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Abstract

This paper considers the smoothing problem for 2-D random fields described by
stochastic nearest-neighbor models (NNMs). The class of 2-D estimation problems
that can be modeled in this way is quite large since NNMs arise whenever partial
differential equations are discretized with finite difference methods. The NNM
smoother is obtained by using a general smoothing technique developed in [1]-[3]
for boundary-value processes in one or several dimensions. In this approach, the
smoother is described by a Hamiltonian system of twice the dimension of the ori-
ginal system. For the problem considered here, the smoother is itself in NNM
form. By converting this 2-D NNM system into an equivalent 1-D two-point
boundary-value descriptor system (TPBVDS) of large dimension, a recursive and
stable solution technique is obtained. Under slightly restrictive assumptions, an
even faster procedure can be obtained by using the FFT with respect to one of
the space dimensions to convert the 1-D TPBVDS mentioned above into a set of
decoupled TPBVDSs of low-order which can be solved in parallel. This fast imple-
mentation of the smoother is illustrated by two examples, corresponding respec-
tively to the discretized Poisson and heat equations.
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1. Introduction

In two dimensions, a large class of physical processes can be described by

nearest neighbor models (NNMs). This is due to the fact when finite difference

methods are used to discretize linear 2-D partial differential equations of arbitrary

type (hyperbolic, parabolic or elliptic), and of any order, the resulting finite-

difference approximation can usually be expressed in the form of a vector NNM.

Thus, although the NNM dynamics appear at first sight to be inherently non-

causal, they can also be used to model 2-D space-time dynamics, which are causal

with respect to the time index, and noncausal with respect to space. On the basis

of these observations, it is not surprising that NNMs have been employed widely

to model 2-D stochastic images [4]-[6], and in particular to develop algorithms for

image retoration and enhancement, as well as for the control and estimation of

distributed parameter systems.

This paper is concerned with the development of efficient estimation algo-

rithms for 2-D random fields described by stochastic nearest-neighbor models over

a rectangular domain, when local boundary conditions, which include as special

cases periodic, Dirichlet and Neumann conditions, are imposed on the domain

boundaries. Since NNMs have an acausal structure, we shall focus our attention

on the NTNM smoothing problem, since this problem is also acausal, in the sense

that the measurements need not be produced according to a specific order in 2-D

space. Thus, both the class of 2-D estimation problems that we examine, and the

N1NMs that are used to formulate these problems are purely noncausal. This is in

contrast with early attempts at deriving 2-D estimation algorithms, which were

mimicking the structure of 1-D Kalman filters by introducing artificial 2-D causal-

ity concepts, such as quarter-plane or asymmetric half-plane causality (see the dis-

cussion appearing in Chapter 4 of [7]). On the other hand, since our goal is to

obtain efficient estimation procedures, the algorithms that will be developed for

the NNM smoothing problem will be recursive, and will be obtained by breaking

down noncausal processing steps into parts which are causal. However, since the

original problem is noncausal, there is in general a large amount of flexibility in

the choice of recursion directions for the algorithms that we propose, and causal-

ity appears here as a computational artifice, not as a modeling assumption.
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The approach that will be used here to formulate the NNM smoothing prob-

lem relies on the general results developed in [1]-[3] for the solution of estimation

problems for boundary-value stochastic processes. From a historical point of view,

1-D boundary-value systems and processes were first introduced by Krener [8]-[10]

in order to study the internal structure of acausal systems, and to formulate the

stochastic realization problem for nonMarkov processes such as reciprocal

processes. In [1]-[2], a general solution technique was developed for the estimation

of boundary value stochastic processes in one or several dimensions. This

approach is extremely general, and relies on the so-called method of complemen-

tary models introduced by Weinert and Desai [11] for the study of the smoothing

problem for 1-D causal systems. Specifically, it is shown that given an internal

model with appropriate boundary conditions for a boundary-value process, the

smoothed estimate satisfies a Hamiltonian system of twice the size, and therefore

of twice the order, of the original system. The reason why the size is doubled is

that it is is necessary to estimate not only the state of the internal model of

interest, but also the state of the complementary model. This approach was used

to study the smoothing problem for 1-D continuous boundary-value processes in

[3], and for boundary-value 1-D descriptor systems in [12]. Some rough results for

the 2-D NNM smoothing problem were presented in Chapter 6 of [1], and the

present paper is in fact an improved version of this earlier work. Subsequently,

the complementary model technique was also used by Riddle and Weinert i13]-[15]

to study the 2-D smoothing problem for the Helmholtz equation and for 2-D

hyperbolic systems. Together with the present paper, these contributions illustrate

the wide applicability of the boundary-value process smoothing solution proposed

in [1]-[2].

An interesting feature of the NINTI smoother is that it is itself in NNM form.

Thus, the class of NNM systems is closed under the smoothing operation. This

property is rather satisfactory, since it indicates that NNrMs are "natural" models

for the study of noncausal estimation problems. From a practical point of view,

since we seek to develop efficient estimation algorithms, this implies that it is

important to obtain efficient NTMVI solution techniques. The solution proposed in

this paper consists in solving the 2-D model in 1-D fashion by writing the 2-D
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NNM dynamics columnwise in the form of a 1-D boundary-value system of very

large dimension. This 1-D system has second-order dynamics, but can be rewritten

as a 1-D two-point boundary-value descriptor system (TPBVDS) of the type

examined in [16]-[19], for which a number of recursive solution techniques involv-

ing different concepts of causality can be employed. Under slightly more restrictive

conditions, this 1-D system can be decoupled into a family of low-order 1-D sub-

systems by an FFT-based transformation. This decoupling technique is an exten-

sion of a method used by Hockney [20] to obtain fast Poisson solvers, and later

applied by Jain and Angel [21] to a 2-D estimation problem.

This paper is organized as follows. In Section 2, we describe 2-D NNMs, as

well as the local boundary conditions which are used to specify the solution of

these models. These conditions include as special cases periodic, Dirichlet and Neu-

mann boundary conditions. The transformation of a 2-D NNM into a 1-D

TPBVDS is discussed in Section 3, and a general solution technique is obtained

for the transformed system. The FFT solver is presented in Section 4 for the case

where the NNM satisfies either periodic boundary conditions, or has vertically

symmetric dynamics with Dirichlet or Neumann conditions. The smoothing prob-

lem for stochastic 2-D NNMs is formulated in Section 5, and the Hamiltonian sys-

tem satisfied by the smoothed estimate is described and shown to be in NNM

form. Section 6 discusses two examples of 2-D NNM smoothers, corresponding

respectively to the discretized 2-D Poisson and heat equations. It turns out that

the FFT decoupling technique of Section 4 is applicable to both of these examples.

Finally, Section 7 contains several concluding remarks.

2. 2-D Nearest-Neighbor Models

The 2-D nearest-neighbor models (NNI.'Ms) that will be considered in this

paper are of the form

xi,j =A 1 x 1il-J + A 2 Xi+ 1, j + A3xij_1 + A 4zi,j+1 + Bu1i i (2.1)

zi i = CXi,i , (2.2)

where the state x, input u, and output z are vectors of dimension n, m, and p

respectively, and Ak with 1 < k < 4, B. and C are matrices of corresponding



dimensions. Equation (2.1) indicates that the state at point (i,j) is specified by

uj1 , and by the states at points immediately to the left, to the right, above and

below point (i,j). This explains why (2.1) is called a nearest neighbor model.

Models such as (2.1)-(2.2) arise naturally from the discretization of 2-D par-

tial differential equations with finite difference methods, as can be seen from the

following examples.

Examples: NNM form of finite-difference discretizations of PDEs. For each of the

2-D examples discussed below, the continuous space variables are denoted as t

and s, and the corresponding discretized variables are i and j, respectively.

Furthermore, except for the heat equation, it is assumed that the same mesh size

h is used to discretize t and s.

a) Poisson equation: The discretized form of

V 2x(t,s) = u (t ,s) (2.3)

is given by

1 h 2

iJ = -(xi 1-,j + xi+l,j + xi'j-1 + xi,J+ 1)- TUij (2.4)

which is exactly in the form (2.1).

b) Heat equation: Let

ax(t,s) = ca x(t,s) + u(t,s) (2.5)

where ca > 0. Then, if t and s are discretized with mesh sizes h and k, i.e.,

t = ih and s = jk, and if backwards and central difference schemes [22] are used

respectively to discretize 3x/at and 2zx/9s2 , we obtain

mxi, j = xi_ 1 ,j + n(z,j_1 + Zij + 1) + bui j (2.6)

where m = 1 + 2ceh/k 2 , n = cah/k 2 and b = h. This model is almost in NNM

form. It can be rewritten in NNM form by dividing by m >0, which gives

xi, = m- 1 xl -- + m-l1 n(xij_-1 + zij 1) + m-lbuij . (2.7)

Note however that, from a practical point of view, there is no difference between

(2.6) and (2.7). These two models correspond to an implicit discretization of the
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heat eqauation (2.5), where to compute zix for increasing values of i, it is neces-

sary for each value of i to solve a linear system of equations for the coupled vari-

ables xzi , where j varies over all index values. It is shown in [22], p. 69 that this

discretization scheme is unconditionally stable, i.e., it is stable for all choices of

mesh sizes h and k The motivation for selecting different meshes h and k to

discretize t and s is that, to approximate the first order derivative of x with

respect to t and the second order derivative with respect to s with the same

degree of accuracy, one must have h = O(k 2 ).

c) Biharmonic equation: Vector NNMs can arise in a variety of ways. One of them

is of course from the discretization of higher-order PDEs, such as

V 4 z(t,s) = u(t,s) . (2.8)

This equation can be decomposed as

V 2X(t,s) = ~(t,s) , V2(t,s)= u,(t,s) . (2.9)

Then, using the discretization (2.4) of the Laplacian, and denoting

Xi ~ Ii,jxji= i

we obtain

4 (Xi- + + + X - + X,j+1 ) + h i (2.10)

which after inversion of the matrix multiplying Xi j, is in NNM! form.

d) Poisson equation with a crossover term: Vector NNMs can also arise if higher-

order chemes are used to discretize second-order PDEs. Sometimes the use of a

higher-order scheme is dictated by the structure of the PDE itself. Consider for

example

f 2 1 a ]z (ts) = u(t,s), (2.11)
wt 2 as2 atas 

which is elliptic, provided that parameter a is such that Ia < 2. Then, when a
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first-order finite-difference discretization scheme is used to approximate the above

equation, we obtain the following 9-point stencil model

Xij =i (Xi-l j + xi' 1 + Xij-1 + Xij+l)

a h2
+'Z6- (Xi-ij-i + Xi+i,j+I - Xi-I,j+1 - Xi+I,j-I) - Ait/ (2.12)16 4 ' (2.12)

where xii, depends not only on its four nearest neighbors, but also on values of z

at the four corners (i-1,j-1), (i+l,j+1), (i-l,j+l), and (i+1,j-1). It can be

transformed to NNM form by state augmentation. Thus, if

ti,j-1

Xi,j+l

the model (2.12) can be rewritten as

00 0 0 0 0

xa 1 a + a 1 a Xa
Xi'J = 16 4 16 Xi-l16 4 16 4 X

0 0 0 0 0 0

010 00 0 0
1 1 h 2

+ 0 o 0 Xjij- 1 + o O0 Xi,j + , (2.13)
4 4 4

00 0 010 0

which is now in NNM form. Note that even though the second-order PDE (2.11) is

scalar, the state Xi,* has dimension 3. This is due to the presence of the crossover

term a a 2x(t,s )/it as in (2.11).

For simplicity, it will be assumed below that model (2.1) is defined over the

rectangular domain 1 < i < I-1, 1 < j < J-1. Then, in addition to model

(2.1), some boundary conditions need to be specified. What constitutes a proper set

of boundary conditions depends on the exact type of the partial difference opera-

tor (2.1) or the underlying PDE from which it comes from. For example, if this

operator is elliptic (noncausal), initial-value problems are ill-posed. A general
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framework for specifying boundary conditions, which can accomodate operators of

all types, and which can be used to model a wide class of PDE boundary condi-

tions, consists in assuming that the boundary conditions on the edges of the rec-

tangle 0 < i < I, 0 < j < J are local in the sense that they involve only neigh-

boring points along the boundary, but where some coupling is allowed between

points on opposite sides of the rectangle. This last feature will enable us to model

periodic PDE boundary conditions. We consider therefore the following NNM

boundary conditions.

Horizontal conditions:

VL XO, + WL X,i + VR I,j + WRI.-l,j = dH,j (2.14a)

with O < j < J.

Vertical conditions:

VBxji,O + WBZi, + VTxi,J + WTZi,J-1 = dv,i (2.14b)

with 1 < i < I-1.

In (2.14a) and (2.14b), it is assumed that the boundary matrices VE and WE,

with E = L, R, B, T have size 2nXn. Thus, in conjunction with NNM model

(2.1), the horizontal boundary conditions (2.14a) provide enough constraints to

specify the states xo,i and xh i with 0 < j < J on the left and right edges of the

rectangle Q = [O,I]X[O,J]. Similarly, the vertical conditions (2.14b) introduce

sufficiently many constraints to enable the specification of xi o and xi,j with

1 < i < I-1 on the bottom and top edges of Q. Note that there is a slight asym-

metry in the above specification, in the sense that the horizontal boundary condi-

tion (2.14a) holds for j = 0, J, which has the effect of adding enough constraints

to specify the corner states oz0,, xoJ, zxI and XIJ. However, this is clearly an

arbitrary convention, and we can just as well use the vertical condition (2.14b) to

specify the corner states.

The conditions (2.14) are local since they involve only pairs of points located

on opposite sides of the rectangle Q. Specifically, the horizontal condition (2.14a)

couples points (O,j), (1,j) located along the left edge of A with points (I,j) and

(I-1,j) on the right edge, where all these points have the same row index j.3 3.r r



Similarly, the vertical condition (2.14b) couples two pairs of points along the bot-

tom and top edges of rectangle 2, respectively, and with the same column index i.

The motivation for coupling points located on opposite edges of 2, is that we

want to be able impose periodic boundary conditions, which would have the effect

of identifying the left and right edges, or the bottom and top edges of rectangle f.

For example, if the horizontal condition (2.14a) takes the form

Xo,i = xil,j , Xl,j = xj for 0 < j < J, (2.15)

the NTNM system (2.1) can be viewed as being defined over a discretized cylinder

with index set Qtc = [1,I-1]X[O,J]. Then, after imposing periodic horizontal con-

ditions, if we select also periodic vertical boundary conditions, i.e.,

Xi,o = Xi,J- , Xi,l = i,J for 1<i < I-1, (2.16)

the N71NM is now defined over a discretized torus, with index set

2 T = [1,I-1]X[1,J-1].

Another interesting subclass of boundary conditions (2.14) corresponds to the

case when the boundary conditions on the left and right, and bottom and top

edges of Q2 are separable , in the sense that independent boundary conditions are

specified on each edge of Q. In this case, the boundary conditions (2.14) take the

form

VL ZO,j + WL xl,j = dL, j 0 < j < J (2.17a)

VR Xij + WR I _ , j = dR, j O 0I < J (2.17b)

VBXi,O + WBXi,1 = dB, i 1 i < I-1 (2.17c)

VTzi,J + WTXi-1,J = dT,i 1 < i <I-1 , (2.17d)

where the boundary matrices rVE and WI4 with E = L, R, B, T have size nXn.

Boundary conditions of this type arise extremely frequently in the study of PDEs,

and in particular can be used to model Dirichlet or Neumann boundary condi-

tions, as is shown by considering several examples.

Examples: Boundary conditions for discretized PDEs in NNM form. The PDEs

considered in the following examples are assumed to be defined over the rectangle

[O,T]XO,.Si, where if h and k are the mesh sizes used to discretize the continuous
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variables t and s, we have T = Ih and S = Jk. Also, as for the PDE discretiza-

tion examples considered earlier in this section, it will be assumed that h = k,

except for the discretization of the heat equation.

a) Consider the Poisson equation (2.3) with the mixed boundary conditions

-m L -T-x(Os) + nL(Os) = dL(s) (2.18a)

mR -- x(Ts ) -] nR x(T,s ) = dR(s) (2.18b)

-mB -s-(t,O) + nBx(t,O) = dB(t) (2.18c)

mT -x(t,S) += T.X(t,S) =dR(t) . (2.18d)

These boundary conditions reduce to Dirichlet conditions when mE = 0 and
n = 1 for E = L, R, B, T, and to Neumann conditions when mE =1 and
nE = 0 for all values of index E. Then, a straightforward discretization yields

VE = mE + nEh , WE =-mE (2.19)

for E = L, R, B, T, and the boundary vectors appearing in (2.17) are given by

dE, 1 = hdE(lh), where the index I varies over [0,J] for E = L, R, and over [0,I]
for E = B, T.

b) Consider now the heat equation (2.5) with initial condition

z(O,s) = f (s) (2.20a)

and boundary conditions

X(t,0) = g(t) , Z(t,S) = gT(t) . (2.20b)

After discretization, we find

VE =1 , WE =0 for E =L, B, T (2.21a)

and

dL, = (jk) , dB, = sgB(h) , dTs = gT(ih). (2.21b)

However, in the above formulation. no boundary condition is specified on the
right edge of !. This is unsatisfactory. since the N.NI formulation of this paper



requires absolutely that there should be as many constraints as there are variables

to be computed. The trick here is to note that since the discretized equation (2.6)

is causal with respect to time, which is represented by index i, the variables xij

for i < I-1 do not depend on the values for i = I, which can therefore be

assigned arbitrarily, so that the boundary condition on the right edge is given by

zI,j = dRj 0 < J, (2.21c)

where dR,j is arbitrary.

c) Examine the Poisson equation (2.11) with a crossover term, and with Dirichlet

boundary conditions obtained by setting mE = 0 and nE = 1 in (2.18). Then, a

simple discretization of these conditions is not sufficient to specify the NNIN4 boun-

dary conditions, since as was observed above, we must consider the vector NNM

system (2.13). Furthermore, due to the state augmentation procedure used to con-

struct Xi,i, if the scalar discretized PDE (2.12) is defined over the domain

[O,I]X[O,J], the domain of definition of NNM (2.13) is only [0,I]X[1,J-1]. Over

this domain, the discretized Dirichlet boundary conditions for the scalar equation

can be rewritten in the NNM form (2.17) as

dL ((j-l)h ) dR ((j--1)h)

Xo,j= dL(jh) i, = dR (jh) (2.22a)

dL ((j +l)h ) d((]jl)h)

O O O dB(ih)

Xi,1 + -1 0 0 Xi, 2 = 0 (2.22b)
0 -- 1 0 0

0 -1 0 o
Xi,J-_1 O O -- 1 Xi,J- 2 O 0 (2.22c)

LO 0 0 J LdT(ih)

3. Solution of Boundary Value Nearest Neighbor Models

In this section, we describe a method for computing the solution of the

boundary-value problem specified by the NNMII dynamics (2.1) and boundary con-

ditions (2.14). The method that we employ relies on a column stacking operation.



- 12 -

whereby the variables xi , along the ith column of the rectangular domain Q are

combined to form a large state vector x i . This procedure is used in Section 3.1 to

transform the 2-D NNM dynamics, as well as the boundary and corner conditions,

into an equivalent 1-D two-point boundary value system of very large size with

second order dynamics. Since the well-posedness of this system is equivalent to

that of the original NNM, by writing the equations describing this 1-D system as

a single matrix equation, a well-posedness test is obtained for the NNM specified

by (2.1) and (2.14). Then, in Section 3.2 the 1-D dynamical system of Section 3.1

is formulated as a 1-D two-point boundary value descriptor system (TPBVDS). A

complete study of the properties of these systems and of their solution is

presented in [16]-[19]. These results are used to obtain a well-posedness test for

NNM (2.1), (2.14) which is simpler than the one obtained in Section 3.1. Then, by

using a TPBVDS solution technique proposed in [17], Appendix B and [12], a

recursive procedure is obtained for solving NNM models. It relies on decoupling

the TPBVDS dynamics into forward and backward stable filters with zero initial

and final conditions, respectively. The true boundary conditions are then taken

into account by adding a correction term to the solution obtained for zero boun-

dary conditions. This solution can be viewed as an extension in a more general

setting of the Mayne-Fraser [23]-[24] two-filter formula for the smoother associ-

ated with a 1-D discrete causal system.

3.1. Column Stacking and Well Posedness

As indicated above, the first step of our solution is to perform a column-

stacking operation, where the state, input and output vectors along the i th

column of rectangle 0 = [O,I]X[O,J] are represented by

il ,0

Zi,1 tti,1

x i - | | , u i = | (3.la)

xi ,J-1 LUiJ-1

zi, 

and
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zi,o

%/,1

Zi = . (3.lb)

ZiJ-1

Zi,J

Here xi, ui, and z i have dimensions n(J+1), m(J-1), and p(J+1), respectively.

Note that x i and z i have two more block entries than ui, since xij and zi ij are
defined on the edges of the rectangular domain Q, whereas ui j is only defined in

the interior. Then, by combining the NNM relations (2.1) for a fixed value of i

and 1 < j < J-1 with the vertical boundary conditions (2.14b) for the same
value of i, we obtain the 1-D dynamics

·d+xi+ + xi + ¢-xi-_l = n i 1 < i < I-1 (3.2)

Z i = (I®)C)xi (3.3)

where 0 denotes the Kronecker product of two matrices [25], with

VB WB WT VT

-A 3 I -A 4 0

-A 3 I -A 4
)0o = (3.4a)

0
-A 3 I -A 4

0 0

-A 2 0 -A 0

+= -- A 2 _ = -A (3.4b)

-A) 0 -A 1
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and

dv,i

[n dv, I )u (3.4c)

Since the boundary matrices VB, VT, WB, and WT have size 2n Xn, it is easy to

check that the matrices 4 I with I = 0, -, + are square and have dimension

n (J+1). The relation (3.2) defines therefore a 1-D system with second-order

dynamics evolving over interval [O,I] and driven by inputs n i which are expressed

in terms of inputs uij of the NNTM and of the boundary vector dr,i associated to

the vertical conditions on the bottom and top edges of rectangle 7Q.

By considering also the horizontal NNM boundary condition (2.14a) on the

left and right edges of Q2, we obtain the boundary condition

rLx0 + ALXl + rRXJ + AxJ_1 = dH (3.5)

for system (3.2), where

rL = I VL , rR = IVR (3.6a)

AL = IOWL , A R = I(WR (3.6b)

and

dH,o

dH,l

dH = (3.6c)

d,J-1

dH,J

Noting again that the boundary matrices VL, VR, and WL, WT have size

2nXn, it is easy to check that FL, FR, AL and AR have size 2(J+l)nX(J+l)n,

and that vector dH has dimension 2(J+l)n. Thus, the boundary conditions (3.5)

and dynamics (3.2) define a boundary value system over [0,11, where the number

of constraints imposed by (3.2) and (3.5) equals the total number of variables that

need to be computed, namely vectors x i for 0 < i < I. One possible method of

solving this system consists in combining all the equations that define it into a
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single matrix equation of very large dimension of the form

Xo I dH

xi

X2 2
Z ~~~~~. = , ~~(3.7)

xI-j

where

rL AL - R rR

i-_ 0o m+ O
4)_ 4)0 as

(3.8)

0

is a matrix of size (I+1)(J+1)n. Then, the 1-D boundary value system (3.2), (3.5)

is well posed over interval [0,I], i.e., there exists a unique solution x i with

0 < i < I for all possible choices of inputs n i and boundary vector dH, if and

only if S is invertible. Since system (3.2), (3.5) was obtained from the original

1'NM by column stacking, the invertibility of E is therefore a necessary and

sufficient condition for the well-posedness of the NTNM (2.1), (2.14). By using an

argument similar to the one appearing in Theorem 1 of [ ], it is also easy to check

that the invertibility of S implies that the second-order dynamics (3.2) must be

regular, i.e., the determinant of the polynomial matrix

4)(z) = 4)+z2 + 4)oZ + t_ (3.9)

is not identically zero for all z.

In practice, the matrix S has such a huge dimension that it is not possible

nor desirable to invert it directly. In the special case when E is obtained by discre-

tizing an elliptic PDE. iterative inversion methods, such as the successive
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overrelaxation (SOR), preconditioned conjugate gradient, or multigrid methods

can be employed. However, these solutions are limited in scope, and the solution

technique that will be described here is totally general, i.e., it applies to finite

difference NNM operators of all types. On the other hand, this solution technique

is usually not as efficient as the above mentioned methods for solving elliptic

PDEs.

3.2. Stable Two-Filter Solution

The solution that we propose relies on transforming the 1-D dynamics (3.2)

in such a way that stable forwards and backwards recursions can be used to com-

pute x i . In some sense, this method falls within the class of stable marching

metods [27]-[29]. Marching methods were originally developed when it was realized

that, by column stacking, noncausal 2-D models such as (2.1) could be

transformed into 1-D dynamical systems such as (3.2). Then, in the special case

when 4)+ is invertible, (3.2) can be expressed as

Xi+ 1 =-- --- [xx + 4 )c_xi_ - nij , (3.10)

which is now a causal system that can be used to compute x i recursively, pro-

vided that the boundary condition (3.5) is properly taken into account. In addi-

tion to requiring that either 4)+ or b_ should be invertible, one major drawback

of this approach is that there is no guarantee that the causal system (3.10) is

stable. An important criticism of marching methods, at least in this simplistic

form, has therefore been that they are numerically unstable, and are not appropri-

ate for solving NNMsrs on large lattices. The solution which is presented here can

be viewed as a stabilized marching method, where instead of attempting to pro-

pagate the whole system (3.2) in the forwards (or backwards) direction, we break

it into smaller parts which are stable when propagated in the forwards and back-

wards direction, respectively.

However, instead of considering directly the second-order system (3.2), we

transform it into a two-point boundary value descriptor system (TPBVDS) of the

type examined by Nikoukhah, "Willsky and Levy [16j-[19]. To do so, consider the

augmented state
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x i - 1

qi xi (3.11)

Then, the dynamics (3.2)-(3.3) and boundary condition (3.5) can be expressed as

Eq+l = Fqi + Gn i 1 < i < I (3.12)

z i = Hqi (3.13)

and

ULql + URqI -= dH , (3.14)

where

E =LI 0 F- o I] (3.15a)

G = O H =[ o IC ](3.15b)

UL [AL rL , UR [ R A ] - (3.15c)

The relations (3.12)-(3.15) define a TPBVDS over interval [1,I]. This system has

first-order dynamics, and it is easy to check that

!zE -F = ¢(z) ! , (3.16)

where 4 >(z) is the second-order matrix polynomial defined in (3.9), so that no new

dynamics have been introduced by going from (3.2) to (3.12). Owing to the simple

nature of the augmentation procedure (3.11), we can also conclude that the

TPBVDS (3.12)-(3.15) is well-posed over the interval [1,I] if and only if the

second-order system (3.2) with boundary condition (3.5) is well posed over [0,I],

which in turn was shown to be equivalent to the well-posedness of the original

NNM system. But it was shown in [17] that an arbitrary TPBVDS of the form

(3.12), (3.14) is well-posed if and only if the matrix

S = ULE I - 1 + UR FI- (3.17)

is invertible. The invertibility of S in (3.17) can therefore be used to characterize

the well-posedness of the NINM (2.1), (2.14). Since the size of this matrix is "only"
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2(J+1)n, the invertibility of S is much easier to test than that of the matrix E

which was used to characterize NNM well-posedness in Section 3.1.

At this point, the NNM problem has been reduced to the solution of a

TPBVDS over a finite interval. Several solution techniques for TPBVDSs have

been proposed in [17], Appendix B and [12]. As was mentioned above, the solution

which is described here relies on breaking the descriptor dynamics (3.12) into

smaller parts which are causal and stable in the forwards and backwards direc-

tions, respectively. Specifically, since the NNM that we consider is assumed to be

well-posed, the matrix pencil zE -F is regular, and according to Weierstrass's

canonical decomposition of a regular pencil [30], there exists some invertible

matrices M and T such that

zI-Ff ]
M(zE - F)T = zF b - I (3.18)

where the eigenvalues of matrices Ff and Fb have magnitude less or equal to 1.

Furthermore, if IzE - F I has no zero on the unit circle, then all the eigenvalues

of Ff and Fb are strictly inside the unit circle. Then, if

MB = Bb ' (3.19)

the transformed state variables

Eqf, i Tq= (3.20)
qbi

satisfy the forwards and backwards recursions

qf,i+1 = Ff qfi + Bf ni (3.21a)

qb,i = Fbqb,i. 1 - Bbni (3.21b)

These recursions are asymptotically stable if zE - F has no zero on the unit cir-

cle. Under the transformation (3.20), the boundary condition (3.14) takes the form

[ULJ r Llb ][ Qb 1 J + L[ uR b ][ = dH (3.22)ULJf U",b L -q ~ URJ UR ,b qb,l



where

[ UL,f ULb = UL T , [ URf UR,b ] =UR T (3.23)

Note that although the forwards and backwards dynamics (3.21a) and

(3.21b) for qf and qb are decoupled, the boundary conditions remain coupled, so

that qf and qb cannot be computed separately. Let q i and q i be the solutions

of (3.21a) and (3.21b) with zero initial and final conditions, respectively. Then

qf = F-lqf , + qO, (3.24a)

qbi = FI-qbI + q (3.24b)
i. b~i -· b qb~i -~ b,i

Substituting (3.24) inside (3.22), and solving for qf , and qb,I gives

qf[ = K-(dH - UR f f , - UL,bqb,1 ) (3.25)

where

K = [ UL f + UR FF' UR,b + UL,F ] (3.26)

Finally, substituting (3.25) inside (3.24), we find

qi - ] 0 F - i K-l(q - UR ' f q? - UL,bq),l) + q . (3.27)

The solution in the original basis can then be obtained by inverting (3.20).

From a practical point of view, the solution technique described above con-

sists in propagating the forwards and backwards filters (3.21a) and (3.21b) for

qf i and qb i, and then combining the resulting values with boundary condition

(3.22) to obtain qf3 and qb,i via (3.27). The most computationally demanding

part of this algorithm is the computation of q0 and q0.

The above TPBVDS solution is similar to the Mayne-Fraser [23], [24] two-

filter formula for the 1-D fixed-interval smoothing problem. At first sight, there

seems to be little relation between the fixed-interval smoothing problem for

discrete-time causal systems and the solution of TPBVrDSs, but it turns out that
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the 1-D discrete-time smoother can be expressed as a TPBVDS (see [1], Section

5.3), which expains why the same solution technique can be used for these two

problems.

The TPBVDS solution described here is not the only one that can be

developed. In [17] an alternative solution method is proposed which relies on

recursions propagating inwards and outwards with respect to the center of the

interval where the TPBVDS is defined. This choice is a manifestation of the fact

that since causality appears here only as a computational device, we are not res-

tricted to process the 2-D NINM data in any particular order.

4. Efficient FFT Solver

One drawback of the NNM solution described in Section 3 is that the vectors

x i obtained by column stacking have very large size. The matrices E and F

appearing in the TPBVDS (3.12)-(3.15) have size 2(J+1)n, and therefore the

matrices Ff and Fb obtained by pencil decomposition have a very large dimen-

sion. In addition, even if E and F are sparse, there is no guarantee that Ff and

Fb will also be sparse, so that the forwards and backwards recursions (3.21)

require in general a large amont of computation. In this section, we consider

several special cases where some additional structure is present, which can be

expoited to obtain fast NNM solvers. Specifically, in Section 4.1, we consider the

case where the NNTM is defined over a discretized cylinder, and in Section 4.2, it is

assumed that the NNM dynamics (2.1) satisfy the symmetry condition A 3 = A 4,

and that the boundary conditions on the bottom and top edges are either (i) Diri-

chlet or (ii) Neumann conditions. For all these cases, it turns out that the FFT, or

the discrete sine or cosine transforms (DST, DCT) can be used to transform the

high-order TPBVDS obtained in Section 3.2 into decoupled low-order 1-D

TPBVDSs which can be solved in parallel . Since fast algorithms can be used to

implement the FFT, DST and DCT and their inverses, this solution technique is

very efficient. It is worth noting that the use of the FFT was first proposed by

Hockney 120] to obtain a fast Poisson solver. Later Jain and Angel [21] (see also

[31]) also employed the FFT to obtain an efficient solution for a 2-D estimation

problem expressed in terms of the Poisson equation. The INtNMIM solution described
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here can be viewed as an extension of these earlier results.

4.1. NNM Over a Discretized Cylinder

In the first case, it is assumed that the vertical boundary conditions (2.14a)

are periodic, i.e.,

Xi o=- i,J-1 , Xi,l = Zi,J for 1 < i < I-1, (4.1)

in which case the domain Q corresponds to a discretized cylinder. Then, it is easy

to check that the components zi o and xiJ need not be included in the stacked

vector xi, whose dimension is therefore only n(J-1), and in equation (3.2), we

can identify

4, = II - Z:T0A - Z O®A 4 (4.2a)

_ = -- I)A 1 , + = -- I)A 2 , n i = (I()B)u i , (4.2b)

where Zc is the (J-1)X(J-1) circular shift matrix

0 1

0 1 0
0.

ZC = 0 I 1 , (4.3)

The special structure of the 1-D system specified by (3.2), (3.5) (3.6) and (4.2)

can be exploited by performing a state transformation on x i which decouples this

system into J-1 subsystems of dimension n. To do so, let D be the

(J-1)X(J--1) discrete Fourier transform (DFT) matrix with entries

d , 1 ~-~)(J-~) 1 < I j < J-1 (4.4a)4,ji • (4.4a)

where

-;,: == e - i2 /!(J - ) .¢(4.4b)
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The matrix D has the property that it is unitary, i.e., DD t = D11 D = I,

and it diagonalizes Zc, so that

Z, =DADH with A = diag({w'- }. (4.5)

Then, consider the state transformation

1i,1

(DH®I)xi = i = i,j, (4.6a)

where the new state vector (i is partitioned into subvectors (ij of size n. Simi-

larly, let

(D H I)u i = vi , (D H I)dH = 6, (4.6b)

where v i and S are also partitioned into into vector entries vi j and 6j. Using the

transformation (4.6), and taking into account (4.2), (4.5), as well as the Kronecker

product identities

(A B )(C D ) = A C BD , (A B)-1 = A-1OB-1, (4.7)

the 1-D system (3.2), (3.5) is transformed into J-1 decoupled subsystems of the

form

(I--o-(J-1)A 3-- ~J-A 4)i'jA = A l i-lij + A 2 , j + B Vj (4.8)

where 1 < j _< J-1, and with boundary conditions

VL 0+ W,j L + WRL I,j + ( ,1 + I-,j = Jj (4.9)

The dynamics (4.8) and boundary conditions (4.9) have exactly the same

structure as (3.2), (3.5) and consequently, by state augmentation each of the

above subsystems can be written in TPBVDS form as
-A , I ' :-(j-1)A -'A , ]l-A [J)

2-A 4 ~iil 0 A1 '][t~£j ]· [~B zi~if34

I

with
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[ WL VL J 0 1 + VR WR [ 'I1j J (4.11)

The stable two-filter solution technique described in Section 3.2 can then be used

to solve each of these individual TPBVDSs. The advantage of this approach over

the general procedure of Section 3 is that the the decoupled TPBVDSs (4.10)-

(4.11) have size 2n, whereas TPBVDS (3.12)-(3.15) has dimension 2(J+1)n. Thus,

the number of operations required to solve the above TPBVDSs over interval [1,I]

is 0 (IJ), whereas the complexity of the algorithm presented in Section 3 is

O (IJ2 ). In fact, the most computationally demanding step of the fast NNIM solver

described above is not the solution of the TPBVDSs (4.10)-(4.11). It is the imple-

mentation of the transformations (4.6b) which relate the original inputs and

boundary vectors to their transformed counterparts, and of the inverse transfor-

mation

Xi = (D(gl) i ') (4.12)

which relates the solution of the decoupled TPBVDSs to the original coordinate

system. Because of its Kronecker product form, the transform (4.12) consists in n

decoupled FFTs of length J-1, represented here by D. the number of operations

required by (4.12) is therefore 0 (JlogJ), and since this transformation, as well as

transformations (4.6b) must be performed for every value of i, the complexity of

the fast N NITM solver described above is 0 (IJlogJ).

4.2. Vertically Symmetric NNMs

NN.Ms which are defined over a discretized cylinder are not the only ones that

give rise to fast solvers. When the NNM dynamics (2.1) have the vertical sym-

metry A 3 = A 4 (which is the case for example for the Poisson and heat equations,

as well as the biharmonic equation described in Section 2), and when the boun-

dary conditions on the bottom and top edges are of Dirichlet or Neumann type, it

is possible to obtain fast solvers.

We consider first the case of Dirichlet conditions. In this case, we have

Zi.o = de i , ziJ = dT. (4.13)

~~-----------~ ~ ~ ~~XI- =dBi T
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so that it is not necessary to include xi,o and xiJj in the stacked vector x i intro-

duced in (3.1a). This vector has therefore dimension n(J-1). With this observa-

tion, the dynamics (3.2) take the form

-II-017JoA 3 4_ = -J3A , I 4 =-]I,®A2 (4.14a)

A 3d ,i

0

n i = (I(RB)ui + , (4.14b)

0

A 3dT,i

with

n = z + ZT, (4.15a)

where Z denotes here the (J-1)X(J-1) truncated shift matrix

0 1

0 I 0
Z=" . (4.15b)

0 0 1
0

Then, let S be the (J-1)X(J-1) discrete sine transform (DST) matrix with

entries

2 .s 

,sl =( J)"sin(jIJ < 1 < ,j< J-1. (4.16)

The matrix S is symmetric and orthonormal, i.e., S = ST and S2 = I, and it

diagonalizes HI, so that

SIIST = A = diag{X}j , (4.17)

where Xj = 2cos(jr;/J) with 1 < j < J-1. Thus, if we replace DH by S in the

state transformation (4.6a) and definition (4.6b) of 6, and if

I-~ ~ ~ ~ ~ ~ , ---~- {qQAn {4 a
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where n i is given by (4.14b), the 1-D system (3.2), (3.5) whose dynamics and

boundary matrices are specified respectively by (4.14a) and (3.6) can be decom-

posed into J-1 decoupled subsystems of the form

(I - XjA3)Xij = A i -i, j + A 2~i+1,j + vi, j (4.19a)

with boundary conditions

VL o,jI + WL l,jI + VR I, i + WR II = 1 ,a (4.19b)

where 1 < j < J-1. These subsystems can be written in TPBVDS form and

solved in parallel. Furthermore, the FFT can be used to implement the discrete

sine transform S, so that the complexity of the resulting fast NNTM solver is

identical to that of Section 4.1, i.e., it is equal to O (IJlogJ).

Consider now the case where the NNM is such that A 3 = A 4, but where the

boundary conditions on the bottom and top edges are now Neumann conditions,

i.e.,

i, 0- Xi 1 = dB,i , i,J - xi,J_1 = d, (4.20)

for 1 < i < I-1. In this case, the expressions (4.14) for the 1-D dynamics remain

unchanged, except that the matrix HI appearing in these expressions is now defined

as

1 1
1 0 1

1 00

n = Z + ZT + diag{1, 0, ... , 0, 1 . . . (4.21)

0 . . 1
0 1

I 1

In order to diagonalize Hl, we can use the (J-1)X(J-1) discrete cosine transform

(DCT) matrix K whose entries are

for j =1

= 2 (4.22)
| cos !I )(j-1/r) JW 'for 2 < j < J-1

J--1 --- J
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with 1 < 1 < J-1. The matrix K is orthonormal, i.e., KKT = KTK = I, and it

diagonalizes II, so that

KT nK = A = diag(Xj (4.23a)

with

xj = 2cos[(j-1) 1 1 J < J-1 (4.23b)

Consequently, if K plays the same role as D and S in the state, input and boun-

dary vector transformations considered earlier in this section, the 1-D system

(3.2), (3.5) with dynamics and boundary matrices given by (4.14) and (3.6) is

transformed into J-1 decoupled subsystems specified by (4.19), where the only

difference is that the eigenvalues Xj appearing in these systems are now given by

(4.23b). These subsystems can be solved in parallel, and since the FFT can also be

used to implement the DCT, the complexity of the resulting algorithm is

O (IJlogJ).

5. NNM Smoother

In this section we examine the smoothing problem for 2-D random fields

described by a N7NM driven by white Gaussian noise. Note that since NNMs are

intrinsically acausal, the only linear estimation problem that preserves the

acausality of the system formulation is the smoothing problem. Given noisy NNM

observations over the rectangle Q2, the general appproach developed in [1]-[2] for

estimating boundary value processes is used to show that the smoother dynamics

and boundary conditions are themselves in the form of a NTNM of twice the size of

the original NNM. Thus the class of NNMs, unlike say the class of 1-D causal sys-

tems, is closed under the smoothing operation. A consequence of this observation

is of course that the two-filter solution techniques described in Section 3 and 4 can

be used to compute the NNM smoothed estimate. Since the smoother for boun-

dary value processes derived in [1]-[2] is expressed in operator form, we first obtain

in Section 5.1 an operator characterization of the \TNNM smoother. The Green's

identity for NNT\.Ms is then used in Section 5.2 to convert this operator description

into equivalent "NiM~ dynamics and boundary conditions for the smoother.
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5.1. Operator Characterization of the NNM Smoother

The NNM smoothing problem can be described as follows. First, assume that

the input sequence ui,j driving the NNM (2.1) is a zero-mean white Gaussian

noise sequence defined over the interior Q = [1,I-1lX[1,J-1] of rectangle Q, and

with intensity

E[u-ijuk'lj = Q&ikSjl . (5.1)

The boundary vectors dH,j and dv i appearing in boundary conditions (2.14) are

also assumed to be zero-mean white Gaussian noise sequences which are mutually

uncorrelated and uncorrelated with the noise ui j, and with intensities

E [dHj dT,] = nI~,E [dv,idT,k] = nv ik (5.2)

Then, the state xioj Of NNM (2.1) is a zero-mean 2-D Gaussian random field,

and we are given some noisy observations

Yi,j = Czi,j + ri,j (i,j) E 2 (5.3)

of this field over the interior domain Q2. Here rij is a zero-mean white Gaussian

noise sequence uncorrelated with the driving noise ui j and the boundary and

corner vectors, and with intensity

[ri j rkT ] = R i,k I , (5.4)

where R > 0. In addition to the above interior measurements, we may also be

given some boundary measurements which have a structure to the boundary and

corner conditions described in Section 2, i.e.,

YH,j = HL xoj + GL X1,j + HR xI,j + GCR I-,jI + rH,j (5.5a)

Yv,i = HBxi,o + GB ilX + HT i,J + GTxi,J-1 + rVi . (5.5b)

In the above measurements, rH,j and rVyi are assumed to be zero-mean white

Gaussian noises, which are mutually uncorrelated, and uncorrelated with u, r,

and the boundary vectors, and with intensity

E jrI rj,T :] = RH 6, E[irv, rTli = R (5.6)

The motivation for considering boundary observations which have a form different
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from the interior observations is that equations (5.5) can be used to model the

case where we observe the discretized normal derivative of a PDE along the boun-

dary of a domain. For example, when the normal derivative is observed along the

left and right edges of Q2, if h is the discretization mesh size, the measurements

can be expressed as

YL,j = h(x 0 ,i - 1 ,j) + rL,j , YR,j (I,j - -1,j + rR, (5.7)

where rL,j and rR, j are uncorrelated white Gaussian noises. These boundary

measurements clearly correspond to a special case of (5.5a). An example of this

type appears in the inverse resistivity problem considered in [32], where a poten-

tial distribution is imposed on the boundary of a resistive medium, and the result-

ing current density, which is proportional to the normal derivative of the poten-

tial, is measured on the boundary.

Then, the NNM smoothing problem consists in computing the conditional

mean

:i,j = E [zi,j IY] (5.8)

where Y denotes the Hilbert space of zero-mean random variables spanned by the

interior observations Yiy for (i,j) E Q, and by the boundary observations

YH,j with 0 < j < J, and Yv i with 1 < i < I-1. To solve this problem, we will

use the general results obtained in [1], [2] for the estimation of boundary value

processes. However, since these results are expressed in abstract operator form, our

first step will be to rewrite the NNIM (2.1), (2.14) and observations (5.3) and (5.5)

in operator form.

In this framework, the NNM dynamics (2.1) take the form

(Lx)i,j = Bu;,j (5.9)

where, if D 1 and D 2 denote respectively the backward horizontal and vertical shift

operators, i.e.,

D!zx,j = - D = z-, (5.10a)

we have
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L = I--A 1D 1 - A 3D 2 - A 4 D2 . (5.10b)

Note that in (5.9) x and Lx are defined respectively over the domains Q and Q.

Let also A b be the restriction operator such that

Xb = -bx (5.11)

is the restriction of x to the first and last two columns and rows of Q1. Define

XL -I =, XR X-= [ (5.12a)

where the vectors x i are defined as in (3.1a), and let

XB = X XT (5.12b)

where

Xl,j

X2,J

j = . (5.13)

xI- 1ij

is the vector obtained by scanning the states xi j along the jth row of Q, where
we omit the first and last elements of each row. Then, the restriction xb can be

represented in vector form as

XL

XR

Xb = , (5.14)

XT

and the boundary conditions (2.14) can be written in operator form as

VXb = db (5.15a)

with
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rL AL rR AR o o o0 0

v= ° o 0 0 FB 0 AB FrT AT (5.15b)

and

d b = dv (5.15c)

The matrices FL, FR, AL and A'R, and vector dH appearing in the above expres-

sions are defined in (3.6), and

rB = I®VB , rT = I,)VT (5.16a)

B =IWB, A =AT IWT (s.16b)

dv,1

dv,2

dv = . , (5.16c)

dV,J-l

where the matrices rB, FT, AB, and AT have size 2(I-1)nX(I-1)n and the vec-

tor dv has dimension 2(I-1)n. Finally, the vector db given by (5.15c) is a zero-

mean Gaussian vector with variance

[IIH 0 ]

nb = Edbdbn (5.17)

Similarly, the interior and boundary observations (5.3) and (5.5) can be

denoted in operator form as

y = Cx + r (5.i8)

Yb = Hxb + rb , (5.19a)

where

YH rH
Yb = v , rb - -r = (5.19b)

are obtained by scanning the horizontal and vertical boundary observations and
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noises, and the matrix H has a structure identical to that of V, i.e.,

L APL OR 'TR 0 o o 0

H - 0 0 0 Bo B eTTI (5.19c)

with

OE = I®HE , 'E = IE GE for E = L, R, B, T (5.19d)

The covariance of the zero-mean Gaussian vector rb is given by

Rb = E[ rb rbl = I(R V (5.20)

Then, it was shown in [1],[2] that the smoother dynamics and boundary con-

ditions could be expressed in operator form as

, L -BQB 0 [

[C R-1 C L t Cit [ Rsy] (5.21)

[ V*Hl-v + H*Rb-lH E] [ = H*Rb- Yb ' (5.22)

where B, C, V * and H* are the adjoint operators of B, C, V and H, respec-

tively, and where L ? denotes the formal adjoint of difference operator L. Lt and

the boundary operator E are defined through the Green's identity

<Lx,X> s() =- <,L X> s>(.) + <Xb,EXb >S (5.23)

where S(n) and Sb are the vector spaces of n-vector functions indexed over the

domain Q, and over the first and last two rows and columns of Q, respectively,

and where <.,.>S denotes the inner product over these spaces. The variable Xi, 

appearing in (5. ) is the conditional mean of i j with respect to the space Y

spanned by the observations, where Xi j is the state of the complementary model

associated to i- j . The concept of complementary model was originally introduced

by Weinert and Desai [11], and it was the key element used in [1],[21 to derive the

smoothing equations (5.21)-(5.22). Note also that (5.21) has a Hamiltonian struc-

ture similar to that of the smoother for 1-D causal processes 1331.
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5.2. NNM Characterization of the Smoother

As such, the operator characterization (5.21)-(5.22) describes completely the

NNM smoother. However, this characterization can be made more explicit by not-

ing that in Green's identity (5.23), we have

(L X)i,j = Xi,j -A XA-,j -X - A 3 j7 1A (5.24)

and

iO i ,1 XOA1

E AT 0 E = A T (5.26b)

Then, substituting (5.24) inside the operator description (5.21) of the NN1M
smoother dynamics, we can rewrite these dynamics as

o' j] = ' [ +, 32 + 3 + /Yi (5.27)
=~ [ i-l,j Yilj ij-l , j+l

with 0 I-- B T -A T 

aE = CTR-lC I BB L= [ p 1] (5.28a)

cB A T = AA 01 (5.28b)-it -'A -r], I O AI -BQB T c0o =

~~~s ~ ~ ~ ~ ~ ~ ~ I- --~~~~ T0 
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a3 = A ' 4= 0 A3 (5.28c)o A
where (5.27) is almost in NNM form. This relation can be brought to NNM form

by noting that ao is invertible with

F I BQB T lD 1 0
= -- CTR-1C I 0 D 2 (5.29a)

where

D1 (I + BQBTCTR-C)- , D2 = (I + CTR-lCBQBT)- 1 .(5.29b)

This yields

ii 1 £ii-j 1 i,5j i,j-l1 kji 1-i

[AiJ J ° X ('+ 52 )i + ' [ + '4 -+ fYi,j (5.30a)
~'i,j = l i-~,i +i l,j i,-t +

with

&k = tok 1 < k < 4 , = al/, (5.30b)

which is now in NTNMrN form.

Similarly, by using (5.25)-(5.26) and taking into account the structure (5.15b)

and (5.19c) of boundary matrices V and H, the boundary conditions (5.22) for

the NNMT smoother can be rewritten more explicitly as
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VjT Hf 

H [ VL WL VR WR + H R [HL GL HR GR i j

L 0 Lj G[l
HB T R-1 (5.31a)0 ER HRT H YH, J

vI T

5.3 Smoothing ErrorDynamics, T

vT VB WB VT WT HTT V B T ,, af

+ H REr'yi, (5.31b)operator character ET , T

1 J -1 T 1

But these boundary conditions are precisely in the form (2.14)! Thus, the NNI

solution techniques developed in Sections 3 and 4 are directly applicable to the

NNM smoother (5.30)-(5.31), since the smoother itself is in NNM form. The fact

that the class of N`NqM models is invariant under the smoothing operation is also

quite satisfying, since it indicates that these models are perfectly adapted to the

study of noncausal estimation problems.

5.3. Smoothing Error Dynamics

It was also shown in [11-[21 that the smoothing error i = x - k admits the

operator characterization

.b ] F B 0 Fu-BQBK. 0 - 11 K £(5.32)H-,- L0 C'- [r
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with boundary condition

V*H -1V + H*RblH E = Vn 1db -]H Rbl r, . (5.33)
b

The 2-D NNM which corresponds to the operator expression (5.32) is identical to

(5.30a), except for the input term:

'Xi,j ' i-l,j ii+ l,j i,j-1 +U2[ z t +

-\i,j i = i~t~l 1-fi~s -1j C-' +l,j -- Ai,;-1 - i,; 1

B C T R-1[ (5.34)

Similarly, the operator representation (5.33) of the boundary conditions yields

boundary conditions which are identical to (5.31a,b), but with different right-hand

sides.

The NNM system (5.34) can then be written in 1-D form by using the

column scanning technique of Section 3, and the resulting 1-D representation can

be used to compute the error covariance P(i,j;k,l) = E [i ,kTl], which is a useful

quantity if we want to evaluate the performance of the NNM smoother.

6. Smoothing Examples

In this section, we apply the results of the previous sections to implement the

NNM smoother for two examples, corresponding respectively to the discretized

stochastic Poisson and heat equations. In particular, it is shown that the fast FFT

solver developed in Section 4 can be used to implement the NI\TM smoother for

both of these examples.

6.1. 2-D Poisson Equation

The dynamics of the process to be estimated are given by

1i =-:- + i, +Xi-+ )+ '(6.1)='· -(Zi., + + Zj_1 qj+ Zi,_) + u, (6.1)
,3 4''
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where the variance of the white Gaussian noise process ui j is q. The boundary

conditions are in Dirichlet form, i.e.,

VE =1 , WE = for E =L,R,B, T (6.2)

in (2.17), where the variance of the zero-mean boundary vectors dE,k is 7T. The

interior observations are simply the process itself plus some additive white Gaus-

sian noise process ri j of unit variance:

Yi,j = xij + rj , (i,j) E Q, (6.3)

and we assume that the state x is observed exactly on the boundary, i.e.,

YL,j = zo,j , YR,j = xIj , YB,i = Xi,O , YT = =i,J · (6.4)

Therefore, for this problem the matrices Ak with 1 < k < 4, B, C, Q and R are

all scalars, and in particular,

Al = A 2 = A 3 = A 4 = 1/4 (6.5a)

B=C=R =1 , Q=q. (6.5b)

Substituting these values inside expression (5.27) for the NTNM smoother, we find

{1 1 (6.6)

x-,1 X= YL, ,j : YR,1 i,Zj-,0 = [ i,j = y p , (67a)
-- 4'-{ c ' C + C +, i= } + . (6.6b)

i-l'j- z'i+,j 1 i,j-1j+1 t, 

Taking also into account the form of the boundary conditions and observations

(6.4) inside (5.31), it is easy to check that the NiNM smoother boundary conditions

are of Dirichlet type, i.e.,

XO j = YL,j , 3I,j = YR,j , ni,o = YBi , i, J =' YT,i (6.7a)

Then, since the NNM smoother dynamics are vertically symmetric, and the boun-

dary conditions are in Dirichlet form. the FFT solver described in Section 4.2 can

be used to solve (6.6)-6t.7). Let { qij i, ii / ~ij } and { U;,i } be the sequences
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obtained by applying the discrete sine transform S given by (4.16) to the esti-

mates { fi }, { ii,j }, and observations { Yii } for a fixed index i, i.e.,

2 J-1
(i/j = Z ijsin(lj7T/J) 1 < j < J--1 (6.8a)

=1
2 kJ-

HIij = ( 2) iilsin(ljTr/J) 1 < j < J-1 (6.8b)
/=1

2 ,J-1
7tj = (2 /21 yi, •sin(lj7/J) 1 j < J-1 (6.8c)

Let also

ei j (j)K sin(jir/J)(yB i + (-1)-yTi) (6.8d)

be the sequence representing the effect of the DST on the boundary conditions

(6.7c) and (6.7d) on the bottom and top edges. Then, by applying the DST to the

columns of the NNM smoother (6.6)-(6.7), we obtain the decoupled subsystems

1 - os( J) -q [,
1 1 - 1 cos(j J) ,

4 4.{ [-lJ ] il , ]} [1 (6.9)
4 +i,j } + ilj

where 1 < j < J-1, with boundary conditions

o,j = rL,j , /o, j = (6.10a)(6.10a)

Ij = nR,j , Ij = 0, (6.10b)

where { 'IL,i ) and { )R,j } denote the DST transforms of boundary measure-

ments { YL,j } and { YR , }, respectively. These subsystems can then be written in

TPBVDS form and solved by decomposing the TPBVDS model in forwards and

backwards stable components. By observing that the modes a of the system (6.9)

are the zeros of the determinant of the matrix

1 - (w + 2cos (j /J)) -- 

@+(w) = | ^ i (6.11)
,L i u' 'cos. ,)

[~~~~~~~~~~ J'
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where w = a + O'- 1, it is clear that if <T is a mode, so is c - 1, so that in the

TPBVDS decomposition, there will be two forwards stable and two backwards

stable modes. Unfortunately, even for this simple example, the TPBVDS decom-

position cannot be computed in closed form.

6.2. Discretized Heat Equation

Consider now the discrete heat equation

mzi j = -.1 ,j + n(z;- y_ + zi ,ji) + ui, j (6.12)

where the variance of noise ui,j is q. Assume also that the boundary conditions,

interior observations and boundary observations are the same as for the previous

example. Then, the NNM smoother takes the form

m -qZi 4j l

[7 m -- ] [ij]

:= [-i + ] z]+ + { (6.13)

and the boundary conditions are given by (6.7a) and

~ij = i,o-= i,J = 0; (6.14)

with ~,j O free. This last feature just corresponds to the fact that the X dynamics

are anticausal in the i direction, so that the values of \iij with i > 1 are not

affected by Yx,j . Again, the NNM smoother dynamics (6.13) are vertically sym-

metric, and the vertical boundary conditions are in Dirichlet form, so that the

FFT solver of Section 4.2 is applicable to this system. Performing the transforma-

tions (6.8a-d), the N7NM smoother is decoupled into J-1 subsystems of the form

[m -2n cos(jw/J) m -q i n cosiJ -, j + ], (6.15)

wit 1 1 m - 2encos (j, /J) Ls ii a e i+tlj th + T DiiBJ s

with 1 < j < J-1. But equation (6.15) is equivalent to the TPBVDS system
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-1 1 L+,[m- - 2ncos(jT'/J) o [i j 

= O m - 2ncos(3jr/J)] i ] -hi [ i ] ' (6.16)

where the boundary conditions are given by

-°,j =Lj ,j =0. (6.17)

Thus, in this particular case, no state augmentation is necessary to bring the

transformed smoother to TPBVDS form. This is due to the fact that the heat

equation is causal in the i direction. Thus, if we apply the DST transform to vert-

ical index j in equation (6.12), the coupling with respect to the j variable is elim-

inated, and we obtain a standard causal 1-D system, for which the smoother is

the standard 1-D smoother, which is given here by (6.16). Another interesting

feature of this smoother is that the boundary conditions do not depend on the

"fake" boundary conditions and boundary measurements YR ,i on the right edge

(see Example 2.2b) which were introduced to guarantee that the discrete heat

equation was in the general NN"M form (2.1), (2.17).

7. Conclusions

A general smoothing method has been obtained for 2-D random fields

described by 2-D ITNNMs with local boundary conditions. This smoothing pro-

cedure relies on a general approach to the formulation of noncausal estimation

problems developed in [1]-[2]. In this approach, both the state of the system and

of its complementary model need to be estimated, and accordingly, the smoother

is described by a Hamiltonian system of twice the dimension of the original sys-

tem. For the NNM case, it turns out that the Hamiltonian is itself in NNM form,

with local boundary conditions of the type used to specify the NiNVM system that

we seek to estimate. This property indicates that NINSvMs capture well the intrinsic

noncausality associated with estimation problems in several dimensions. Also, the

computation of the NITNM smoothed estimates reduces to the solution of a NTINM

system. A general solution technique has been developed for NNT\'I systems. This
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solution consists in writing a 2-D NNM columnwise as a 1-D boundary-value sys-

tem of large dimension, which can then be solved by using the recursive tech-

niques developed in [16]-[17] for the solution of 1-D TPBVDSs. For the special

case where the 2-D NNM has periodic vertical boundary conditions, or has verti-

cally symmetric dynamics, an even more efficient solution technique based on the

use of the FFT, DST or DCT as a vertical decoupling transformation was also

obtained, whereby the solution of a 2-D NNM reduces to the solution of a set of

low-order decoupled 1-D TPBVDSs.

One of the main themes of this paper is that straightforward attempts at

extending 1-D Kalman filtering techniques to several dimensions are misguided,

since random fields in several dimensions are usually not generated causally, and

multidimensional random observations are often not obtained sequentially, but all

at one time. This implies that noncausal random field models, such as NNMs, and

smoothing problems, provide the most natural way to formulate multidimensional

estimation problems. In other words, a purely noncausal formulation of multidi-

mensional estimation problems should be employed. However, it is still possible to

reintroduce recursiveness at the algorithmic level in order to obtain fast estima-

tion techniques. Since causality is in this case a computational device, many

different types of recursions are possible, which reflect the great amount of lati-

tude we have in processing the available data.

An important limitation of the results presented here is that we have

assumed that the domain of definition of the 2-D NNMs under consideration was

rectangular. For practical applications, random fields are usually defined over very

irregular domains, so that at first sight the results developed here have a limited

applicability. However, this impression is incorrect, since recently developed

domain decomrposition techniques for PDEs [34]-[35] make it possible to divide an

irregular domain in rectangular subdomains, and then to solve the original prob-

lem over each subdomain separately, while handling the coupling between sub-

domains with a preconditioned conjugate gradient algorithm. This approach

would lead here to a parallel implementation of 2-D NNNM estimation algorithms,

where observations over different subdomains could be processed in parallel, and

then combined to obtain an overall estimate. Finally, in addition to being parallel,
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this approach makes also possible, provided that the conditions of Section 4 are

satisfied, to use FFT solvers over the rectangular subdomains. See [341 for a

description of a domain decomposition solver of this type for the 2-D Poisson

equation. The application of domain decomposition techniques to NNM estimation

problems seems therefore to be a promising area for future research.
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