asynchronous version of this
method converges. Instead, we need the following notions:

Definition 2 An nxn complex matrix M = [mij] is nonexpansive if, for all i,

Yj Imijl < 1, (1.3)

and is contractive if strict inequality holds in (1.3) for all i. M is block irreducibly nonexpansive if it

is nonexpansive and, for any SC { 1,2,...,n} such that mij = 0 for all is S and all j S, there exists an

se S such that _j Imsjl < 1. M is block irreducibly contractive if it is block irreducibly nonexpansive

and strict inequality holds in (1.3) for at least one i.

If M(a,fQ) is contractive, then the associated relaxation mapping is a maximum norm contraction

and, by a result of Chazan and Miranker [ChM69] (see also [Bau78; Ber83; BeT89, §6.2]), the

associated asynchronous method converges. If M(a,CQ) is block irreducibly contractive or is block

irreducibly nonexpansive with diagonal entries having positive real parts, then it can be shown that
the associated relaxation mapping has the maximum norm nonexpansion properties described in
[TBT88] and, by Proposition 2.1 in [TBT88], the associated asynchronous method converges (see
also [BeT89, §7.2; LuD86; Tsi84, §4]). [The results in the above references are stated in terms of

real matrices, but they can be extended to complex matrices.] Below we give conditions on a and Q2

under which M(xa,Q) satisfies the above convergence criteria when (i) A is strictly diagonally

dominant, (ii) A is irreducibly diagonally dominant, and (iii) A is irreducible and diagonally

dominant. The first two cases had been analyzed in [Jam73], but our conditions on a and fQ for the

second case are more general. The third case, to the best of our knowledge, has not been analyzed
previously, although it has a number of interesting applications. For example, consider the matrix
EDET, where D is a diagonal matrix with positive diagonal entries and E is the node-arc incidence
matrix for a connected directed graph. This matrix, which arises in the solution of linear network
flow problems by interior point methods [Kar84], can be shown to be irreducible and diagonally
dominant [TBT88, §3.2]. For another example, consider the probability transition matrix P for an

irreducible Markov chain and suppose that in* is the column vector of invariant probabilities of this
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Markov chain. Then the coefficient matrix I-PT is irreducible and, upon scaling by the diagonal

matrix whose ith component is the ith component of a*, is also diagonally dominant [BeT89,

§7.3.2]. [It can be seen that scaling of A by a diagonal matrix with positive diagonal entries results

in the scaling of M(a,Q) by the same matrix and that the above criteria for convergence is unaffected

by such scaling of M(a,K2).]

2. Convergence Results

Let wi denote the ith diagonal entry of £l and denote, for each i,

li = j<ilaijl, u i = jilaijl, (2.1)

From the definition of M(a,9Q) (cf. (1.2)) we have that

(I + acQL)M(a,Q) = I + aML - QA.

Hence, if we let mij denote the (i,j)th entry of M(a,Q), then

mij + awi (k<i aik mkj) = (a - 1)wi aij, if j <i, (2.2a)

mij + awi ('k<i aik mkj) = 1 - wi, if j = i, (2.2b)

mij + awi (k<i aik mkj) = -wi aij, if j > i. (2.2c)

The above identities will be used frequently in the analysis to follow. We first have the following

two main results regarding M(a,QZ) (cf. Theorems 2 and 3 in [Jam73]):

Proposition 1 If A is strictly diagonally dominant (i.e., li + ui < 1 for all i), then, for any

ae [0,1] and any Q such that
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0 < w i < 2/(l+li+ui), i = 1,..., n, (2.3)

the matrix M(a,fQ) is contractive.

Proof: First we note from the hypotheses of the proposition that

wi(l i + ui) + 11 - Wil < 1, i = 1,...,n. (2.4)

[To see this, note that if 0 < wi < 1, then (cf. diagonal dominance) wi(li + ui) + I1 - wil = wi(li + ui)

+ 1 - w i < 1; while if 1 < wi < 2/(l+li+ui), then (cf. (2.3)) wi(li + ui) + I1 - wil = Wi(i + ui) - 1 +

wi < 1.]

For i = 1, we have from (2.2b)-(2.2c)

m 1 l = (1 -wl)

mlj = -wl alj, ifj > 1.

Hence

Y-j Imljl < 11 - W11 + Wl(j>llaljl )

= II-wll+w l u1

< 1,

where the last inequality follows from (2.4). Now suppose that

Ij Imijl < 1, i = 1,..., s-l, (2.5)

for some integer s > 2. We will show that Xj Imsjl < 1, thus completing our induction. Now,

from (2.2a)-(2.2c) we obtain that

j Imsjl < aws(Xj , k<slaski Imkjl) + (1 - a)Ws(j<s l asjI) + 11-wsl + Ws(Yj>slasjI)

< aWs.ls + (1 -C)wS.ls + I1-wsI + Ws-U s
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= ws(ls + us) + I1 - Ws1

< 1,

where the second inequality follows from the inductive hypothesis (2.5) and the third inequality

follows from (2.4). Q.E.D.

Proposition 2 If A is irreducibly diagonally dominant, then, for any as [0,1) and any Q such
that

0 < w i < 2/(l+li+ui), i = 1,...,n, (2.6)

where strict inequality holds for at least one row i' such that li, + ui , < 1, the matrix M(a,9l) is block

irreducibly contractive.

Proof: It is straightforward to show (by using (2.6) and repeating the proof of Proposition 1) that

j, Imijl < 1, for all i, and strict inequality holds for i = i'. Now consider any Sc { 1,...,n} such that

mij = 0 for all is S, jo S (if no such S exists, then M(a,92) is irreducible and we are done). We will

show that there exists an se S such that Xj Imsjl < 1. [since the choice of S is arbitray, this shows

M(a,Q2) to be block irreducibly contractive.]

If i'E S, we can simply set s to i'. Otherwise, since A is irreducible, there must exist some

se S and some to S such that ast • 0 and mst = 0. We distinguish between two cases: (a) t < s and

(b) t > s. In case (a), we have from (2.2a) that

(aWs (-k<s ask mkt) (a - l)w s ast.

Hence, from (2.2a)-(2.2c) we obtain that

,jt Imsjl< aw- Ws(,jt Yk<slask Imkjl) + (1- a)Ws(j<sjtlasjl)+ I1-wsl + W s( j>slasjl)

< aws.ls + (1 - a)ws(ls - lastl) + I1-Wsl + Ws-Us

= ws(ls + Us) + 11 - wsl - (1 - a)ws lastl
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< 1 - (1 - a)ws lastl,

where the second inequality follows from the fact Xj Imkjl < 1 for all k and the last inequality

follows from the observation (cf. (2.6)) that ws(ls + us) + 11 - wsl < 1. In case (b), an analogous

argument using (2.2c) instead of (2.2a) yields

Xjl ImsjI < 1 - w s lastl.

Since as [0,1), we have j Imsjl < 1 in either case. Q.E.D.

We note that the conditions on a given by Proposition 2 is different from that given by Theorem 3 in

[Jam73] where it is assumed thate either a = 0 or as (1/2,1]. Does Proposition 2 still hold for a =

1? One suspects that it does, but more analysis is required. [Proposition 2 can be shown to hold

for a = 1 if mii 0 O for all i, which in turn can be shown to hold if w i < l/(l+li) for all i (see

argument below).]

Proposition 3 If A is irreducible and diagonally dominant, then, for any as [0,1] and any Q
such that

0 < wi < l/(l+ali), i= l,...,n, (2.7)

the matrix M(a,Q) either is block irreducibly contractive or is block irreducibly nonexpansive with
diagonal entries having positive real parts.

Proof: First note that 1/(l+ali) < 2/(l+li+ui); hence (2.7) implies that (2.6) holds. Then using

(2.6) and an argument identical to that in the proof of Proposition 2, we obtain that M(a,Q) is

nonexpansive and, if M(a,Q) is not irreducible, then it is block irreducibly contractive. Hence it

only remains to show that the diagonal entries of M(a,Q) have positive real parts. We have from

(2.2b) that



mii + awi (k<i aik mki) = 1-wi .

Hence

Re(mii) > 1 - w i - aw i (Xk<i laikllmkil)

1 - wi - aw i (Xkd laikl)

= 1 - wi(1 + ali) > 0,

where the second inequality follows from the fact that Imkil < 1 for all k, and the third inequality

follows from (2.7). Q.E.D.

[In practice, we can first choose any 0 < w i < 2/(l+li+ui), for all i; check if M(a,Q) is block

irreducibly contractive; and if not, decrease each wi to be below 1/(1 + lij).]
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