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Abstract

Consider problems of the form

min{ f(x) I Ex 2 b, xeS }, (P)

where f is a strictly convex (possibly nondifferentiable) function

defined on a convex set S, and E and b are respectively given matrix and

vector. A popular method for solving special cases of (P) (e.g. network

flow, entropy maximization, quadratic program) is to dualize the

constraints Ex > b to obtain a differentiable maximization problem and

then apply single coordinate ascent to it [1]-[25], [29], [37], [38],

[42]-[44]. This method is simple and can exploit sparsity, thus making

it ideal for large problems as well as parallel computation. Despite

its simplicity however, convergence of this method have been shown only

under certain very restrictive conditions, including differentiability

and strong convexity of f, exact line search, essentially cyclic

relaxation,..., etc., and only for special cases of (P) . In this paper

we present a block coordinate ascent method for (P) that contains as

special cases the methods in [1]-[25], [29], [37], [43]. We show, under

mild assumptions on f and (P), that this method converges. We also

allow the line searches to be inexact and, when f is separable, can do

them in parallel.
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1. Introduction

Consider the problem

Minimize f(x) (P)

subject to Ex 2 b, (1.1)

where f:9m-49UJ{+oo}, E is a given nXm real matrix having no zero row and

b is a vector in 9 n . In our notation all vectors are column vectors and

superscript T denotes transpose. We denote by eij the (i,j)th entry of

E and bi the ith component of b. For any kxl matrix A, k-vector c and

any I5{1,...,k}, JC{1,...,1}, we denote by A I the matrix [aij]iei, j{1 ... 1}

Aij the matrix [aij]ieiI,jej and c, the vector (ci)iEI, where aij is the

(i,j)th entry of A and ci is the ith component of c. We also denote by

(-,) the usual Euclidean inner product and 11-11 its induced norm. For any

real vector 5, [4]+ will denote the orthogonal projection of 4 onto the

positive orthant. We remark that we can also allow equality constraints

in (1.1), but for simplicity we will work only with inequality

constraints in (1.1), unless otherwise stated.

Denote by S the effective domain of f, i.e.

S = { x I f(x) < +- },

by int(S), ri(S) and cl(S) respectively the interior, the relative

interior and the closure of S, and by X the constraint set, i.e. X =

{ x I Ex2>b }. We make the following standing assumptions:

Assumption A: f is strictly convex, lower semicontinuous and continuous

within S. Moreover, the conjugate function of f defined by

g(t) = sup{ (t,4)-f(4) I 4E9 m } (1.2)

is real valued, i.e. -o < g(t) < +o for all tEg m.

Assumption B: S = SlnS2 , where S1 and S2 are convex sets in Im such that
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cl(S1 ) is a polyhedral set and Slnri(S2) nX • 0.

The case where cl(S) (but not necessarily S) is a polyhedral set

contains as an important special case where f is separable [4], [48],

for which cl(S) is a box. Assumption A implies that, for every t, there

is some 4 achieving the supremum in (1.2) and f(x) -+oo as Ilxll- +o. It

follows from the latter that f has bounded level sets. Because f is

lower semicontinuous, its level sets are compact. This, together with

the fact (cf. Assumption B) that SNX • 0 and the strict convexity of f

within S, imply that there exists a unique optimal solution to (P),

which we denote by x*.

A dual program of (P), obtained by assigning Lagrange multiplier Pi

to the ith constraint of Ex > b, is

Maximize q(p) (D)

p 2 0,

where

q(p) = min{ f(x) +(p,b-Ex) I xeg m } = (p,b)-g(ETp). (1.3)

(D) is a concave program with simple positive orthant constraints.

Furthermore, strong duality holds for (P) and (D), i.e. the optimal

value in (P) equals the optimal value in (D) (see [1], §1). Since g is

real valued and f is strictly convex, g and q are continuously

differentiable ([28], Theorem 26.3). Using the chain rule, we obtain

the gradient of q at p to be

Vq(p) = b-EX(p), (1.4)

where we denote

X(p) = Vg(ETp) = argsup{ (p,E)--f(4) I 4Em }. (1.5a)

We will also denote

r(p) = EX(p). (1.5b)

Note from (1.4), (1.5b) that Vq(p) = b-r(p). Hence p is an optimal

solution for (D) if and only if p = [p+b-r(p)]+. However, (D) is not



guaranteed to have an optimal solution. Consider the following example:

n = m = 1, E = 1, b = 0 and

f(x) =ti X2- (X ) 1/2 if x > 0,

+I 0 otherwise.

It can be verified that Assumptions A and B hold, but f does not have a

dual support at the optimal primal solution x* = 0.

Note from (1.5a) that X(p) is also the unique vector x satisfying

ETpEaf(x), (1.6)

where af(x) denotes the subdifferential of f at x. For any x and d in

S m , we denote by f'(x;d) the directional derivative of f at x along d

([28], pp. 213 and 217), i.e.

f'(x;d) = limX$0 (f (x+d) -f(x)) / = max{(d,rl) I lEf(x)}. (1.7)

Differentiability of q motivates a block coordinate ascent method

for solving (P) and (D) whereby, given a dual vector p, a block of

coordinates are changed to increase the dual functional q. Important

advantages of such a coordinate relaxation method are simplicity, the

ability to exploit problem sparsity, and parallel implementation for

large sparse problems. As an example, suppose that f is quadratic of

the form (x,Qx)/2+(c,x), where cetm and Q is a mxm symmetric, positive

definite matrix. Then two coordinates Pi and pj are uncoupled, and can

be iterated upon simultaneously if the (i,j)th entry of EQ-1ET is zero

(another example is if f is separable and the (i,j)th entry of EET is

zero).

Coordinate ascent methods for maximizing general differentiable

concave functions have been well studied ([27], §3.2.4), [31]-[36], but

convergence typically requires compactness of the level sets and some

form of strict concavity of the objective function - neither of which

holds for q. Coordinate ascent methods for maximizing q, on the other

hand, have been studied in the context of special cases only (such as f

differentiable, strongly convex, and using exact line search) [1]-[25],

[29], [37], [38]. More general results are given in [1] and [4], but

they still consider only single (not block) coordinate relaxation and
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use special type of inexact line search. This lack of general theory is

unfortunate given that dual coordinate ascent methods are amongst the

most popular (and sometimes the only) methods for solving large scale

problems of the form (P) - e.g. network flow [12], [23]-[25], [29],

[43]-[44], entropy maximization [5]-[6], [14]-[22], linear [41] and

quadratic programming [2], [7], [10], [11], [25], [37], [38], [42].

This paper represents an attempt to fill this theoretical gap. Our main

contributions are (i) to propose a general class of (block) coordinate

ascent algorithms for maximizing q, (ii) to study the convergence

properties of this class of algorithms, and (iii) to show that the

methods proposed in [1]-[25], [29], [37], [43] belong to this class. We

also present some new algorithms from this class, including parallel

implementations for the case where f is separable.

This paper is organized as follows: in §2 and §3 we present a

coordinate relaxation algorithm and prove that it converges. In §4 we

present an extension of this algorithm for the case where f is strongly

convex. In §5 we consider implementation issues and in §6 we show that

this algorithm contains as special cases a number of known methods. In

§7 we present a technique for parallelizing this algorithm when f is

separable. In §8 we give our conclusion and discuss extensions.

2. Block Coordinate Relaxation Algorithm

In this section we present our main algorithm, called the block

coordinate relaxation (BCR) algorithm, for solving (P) and (D) . In this

algorithm, we choose a collection C of nonempty subsets of N = {1,...,n}

such that their union equals N and, for each IEC, we choose continuous

functions 0I:9lIIlX[0O+,+ +)lI -[0,+o) and I:9tIIIX91lII-+[0,+o) satisfying

4I(1,7m) is bounded away from zero ¢4

K-[2t+bI-l]]+ is bounded away from zero, (2.la)

i (,Ti' )-0=o ¢~ -=-'. (2. b)

[Both 0I and 8I act as distance functions.] We also fix a scalar
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yE (0,1]. Each iteration of the BCR algorithm generates a new estimate p

from the current estimate p as follows:

Block Coordinate Relaxation (BCR) Iteration

Given p > 0, choose IEC.

Find any p' > 0 satisfying

PN\I = PN\II (2.2a)

q(p') -q(p) y[f(X(p'))-f(X(P)) -f () ; X (p) -X(P))], (2.2b)

AI (ri (p ' )r I (p ) ) > ir(P' , (p ') ·PI ) (2.2c)

Roughly speaking, (2.2a) ensures that only components corresponding to I

change value; (2.2b) ensures that a dual ascent occurs; and (2.2c)

ensures that the difference X (p')-X(p) is "large" if PT'• [p1'+b1-r (p')+.

We remark that the BCR iteration can be adapted to equality constraint

problems, i.e. min{ f(x) I Ex = b }, by replacing (2.la) with "1 i (1, 7) is

bounded away from zero <¢ 1]-b I is bounded away from zero" and removing

the nonnegativity constraints on p and p' (the extension to mixed

equality/inequality constraints is straightforward).

To ensure that the BCR iteration is well defined (i.e. for any pe9 n

and IEC, a p' satisfying (2.2a)-(2.2c) exists), additional assumptions on

I, and 8I are required. We will see in §5 and §6 that the choice of 0I

and I is very important: different choices lead to different methods

and, for special cases of (P), the appropriate choice can significantly

reduce the work per iteration. We will also see in §5 that very little

needs to be assumed about 0i and 6I either to make the BCR iteration well

defined or to implement it.

The algorithm that consists of successive applications of the BCR

iteration, which we call the BCR algorithm, is not guaranteed to
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converge, unless the coordinate blocks are relaxed in some order. We

will consider the following two orders of relaxation (we say a

coordinate is "chosen for relaxation" if the BCR iteration is applied

with an IEC that contains the index of that coordinate):

Assumption C (Essentially Cyclic Relaxation): There exists positive

constant T for which every coordinate is chosen at least once for

relaxation between iterations r and r+T, r = 0,1,....

Assumption D (Gauss-Southwell Relaxation): At each iteration, choose

IEC such that 0I(rI(p),pI) > p.maxJEC{J(rJ(p) ,pJ) }, where p is a constant

in (0,1].

The above two orders of relaxation are discussed in ([32], §7.8) and

[34]. We will weaken Assumption C in §4. If C is a partition of N

(i.e. the elements of C are mutually disjoint), T = ICI-1 and Assumption

C holds, we will say that the order of relaxation is cyclic.

3. Main Convergence Theorem

Let pr denote the iterate generated by the BCR algorithm at the

rth iteration and xr = X(pr) (r = 0,1,...). In this section, we show

that, under either Assumption C or D, the BCR algorithm converges, in

the sense that xr-+x*. We also provide sufficient conditions under

which {pr} converges. To simplify the presentation, let Ir denote the

set of indexes of the coordinates relaxed at the rth iteration, tr = ETpr

and dr = b-Exr (r = 0,1,...). Our argument will follow closely that in §3

of [1] (in fact, to simplify the presentation, we will borrow some

results from [1]).

We precede our proof of convergence with the following four

technical lemmas, the first three of which will also be used in §4:
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Lemma 1 For r = 0,1,...,

q (pr+l) q(pr) > y[f(xr+l)f(r-fr )-f' (xr;xr+l-xr) ] (3.1)

f(x*) -q(pr) 2 f(x*) -f(xr)-f('(xr;x*-xr) . (3.2)

Proof: Eq. (3.1) follows from (2.2b) and the definition of pr and xr.

To see Eq. (3.2), note that since pr 2 0 and x* satisfies (1.1), then

f(x*) -q(pr) 2 f(x*) _q(pr) +(pr,b-Ex*)

= f(x*) --f(xr) --(ETpr,x*-Xr)

f(X*) -f( (r) -f'(r; X*-Xr) 

where the equality follows from (1.2), (1.3), (1.5a) and the second

inequality follows from (1.7) and the fact (cf. (1.6)) ETpreaf(xr).

Q.E.D.

Lemma 1 implies the following facts, whose proof is identical to that

for Lemmas 2 and 3 in [1]:

Lemma 2

(a) The sequences {xr} and {f(xr) } are bounded, and every limit point of

{xr} is in S.

(b) For any yeS, any z such that y+zeS, and any sequences {yk}_-y and

{zk } -Z such that ykES and yk+zke S for all k,

limk_+oosup{f'(yk;zk) } < f' (y;Z)

Lemma 2 in turn implies the following two lemmas:

Lemma 3

(a) xr+l-xr -O0 .

(b) limr_>+lIlpirr- [pirr+dirr] +II = 0.

Proof: Since (cf. Lemma 2 (a)) {xr} is bounded, if (a) does not hold,

then there exists subsequence R for which {xr}rER converges to some point
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x' and {xr+l }rR converges to some point x" • x'. Let z = x"-x' (z • 0)

By Lemma 2 (a), both x' and x'+z are in S. Then using (3.1), the

continuity of f on S, and Lemma 2 (b), we obtain

limr_+o, r E R i n f { q( p r + l) -q(pr) } > 7[f ( x +z ) -f ( x') -f ( XI; Z)].

Since q(pr) is nondecreasing with r and f is strictly convex (so the

right hand side of above is a positive scalar), it follows that

q (pr) - +oo.

This, in view of the strong duality condition

max{ q(p) I p > 0 } = min{ f(x) I Ex > b },

contradicts the feasibility of (P), i.e. SrX • 0.

If (b) does not hold, then there exist scalar e > 0, coordinate

block IEC and subsequence R for which (also using dr=b-r(pr))

Ir = I and IlpIr- [pir+bi-ri (pr) ] +11 -> , V rE R.

Then (2.1a) implies that {4I(rI(pr),pIr) }rER is boundeded away from zero,

i.e. there exists some scalar 0 > 0 such that

i (rI(pr),pIr) > 8, V reR.

It follows from (2.2c) that

8I(rI(pr),ri(pr-1)) 2 0, V rER. (3.3)

Since (cf. (1.5b)) ri(pr) = EIxr, {rI(pr) } is bounded by Lemma 2 (a).

This, together with (2.lb), (3.3) and the continuity of 8i, imply that

IIEi (xrxr-1) 11 = 1ri (pr) _ri (pr-1)I > 8', V rER,

for some scalar 8' > 0. This contradicts part (a). Q.E.D.

Lemma 4 Under either Assumption C or D, if x' is any limit point of

{xr}, then x'ESrX and there exists a subsequence {xr}rER--X' satisfying
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Proof: We will first prove that

pir-[pir+dir]+- 0, V i. (3.5)

Suppose that Assumption C holds. Fix any coordinate index i and, for

each r > T, let T(r) be the largest integer h not exceeding r such that

iEIh. Then

r-1 m

dir = diT(r)+ I E eij (xjh+l-xjh), V r > T.
h= (r) j=l

Since (cf. Assumption C) r-t(r) < T for all r 2 T, this, together with

Lemma 3, implies (3.5). Now suppose that Assumption D holds. Then

(2.1a) and Lemma 3 (b) imply that plr-[pir+dIr]+--+0 for all IEC. Hence

(3.5) holds.

Since Ipir-[pir+dir]+l = dir if dir 2 0, it follows from (3.5) that

limr4+,sup{dir} < 0 for all i. Hence every limit point of {xr} is in X.

This, together with Lemma 2 (a), implies that x'ESnX.

Next we prove (3.4). Let d = b-Ex'. Since x'eX, we have di<O for

all i. Consider any i such that di<O (if no such i exists, we are

done). Since x' is a limit point of {xr}, there exists subsequence R

such that {xr}reR -- x'. Then {dir}reR -- di<0, which, together with (cf.

(3.5)) {pir-[pir+dir]+}rER -+ 0, implies that {pir}rER ->0 Q.E.D.

Lemmas 2 and 4 allow us to prove the main result of this section:

Proposition 1 Under either Assumption C or D, the following hold:

(a) {xr} -+ x*.

(b) If cl(S) is a polyhedral set, and there exists a closed ball B

around x* such that f'(x; (y-x)/Ily-xll) is bounded for all x, y in

BnS, then {q(pr)} -+ f(x*).
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(c) If int(X)rS • 0, then {pr} is bounded and every one of its limit

points is an optimal solution for (D).

Proof: We prove (a) only. The proof of (b) and (c) is identical to

that of Proposition 1 in [1]. Let x' be a limit point of {xr} and let R

be a subsequence satisfying (3.4). Also let d = b-Ex' and I- = {ildi<O}.

By Lemma 4, x'ESrX. Suppose that x' • x* and we will reach a

contradiction.

Let y be any element of Slnri(S2)CX (y exists by Assumption B).

Fix any XE (0,1) and denote y(X) = Xy+(1-X)x*. Then y(X)eSlrri(S2 ) nX.

It can be shown (see proof of Proposition 1 (b) in [1]) that there

exists an e > 0 such that { xeS1 I Ilx-x'll < e } is closed. Since cl(S1 )

is a polyhedral set and y(X)-x' belongs to the tangent cone of S1 at x',

this implies that there exists 8E(0,1) such that, for all rER

sufficiently large,

xr +6ze Sl (3.6)

where z = y(X)-x'. On the other hand, since y(X)eri(S2), xrES2 for all

r, and {xr}reR--X', we have that, for all reR sufficiently large,

xr + 5zES
2
. (3.7)

Since y(X)eX, Eiz > 0 for all iiI-. This implies that (since pr > 0)

(pr,Ez) _> isI-pir(EiZ), V reR, if I- • 0,

(pr,Ez) 2 0, VrER, otherwise.

In either case, we have (cf. (3.4))

limr,+ ,reRinf{(pr,Ez)} > 0. (3.8)

Since x'+6zeS and (cf. (1.7) and the fact ETpreaf(xr)) f'(xr;z) 2 (pr,Ez)

for all r, (3.6)-(3.8) and Lemma 2 (b) imply that

f'(x';z) > 0.

Hence f(x') < f(y(X)). Since the choice of XE(0,1) was arbitrary, by
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taking X arbitrarily small (and using the continuity of f within S), we

obtain that f(x') < f(x*). Since f is strictly convex and x'ESfX, this

contradicts the hypothesis x' • x*. Q.E.D.

Extensions:

1. Notice from its proof that Proposition 1 still holds if Assumption B

is replaced by the following more general assumption: SnX • 0 and,

for any xESnX, any yESrX, and any sequence {xk} in S such that xk-

x, f'(x;y-x) > limk_~+-sup{f'(xk;y-x)}.

2. It is easily shown that every limit point of the sequence {pr} is an

optimal solution of (D) . Hence {pr} diverges if (D) does not have

an optimal solution. On the other hand, if the set of optimal

solutions for (D) is nonempty but unbounded, {pr} can still diverge

(and thus cause numerical difficulty). To remedy this, we can

replace p by

argmin{ 11l11 I ETI=ETp, (b,r)=(b,p), -2>0 } (3.9)

in the BCR algorithm whenever p becomes large. It is

straightforward to verify that Proposition 1 (as well as Proposition

2 to follow) still holds with this modification. In some cases

(e.g. network flow), (3.9) can be performed quite efficiently. For

other extensions of the BCR algorithm, see Proposition 9 and §8.

4. Convergence for Strongly Convex Costs

In this section we consider the special case where f is strongly

convex, in the sense that there exist scalars a > 0 and CO > 1 such that

f (y) -f (x) -f'(x; y-x) > olly-xII, V x, yeS. (4.1)

[Note that (4.1) is a generalization of the traditional definition of

strong convexity (called uniform convexity in [45], pp. 83), where CO is

taken to be 2. As an example, f:91-*91U{+o} given by
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f(x) = t x4 if x > 0,

+L otherwise,

satisfies (4.1) with CO = 4, G = 1/4, but does not satisfy (4.1) with O =

2 for any positive (.]

We consider the following order of relaxation that is weaker than

Assumption C. Let {Tk} be a sequence satisfying the following condition:

1, = 0 and tk+l = tk+bk, k = 1,2,...,

where {bk} is any sequence of scalars satisfying

00

bk > ICI, k = 1,2,..., and I {bk}l1-= += .
k=l

[bk = n-k1/(O -l) is a valid choice.] The assumption is as follows:

Assumption C': For every positive integer k, every coordinate is chosen

at least once for relaxation between iterations Tk and tk+l'

The above assumption is a generalization of those considered in [1] and

[4] for single coordinate relaxation. Using Lemmas 2 and 3 in §3 and an

argument analogous to that for Lemma 6 and Proposition 2 in [1], we

obtain the main result of this section (which, for simplicity, we state

without proof):

Proposition 2 If (4.1) and Assumption C' hold, then:

(a) {xr}rER -4 x*, for some subsequence R.

(b) If cl(S) is a polyhedral set, and there exists a closed ball B

around x* such that f'(x; (y-x)/lly-xll) is bounded for all x, y in

BnS, then q(pr) -+ f(x*) and xr -> x*.

(c) If int(X)nS • 0, then q(pr) -. f(x*), xr -* x*, and {pr} is bounded.

Moreover, each limit point of {pr} is an optimal solution for (D).
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Note that the conclusion of Proposition 2 (a) is weaker than that of

Proposition 1 (a). Only for the special case where f is separable and C

= {{1},..., {n}} has it been shown that xr -- x*, assuming only that (4.1)

and Assumption C' hold [4].

5. Choosing 6T and 5i

We have seen from §3 and §4 that the BCR algorithm converges,

provided that each BCR iteration is well defined. In this section we

will consider choices of 0i and 8i that ensure that the BCR iteration is

well defined. In particular, we will show that it is well defined if

either (D) has an optimal solution or if 0i and 6I satisfy certain growth

condition. We will also consider a particular implementation of the BCR

iteration for single coordinate relaxation.

We first have the following lemma, which will be useful in this

and the next section:

Lemma 5 For any p and p' in 9In,

q(p')-q(p) > f(x')-f(x)-f'(x;x'-x)+(p'-p,b-Ex),

where x = X(P) and x' = X(p') 

Proof: From (1.3) and (1.5a) we have

q(p) = f(x)+p,b-Ex), q(p') = f(x')+(p',b-Ex'),

and hence

q(p')-q(p) = f(x')+p',b-Ex)-f(x)-(p,b-Ex)

= f(x')-f (x ) -(ETp, x'-x (p'-p,b-Ex

> f (x') -f (x) -f'(x; x'-x) + (p'-p, b-Ex?,

where the inequality follows from (1.7) and the fact (cf. (1.6))
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ETp af (x) . Q.E.D.

5.1 An Optimal Dual Solution Exists

By using Lemma 5, we can show the following:

Proposition 3 If (D) has an optimal solution, then the BCR iteration

(2.2a)-(2.2c) is well defined.

Proof: Let pe9En and IEC be as in the BCR iteration. Consider the

following relaxed problem

Minimize f(x) -(PN\I EN\IX) (5.1)

subject to Eix 2 bi, V iEI.

Since (P) and (D) have optimal solutions, (5.1) also has optimal primal

and dual solutions, which we denote by x' and A I = (..Ai ... .)E

respectively. Let p'e9n be given by

{ Ai if iI, 
p±, = (5.2)

Pi otherwise.

The Kuhn-Tucker conditions for (5.1) imply that (EI)TAIEaf(x') -(EN\I)TpN\I

and hence X(p') = x'.

We claim that p' satisfies (2.2b) and (2.2c) (clearly p' 2 0 and p'

satisfies (2.2a)). Since (cf. Kuhn-Tucker conditions for (5.1)) A I > 0

and

Eix' = b i if Ai > 0, ieI, (5.3a)

Eix' > bi if Ai = 0, iEI, (5.3b)

we obtain from (5.2) and Lemma 5 that

q (p') -q(p) > f (x') -f(x)-f'(x;x'-x) +iI,A=0 (Ai-Pi) (bi-Eix')

2 f (x') -f (x) -f'(x;x'-x) ,
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where x = %(p). Since YE (0,l], (2.2b) holds.

To see that (2.2c) holds, note that (cf. (5.3a), (5.3b) and the

fact ri(p') = EIx') PI'= [Pi'+bi-ri(p') ]+ and hence (cf. (2.la)) i(ri(p') ,pI')

= 0. Q.E.D.

The proof of Proposition 3 suggests an implementation of the BCR

iteration (with y=1) - by way of solving (5.1). In this case, the BCR

iteration reduces to the classical nonlinear Gauss-Seidel iteration,

i.e.

p' = argmax{ q(I) I I 2 0, 7i=Pi if ioI }.

If q is strictly convex in each coordinate block in C, then convergence

of the algorithm comprising such iterations follows from Proposition 2.5

in §3.2.4 of [27]. However, for q to have this property, we would

require S = c9 m and E to have full row rank.

5.2 I and 81 Satisfy A Growth Condition

If (D) does not have an optimal solution, then we need to impose

some growth conditions on 0I and 8I to ensure that the BCR iteration is

well defined:

Proposition 4 If

1 (1, I) < Ilnt [ -+bI-1 ] +11V, Vl 1 I I V 'n [O +o) I I I

then the BCR iteration is well defined.

Proof: Let pE9 n and IEC be as in the BCR iteration and let f =

I (rI(p) ,pI) .If D = 0, then the BCR iteration is well defined (since p'
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= p satisfies (2.2a)-(2.2c)). Suppose f > 0. Let 8i = bi-ri(p) and I+ =

{iliEI,0i<O}, I- = {iliEiI,i>0}. Let g be any scalar in (0,1/2].

Consider the following relaxed problem

Minimize f (x) - (pN\I+, EN\I+X) (5.4)

subject to Eix > bi-Oig, V i I-, EiX 2 bi, V iEI +.

First note that the interior of the feasible set for (5.4) intersects S.

To see this, let x(X) = XX(p)+(1-X)x*. Then (since ri(p) = EiX(p))

EiX(X)-b i = X(-8i)+(1-) (Eix*-b i) > -Xi, V irI-,

Eix (kX)-b i = X(-0)+(1-X) (Eix*-bi) 2 -Xi > 0, V iTI + ,

so that, for X sufficiently small, x(X) is in the interior of the

feasible set for (5.4). On the other hand, since x and x* are both in S

and S is convex, x(X)ES for all XE [0,1].

Since the interior of the feasible set for (5.4) intersects S, the

convex program (5.4) is strictly consistent (see [28], pp. 300). It

follows from Corollary 29.1.5 of [28] that (5.4) has optimal primal and

dual solutions, which we denote respectively by x' and Ai-u+ =

..-Ai---) iEI-uI+ . Let p'eIg n be given by

[A i if ieI +,

Pi '= pi+Ai if iI-, (5.5)

l Pi otherwise.

The Kuhn-Tucker conditions for (5.4) imply that

(EI-uI+) TAI-UI+Ef (x') - (EN\I+) TpN\ I+ and hence X (p') = x'.

We claim that p' satisfies (2.2b) and (2.2c) (clearly p' > 0 and p'

satisfies (2.2a)). Since (cf. Kuhn-Tucker conditions for (5.4)) Ai-uI+ >

0 and
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Eix' = bi-Oiy if Ai > 0, iTI-,

Eix' = b i if Ai > 0, ieI +, (5.6a)

Eix' > b i if Ai = 0, iEI+, (5.6b)

we obtain from (5.5), Lemma 5, and the positivity of Oig that

q(p')-q(p) > f(x')-f(x)-f'(x;x'-x)

+ i½ I+, A=O (Ai-Pi) (bi-Eix') + liEi -, i> Ai0i

> f(x')-f(x) -f' (x; x'-x),

where x = X(p). Since yE (0,1], (2.2b) holds.

We now show that (2.2c) holds. First note from (5.6a), (5.6b) that

Ai = [Ai+bi-Eix']+ for all iEI +. Hence (cf. (5.5))

Pi;-[Pi'+bi-ri(p) ]+ = 0, V iI + . (5.7)

Now, since [.]+ is nonexpansive and p' 2 0, we have

IPi;-[Pi'+bi-ri(p') ]+ I Ibi-r i (p') I, V ieI. (5.8)

Since bi = ri(p) for all iEI\I+\I
-, (5.8) implies

Ipi;-[pi'+bi-ri(P') ]+ I< I ri(p)-ri(p') I, V iEI\I+\I-. (5.9)

For each ieI-, we have (by the definition of 0i) ri(p) = bi-0i . Since

ri(p') 2 bi-8i9 and gE(0,1/2], this implies that Ibi-r i(p') <

1ri(P)-ri(p') I for all iEI-, and hence (cf. (5.8))

Ipi-[Pi'+bi-ri(P') ]+I < I ri (p)-r i (p') I, V iTI-. (5.10)

Combining (5.7), (5.9) and (5.10), we obtain that II'p, -[p'+bI-rI(p') ]+11 <

11ri(p)-ri(p')11, which together with our hypothesis imply (2.2c)

Q.E.D.

The proof of Proposition 4 also suggests an implementation of the

BCR iteration - by way of solving (5.4). In fact, from the proof of

Proposition 4 we see that (5.4) can be solved inexactly, i.e. it
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suffices to obtain a p' for which

ri (p') > bi, V ieI + and ri (p')-b i > 8(ri (p)-b i), V ieI-,

where 8 is any fixed scalar in (0,1) (this corresponds to choosing

1, (T,7c) = II'R-[7c+b 1-T ]+11 and 68(rl,n') = max{1,8/(1-8)} -I1-'11) . With this

implementation, the BCR algorithm can be thought of as solving

(inexactly) a sequence of subproblems of the form (5.4). The fact that

(5.4) can be solved inexactly makes this implementation quite practical.

5.3 Single Coordinate Relaxation

By choosing the coordinate blocks so that any two coordinates from

different blocks are weakly coupled, the BCR algorithm can perform

substantially faster than its single coordinate counterpart (the amount

of improvement depends on the computational effort per iteration).

Nevertheless, for problems that are large and sparse, single coordinate

algorithms are often favoured - they are simpler to implement, use less

storage, can readily exploit problem sparsity, and converge quite fast.

In fact, most of the dual coordinate ascent algorithms are single

coordinate algorithms (see §6).

We will presently consider a particular implementation of the BCR

iteration for single coordinate relaxation, i.e. C = {{1},...,{n}}. Let

Vi:9-+-[0,+o) be any continuous, strictly increasing function satisfying

Vi(bi) =0. Let a be any scalar in (0,1). Consider the following

iteration that generates a new estimate p' from any nonnegative pEI nl (es

denotes the s-th coordinate vector in %9 n):

Single Coordinate Relaxation (SCR) Iteration

Given p > 0, choose any seN and let f = Vs(rs(p))

Set p' <- p+e s, where H9E is chosen to satisfy

a. < V s(rs(p')) < 0 if _< 0, (5.11a)
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a-5P 2 Vs4(rs(p')) 2 0 if f>0 and a. •< Vw (rs(p-pses)), (5.11lb)

X = -ps otherwise. (5.11c)

To see that the stepsize X is well defined, note that rs is

nondecreasing in its sth coordinate (since, by (1.4) and (1.5b), rs(p) =

b s-aq(p)/Dps and q is concave) and Vs is strictly increasing. Hence X>0

(<0) if P<0 (f>0) and is well defined when it is given by either

(5.11b) or (5.11c). If X is not well defined when it is given by

(5.11a), it must be that Vs(rs(p+OeS)) < ad. for all 0 2 0. This

together with the properties of Vs imply that rs (p+Oe
s) < bs-£ for all 9

> 0, where e is some positive scalar. Hence (cf. (1.4), (1.7))

q'(p+Oes;es) = (Vq(p+0es),e s) = bs-rs(p+0e
s) > , V08 > 0,

implying that

lim+,,, ,q(p+Oes) = +0.

This contradicts the feasibility of (P).

Now we show that the SCR iteration is a special case of the BCR

iteration with I = Is}, y= 1, = s(1,In) = (1/a-l) I [X-ls(T') ]+-711 and

6s(11,T') = IVs(1)-Vss(T') I. Since )>0 (<0) if P<0 (P>0), it follows

from (5.11a)-(5.11c) and the properties of Vs that X(bs-rs(p')) 2 0.

Since (Vq(p'),p'-p) = ) (bs-r s(p')), this together with Lemma 5 imply that

p' satisfies (2.2b) with 7 = 1. Also from (5.11a)-(5.11c) we have that

either aXIP- s (rs (p')) (1l-) Is (rs (p'))

or Ps 0, Vsf(r s (p')) <0,

which together with the nonnexpansiveness of [-]+ imply that

either 6s(rs(p'),rs(p)) > 4s(rs(p'),ps')
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or s (rs (P'),Ps') = 0.

Hence (2.2c) holds.

Since the SCR iteration is a special case of the BCR iteration, it

follows that the algorithm based on successive application of the SCR

iteration converges (in the sense of either Proposition 1 or Proposition

2).

Notes and Extensions:

1. If an optimal solution for (D) exists, then a = 0 is also allowable

(note that in this case the choice of Nvi is inconsequential). This

is because the SCR iteration with a = 0 is equivalent to (5.2) with

I = is}. In this case we obtain that Ps' = [ps'+bs-rs(p') ] and the

SCR iteration can be interpreted as an exact line search along the

sth coordinate direction. We will see in §6 that most of the single

coordinate relaxation methods use exact line search (these are [3],

[7]-[10], [12]-[24], [43]).

2. In the SCR iteration, X is always between 0 and the line search

stepsize - hence the SCR iteration uses underrelaxation. It is

possible to also use overrelaxation (i.e. X exceeding the line

search stepsize), if a condition analogous to (2.2b) is imposed.

3. The SCR iteration can be adapted to equality constraint problems by

replacing (5.11b), (5.11c) by "Xa. > s (rs(p')) > 0 if f>0" and

removing the nonnegativity constraint on p.

4. General techniques for computing the stepsize X in the SCR iteration

can be found in [4], [46], [47] (see also [30] for the special case

where f is quadratic). In some very special cases X can be computed

very easily (see §6.3). If f is separable, then X can be computed

in parallel (see §7)
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6. Relation to Known Methods

In this section, we show that the methods proposed in [1]-[25],

[29], [37], [43] are special cases of either the BCR or the SCR

algorithm (under either Assumption C or C' or D). Hence their

convergence follows from either Proposition 1 or Proposition 2.

6.1 General Costs and Constraints

Proposition 5 The periodic basis ascent method in [8] is a special

case of the SCR algorithm with a = 0.

Proof: This method ([8], pp. 10) uses exact line search and essentially

cyclic relaxation. Moreover, f is assumed to be differentiable,

satisfies (4.1) with c = 2, and S is assumed to be a polyhedral set.

[Although this method allows arbitrary basis vectors to be used for

ascent, it can be viewed as a coordinate ascent method, but in a

transformed space.] Q.E.D.

Proposition 6 The methods in [3] and [9] are special cases of the

SCR algorithm with a = 0.

Proof: Both methods use exact line search. [3] uses cyclic relaxation

while [9] uses essentially cyclic relaxation. They further require:

(i) S is closed and f is continuously differentiable in ri(S);

(ii) { xeS I D(x,y) < a } and { yeri(S) I D(x,y) •< a } are bounded

for every yeri(S) and every xeS respectively, where D(x,y)

f(x) -f (y)-(Vf (y) ,x-y);

(iii) if {yk} is any sequence in ri(S) converging to yeS, then

D (y, yk) -0;

(iv) if {xk} and {yk} are sequences in ri(S) satisfying D(xk,yk)--O0,
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yk--yES and {xk} is bounded, then xk--y;

(v) argmin{ D(z,y) I zeS, Eiz=b i }Eri(S), V yeri(S), V ieN.

Conditions (i) and (ii) can be seen to imply Assumption A and, since

D(z,y) is positive unless y = z, condition (v) with z = x* implies that

x*eri(S) - hence Assumption B holds. [The above assumptions do not

typically hold, except for special cases such as when f is strongly

convex and S = 9 m .] Q.E.D.

Proposition 7 The methods in [1], [4] are special cases of the SCR

algorithm with vi(n1) = 71-bi.

Proof: Straightforward from the algorithm description in §2 of [1] and

[4]. In [4], f is further assumed to be separable. Q.E.D.

6.2. Ouadratic Costs

In this subsection, we consider the special case of (P) where f is

quadratic:

f(x) = (x,Qx)/2+(c,x), (6.1)

where Q is a positive definite, symmetric matrix. It is easily seen that

Assumptions A and B hold (f in fact satisfies (4.1) with C0 = 2). Direct

calculation using (6.1), (1.2), (1.3), (1.5a) and (1.5b) gives

q(p) = -(p,Mp)/2+(w,p), (6.2)

X(p) = Q-1(ETp -c) , (6.3)

r(p) = Mp+b-w, (6.4)

where M = EQ-1ET and w = b+EQ-lc.

The first dual coordinate method for quadratic problems was due to

Hildreth [7] who considered the special case where M is positive

definite, single coordinate cyclic relaxation and exact line search.

This work was extended to inexact line search [2], essentially cyclic
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relaxation [10], [11] and block coordinate relaxation [37]. In [10],

[11], and [25], M is required to be positive semi-definite only.

Consider the following iteration (C01 and 02 are fixed scalars such that

0)2 E (0,2) and 0 1E (0,min{1,0)2}]):

Block S.O.R. Iteration

Given p 2 0, choose IEC. Set

p' <- (1-X)p+XA, (6.5)

where Ae [0,+o) n satisfies

AI = [AI-MIA+W,] , (6.6a)

AN\I = PN\IT (6.6b)

and X is any scalar inside [0)1,2] for which p' 2 0.

Note that X is well defined since A 2 0. Below we show that the Block

S.O.R. iteration, under certain conditions, is a special case of the BCR

iteration:

Proposition 8 If 0o1= 02=1 or if MIi is positive definite, then the

Block S.O.R. iteration is a special case of the BCR iteration, with Y =

2/02-1, XI(1l,n) = Iht-[K+bI-rl]+1 1 and i (n1,T') = A-IOl-T'lI, where I1-111 denotes

the L 1-norm and A is some positive constant.

Proof: We will show that p' given by (6.5), (6.6) satisfies (2.2b),

(2.2c) ((2.2a) clearly holds). Denote x = X(p) and x' = X(P')* From

(6.6) we have that

(-MA+w,A-p) > 0. (6.7)

Also since (cf. (6.3)) x = Q-1(ETp-c) and x' = Q-1(ETp'-c), we have from

(6.5)

x'-x = Q-1ET (p'-p) = XQ-1ET (A-p) . (6.8a)

Now (6.2) and (6.5) imply
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(p'-p,Vq(p')) = (p'-p,-Mp'+w)

= ,(A-p,-M( (1-X)p+XA)+w)

= (<A-p,-M(1-X) (p-A) -MA+w), (6.8b)

which, together with (6.7), (6.8a) and the fact M = EQ-1ET, imply that

(p'-p,Vq(p')) - X(A-p, -M(1-X) (p-A))

= (1-X)(A-p, M (A-p))

= (1-X)(x'-x,Q(x'-x))/X. (6.9)

Since

f (x') -f (x) -f (x; x'-x) = (x', Qx/2+(c, x)-(x, Qx)/2-(c, x)- (Qx+c,x'-x)

= (x'-x,Q(x'-x))/2,

it follows from (6.9) and Lemma 5 that

q(p')-q(p) > (1+2(1-X)/X) [f(x')-f(x)-f'(x;x'-x)].

Since X < 0)2 and 2/X-1 is a decreasing function of X, (2.2b) holds with Y

= 2/c02-1.

Now we prove that (2.2c) holds. Suppose O)1 = 2 = 1. Then X = 1

and it follows from (6.6) that

PI= [PI'-MiP'+W ] +

Hence 0I(rI(p'),pI') = 0 and (2.2c) holds. Suppose that MII is positive

definite. Partition I into I0 = { i I iCI, Pi'-Mip'+w i < 0 }, I+ = I\I0,

and JO = { i I ieI, Ai=0 }, J+ = I\J0 . Then we have

Pi-[Pi-MiP +wi]+ = Pi, V iE IO (6.10)

Pi'- [Pi'-MiP'+wi] + = MiP -wi, V i I+. (6.11)

Also using the fact (cf. (6.6a)) -MiA+w i = 0 for all ieJ+, we obtain

Pi = (1-x)Pi, i ieJO 

-Mip +w i = (l-X) (-MiP+wi), ViE J+.

This implies that

Xpi = (1-X) (pi-Pi') iEJO (6.12)
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X(-MiP'+w i) = (1-X)M i(p'-p) V ieJ+. (6.13)

which, together with the definition of I0O and I+, imply

Pi' < Mip'-wi = (1-1/X)Mi(p'-p), V ie0 rIOJ+ , (6.14)

-Mip'+wi > -Pi = ( ) (Pi-P/X) V i I+nJ . (6.15)

Also for all ieI+nJ0 such that -MiP'+w i > 0 we have (since -MiA+wi < 0

and p' = (1-X)p+XA) -Mip'+w i < (1-X) (-MiP+wi), or equivalently,

X(-Mip'+wi) < (1-X)Mi(p'-P) - (6.16)

Combining (6.12)-(6.16), we obtain

Pi' = (1-l/X) (Pi-Pi) t V irIOnJ0,

pi' < (1-1/X)Mi(p'-p), V ieI0rJ + ,

-Mip'+w i 2 (1-l/) (pi-pi'), V ie (I+6rJ 0) \K,

-MiP'+w i < (l-1/X)Mi(p-p'), V iEK,

-Mip'+w i = (l-1/X)Mi (p-p'), Vi i- I+rnJ+,

where K = { i I iEI+nJ0, -Mip'+wi>O }. Combining the above with

(6.10), (6.11) and using (6.4), we obtain

Oi (ri(p'),pi') < I1/X-1IIpi-Pi'l, iEJO\K,

Oi (ri(P'),pi') < i1/X-1 Mi(p-p)l, VieJ+UK,

where Oi(]i, 7i) = l ti-[7i+bi-i]i] + l This together with (6.6b) imply that

IiEI Oi(ri(P'),Pi') < I1/X- A1 11pIP-p'II1, (6.17)

for some positive constant A1 depending on MIi only. Since Mii is

positive definite,

IPip-pi' 112 < A2'(PI-Pi , MII (Pi -Pi ))

< A2 IlPi-Pi'lIl*Mii (P i -P i') 11

= A2'lpIp-pI'I1.'rI (p) -r I (p') 11,

where A2 is some positive constant depending on MII only, and the

equality follows from (6.4), (6.6b). This and (6.17) imply that

Yai I ,i ,r (p , pi' . /X- I A l-A -r .p .r .' 1...
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Since XE[0 1 o02], 11/X-11 < max{1/C 1o-ll-1/C)2}. Q.E.D.

Corollary 8 The methods in [2], [7], [10], [11] and [37] are special

cases of the BCR iterations.

Proof: The methods in [2], [7] and [37] require M to be positive

definite, in which case MII is positive definite for any ICN. The

methods in [10], [11] use single coordinate relaxation, in which case MII

is always positive definite (since E has no zero row). Q.E.D.

If MII is not positive definite and X • 1, then it is possible that

rI(p) =r I (p') and Pi' • [P '+bi-ri(p') ]+, in which case there is no

continuous 8I and 4I satisfying (2.la), (2.lb) respectively for which

(2.2c) holds. However, the Block S.O.R. algorithm can still be shown to

converge, by modifying the proofs in §3 and §4:

Proposition 9 Let pr be the iterate generated by the Block S.O.R.

algorithm at the rth iteration. Then, under either Assumption C' with C0

= 2 or Assumption D, xr - x* and q(pr) -% f(x*), where xr = X(pr).

Proof: From the proof of Proposition 8 we have that (3.1) holds with Y

= 2/C02-1. Since (3.2) clearly holds and the proof of Lemmas 2 and 3 (a)

depends only on Lemma 1, Lemmas 2 and 3 (a) hold. Since the proof of

Propositions 1 and 2 depends only on Lemmas 2 and 3 and f satisfies

(4.1) with c = 2, it suffices to prove that Lemma 3 (b) holds.

Suppose that Lemma 3 (b) does not hold. Then there exist scalar

e > 0, coordinate block IEC and subsequence R for which the coordinates
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Pi, iI, are relaxed at the rth iteration, for all reR, and

llpIr [pir+bi-ri (pr)]+Il > c, V rER. (6.18)

Since (cf. Lemma 2 (a)) {xr} is bounded, by further passing into a

subsequence if necessary, we can assume that {xr}rER--x' for some x'.

Let d = b-Ex' and let Xr, Ar denote the A, A generated (cf. (6.5), (6.6))

at the rth iteration. Then (cf. (1.5b), (6.4))

{-MIpr+wI } reR -- dI. (6.19a)

Since (cf. (6.3)-(6.5)) EI(Xr+l-xr) = MI(pr+l-pr) = Xr.MI(Ar-pr) and Xr >

01 > 0, it follows from (6.19a) and Lemma 3 (a) that

{ -MIAr+wI } re R - dI'. (6.19b)

Let I- = { iEI I di < 0 }. Eqs. (6.6) and (6.19b) imply that

di = 0, V ieI\I-, (6.19c)

and, for all reR sufficiently large,

Air = 0, V iE I-. (6.19d)

From (6.8b) and the discussion immediately following it we have that

q(pr+l)_q(pr) 2 Xr<(-MiAr+wi,AIr-pIr), V r.

Since Xr > o 1 > 0 and the right hand side of the above is nonnegative by

(6.6), (-MiAr+wIIir-pIr) -+0. This, together with (6.19a)-(6.19d), imply

that

{Pir}rER-- 0, ViEI-, {-Mipr+wi}rER-+-O, V iI\I-.

Hence {pIr- [pIr+bI--r (pr) ]+}rER--O - a contradiction of (6.18). Q.E.D.

Proposition 10 The method in [25] with 0* < 1 generates the same

sequences {ETpr} and {q(pr)} as the Block S.O.R. algorithm.

Proof: The method in [25] with parameter C)* <- 1 is easily seen to be a

special case of the Block S.O.R. algorithm using c01 = 02 = 0* and cyclic
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relaxation - except that it performs an additional "reduction" step at

the end of each cycle. The reduction step generates a new iterate pO

from the current iterate p by the formula:

PO =PJ- UJ uj V JetD, (6.20)

where D is a collection of nonempty, mutually disjoint subsets of N

whose union is N, u is a nonnegative vector in 9n satisfying

EJT.UJ = 0, (bJ, U) = 0, V Jet, (6.21)

and O8 is the largest integer such that pjO given by (6.20) is

nonnegative (if uj = 0, we set 8j = 0).

First note from (1.3) and (6.20), (6.21) that

ETp = ETpO, q(p) = q(p) . (6.22)

Consider applying the Block S.O.R. iteration to both p and pO with the

same IEC. Let X, A and Xo, A o be that generated by (6.5), (6.6) for p

and pO respectively. Since A, given by (6.6) depends on p only through

Mp = EQ-1ETp (and similarly AI ° depends on EQ-1ETpO), it follows from

(6.22) that A I = Ai°. Since X = XO = o0, the new values for p and pO

given by (6.5) still satisfy (6.22). By applying this argument

inductively, our claim follows. Q.E.D.

Notes and extensions:

1. MII is positive definite if and only if E I has full row rank.

2. Experimentation in [37] shows that, for certain problems, the Block

S.O.R. algorithm with C • {{1},...,{n}} is faster than single

coordinate relaxation.

3. The quantity A satisfying (6.6) can be computed either approximately

using iterative methods [41], [42] or exactly using direct methods

[38], [39], [40].
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4. If E has full row rank (i.e. M is positive definite), then it

follows from (6.3) and Lemma 2 that the iterates {pr} generated by

the Block S.O.R. is bounded. If E does not have full row rank, the

technique discussed at the end of §3 may be used to maintain {pr} to

be bounded. On the other hand, if 02E (0,1] and b = 0, the Block

S.O.R. iteration can be implemented working with ETp instead of p.

By (6.3) and Lemma 2 (a), {ETpr} is bounded.

6.3. Entropy Costs

In this subsection we consider the problem

Minimize fl(x) = lj xjln(xj/uj) (6.23)

subject to Ex = b, x 2 0,

where the uj's are given positive constants. It is easily verified that

Assumptions A and B hold (f1 is in fact separable). The problem (6.23)

is an entropy maximization problem (-fl is the classical entropy

function weighted by the uj's) and it has applications in matrix

balancing [13]-[22], ([27], §5.5.4), image reconstruction [5], [6], [49]

and maximum likeliehood estimation [26].

Proposition 11 The methods in [14]-[22] for solving (6.23) are

special cases of the SCR algorithm with a = 0.

Proof: In [13] it was shown that the matrix balancing methods in

[14]-[22] are special cases of Bregman's method [3]. Therefore, by

Proposition 6, they are also special cases of the SCR algorithm with a =

0. Q.E.D.

Consider the following special case of (6.23):

Minimize f2(x) = Yj xjln(xj) (6.24)

subject to Ex = b, x > 0,



30

where bs > 0, esj8 [0,1] and esj > 0 for at least one j. The following

method for (6.24) was proposed in [5], [6]. It begins with any xei9m

such that xj = exp(Xi eijpi-1), for all j, for some pE9Rn. Given a

xE9Rm, it generates a new estimate x' as follows:

Multiplicative ART Iteration

Choose an index seN and set

esj
xj' + -xj(bs/ (Xk eskXk)) . (6.25)

[The index s is chosen by essentially cyclic relaxation.] The iteration

(6.25) is also a special case of the SCR iteration, as we show below:

Proposition 12 The multiplicative ART method ([5], [6]) is a special

case of the SCR algorithm with a = 1-mini, j{ eij I eij >0 } and

log (rj/bi) if ri/bi > 0,

-0 otherwise.

Proof: Straightforward calculation finds the conjugate of f2 to be

j gj (tj), where gj(tj) = exp(tj-1). Hence Vgj(tj) = exp(tj-1) and (cf.

(1.5a) and (1.5b))

Xj(P) = exp(tj-1), (6.26a)

ri(p) = Yj eij-exp(tj-l), (6.26b)

where tj = Ci eijPi.

Given pEgin and seN, let X be given by

bs/rs(p) = exp(X), (6.27)

and denote tj = 1i eijPi, p' = p+eS. Then (cf. (6.26a))
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Xj(P') = Xj(P+ e s) = exp(tj+esjX-l)

Xj (P) exp (X) = Xj (P) (bs/rs(P)) e

Comparing the above equation with (6.25), we see that the iteration

(6.25) is simply a relaxation of the sth coordinate with stepsize X.

We will now show that X satisfies (5.11a)-(5.11c). Suppose that

rs(p) < bs (the case where rs(p) > bs can be treated analogously). Since

(cf. (6.26b))

rs(p') = rs (p+Xes) = Yj esj-exp(tj+esjX-l)

= 2 j esj-exp(tj-1)-exp(?) , (6.28)

we obtain that

rs (p') > j esj-exp(tj -1) exp (X ) l a = rs(p) exp(X) 'l-a,

where the inequality follows from the fact exp(X) > 1 and 1-a < esj.

This together with (6.27) imply that rs(p')/bs > (rs(p)/bs)a, or

equivalently,

Nfs(r s (p ') ) 2 a -Ns(rs( p ))

On the other hand, since esjE[0,1] for all j, we have from (6.28) and

the fact exp(X) > 1,

r s (p') = Ij esj8 exp(tj -1)-exp (X)

-< j esj-exp(tj-1)-exp(X)

= rs (p) exp(X) = bs.

Hence X satisfies (5.11a). Q.E.D.

Note: The proof of Proposition 12 shows the stepsize choice in (6.25)

to be quite conservative. This perhaps contributes to the poor

performance of the multiplicative ART method (see [6]).
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6.4. Network Flow Constraints

In this subsection we consider algorithms for problems where E is

the node-arc incidence matrix for a (generalized) directed graph.

Proposition 13 The network flow methods in [23] and [24] are special

cases of the SCR algorithm with f given by (6.1) and Nfi(rl) = T1-b i.

Proof: The network flow methods in [23], [24] perform exact line search

and cyclic relaxation. [In [24] it is further assumed that the

underlying graph is bipartite.] Q.E.D.

Proposition 14 The network flow methods in [29], [43] are special

cases of the SCR algorithm, with f being separable and Nfi(n) = rj-bi.

Proof: Straightforward from the algorithm description in §2 of [29] and

§2, §4 of [43].

However, [29] allows arbitrary order of relaxation and requires only

that an optimal dual solution exists to assert convergence of the

sequence {pr} to an optimal dual solution.

Proposition 15 The multicommodity flow algorithm of Stern [12] is a

special case of the SCR algorithm with Ni(nI) = Ti-bi.

Proof: This method uses exact line search and cyclic relaxation and f

is assumed to be strongly convex. [However, to prove convergence the

author in addition assumes that (D) has a unique optimal solution and

the dual functional q is twice differentiable.] Q.E.D.

Note: By applying the results in §4 and §5, we can readily extend many

of the methods discussed in this section. As an example, since (cf.

Lemma 2 (a)) the sequence {xr} remains in a compact subset of S and the
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entropy cost (6.23) is strongly convex in any compact subset of S,

Proposition 2 is applicable to the methods in [5]-[6], [14]-[22].

7. Parallel Implementation

In this section, we present a technique for parallelizing the SCR

iteration when f has certain separable structure. This technique also

takes advantage of the sparsity of E.

Suppose that f is block separable, in the sense that

f(x) = JED fJ(xJ), (7.1)

where D is a collection of nonempty, pairwise disjoint subsets of M =

{1,...,m} and each fj:9IlJl-'-9u+{+-} is a strictly convex function (f = {M}

is a valid, but uninteresting choice). We will show that the stepsize X

in the SCR iteration, with vi(T1) chosen to be Tl-bi, can be calculated in

parallel using at most lDI) processors (extensions to arbitrary vi and to

the BCR iteration is possible, but for simplicity we will not consider

them here).

7.1 Parallel Stepsize Computation

Denote by gj the conjugate function of fj and, for each ieN, denote

D(i) = { JEtJ I eij • 0 for some jeJ }.

For each ieN, let {piJ}JeE(i) be any set of positive scalars satisfying

XJED (i) PiJ = 1.

Let t be any scalar in the interval (0,1). For any nonnegative pe9In and

seN satisfying E = rs(p)-b s < 0 (the case where f > 0 can be treated

analogously), consider the following procedure that computes a scalar A:
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1. For each Jet(s), denote hj(O) = Esj(Vgj(tj+8(EsJ)T ) - v gJ (tJ ) ), where

tj = (ENJ) Tp. If hJ(O) < -• PsJ for all 0 2 0, set Xj = +±o;

otherwise compute a Xj satisfying

-gpPsJ < hj(Xj) < -PPsJ, (7.2)

2. Set

X %- minJEl(s){ J}. (7.3)

Each step in the above procedure can be seen to be parallelizable

amongst tII(s) I processors. We have the following main result:

Proposition 16 The scalar X given by (7.2), (7.3) satisfies

(1-g-mini,J{pij})P < rs(p+XeS)-b s < 0. (7.4)

Proof: Since f satisfies (7.1), we obtain from (1.2) that g(t) =

-JED gJ(tJ) for all tegim. Hence (cf. (1.5b))

rs(P+eS) = = JED(s) EsJVgj(tj+J(EsJ) T), V9, (7.5)

where tj = (ENJ)Tp.

We claim that each Xj is positive and X < +oo. Each XJ is positive

because hj(O) = 0 and (by convexity of gj) hj(O) monotonically increases

with 0. X < +oo for otherwise

EsJ(Vgj(tj+(Esj) T)-xJ) < -pPSJ'r V t0 0, V Jet(s),

in which case (cf. (7.5) and XJED(s) PJ = 1)

(rS (P+OeS) -bs)-1 < -go, V 8 > 0,

or equivalently

rs(p+0eS)-b s < f(1-g) < O, V 0 2 0.

This then contradicts the assumption that (P) is feasible.
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Now we prove (7.4). To prove the second inequality in (7.4), note

that (cf. (7.2), (7.3) and the fact that hj is an increasing function)

hj (X) < - 3PsJr V JED (s),

from which it follows that

rs(p+Xes)-b s = i+JED(s) hj(X) < 0.

To prove the first inequality in (7.4), note that since X < +-, there

exists some J'eD(s) for which

-gPPsJ < hj (k) .

Since (cf. X > 0, hj(O) = 0 and hj(O) increases with 0) hj(X) > 0 for all

Jet(s), this implies that

rs(p+Xes)-bs = i+XJED(s) hj(k) _> 0-gPPs.'

Q.E.D.

From Proposition 16 and (5.11a) we see that, for the case D < 0, the

procedure (7.2)-(7.3) implements the SCR iteration with Vs(TI) = Tf-b s and

a = 1-g.minij{pij}. Also from (7.5) we see that both P and rs(p-pses)

can be computed in parallel (hence we can determine in parallel which of

the three cases (5.11a), (5.11b) or (5.11c) applies) . If an optimal

dual solution exists, it can be seen that g = 1 is also allowable in the

procedure.

To illustrate the advantage of the procedure (7.2)-(7.3), suppose

that D = {{1},...,{m}} and gj(tj) = cjexp(tj), where each cj is a positive

scalar. Then, instead of computing X as an approximate zero of h(O) =

XjED (s) esjcjexp(tj+Oesj) using an iterative method, we simply set (again

assuming that f < 0) X -- minjE(S) {j}, where

j = (log (exp (tj) - sjesj/cj) -tj) /esj,
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if the quantity inside the log is positive and Xj = + otherwise.

Notes:

1. Apart from the separability of f, the fact that the SCR iteration

allows inexact line search stepsizes is crucial.

2. By giving higher values to those Oj for which hj has a high growth

rate near 0, the stepsize X computed by (7.2)-(7.3) can be kept from

being too conservative (ideally we like the X 's to be equal)

7.2 Computational Experience

In this subsection we present our computational experience with an

implementation of the procedure described in §7.1 on quadratic cost

network flow problems. More precisely, we consider the following

special case of (P):

Minimize Yj fj(xj)

subject to Ex = s,

where E is the node-arc incidence matrix for some directed network, i.e.

1 if the jth arc leaves node i,

eij = -1 if the jth arc enters node i,

0 otherwise,

(the nodes are numbered from 1 to n; m is the number of arcs, and s

is the vector of supply/demand at the nodes) and each fj is of the

form

{ (xj) (xj) 2 /2aj + Pjxj if 0 < xj < uj,

+00 otherwise,

where each aj and each uj is a positive scalar.
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Two FORTRAN codes based on the SCR algorithm, called SR1 and

SR2 respectively, have been implemented for the above problem. SR1

uses exact line search and SR2 uses the procedure in §7.1 with f =

{{l},...,{m}}, } = 1 and Psj = %j/(XkElD(s) ak), where f(s) = j I

the jth arc either enters or leaves node s }. Both use cyclic

relaxation and are based on the code NRELAX described in [29]. In

either code, termination occurs if IIVq(p) II < .001- (i Isil)/n.

With this termination rule, the final dual cost always agrees with

the optimal cost to within three or four digits of accuracy. The

test problems are generated by the network generator NETGEN [50].

Each 1/zj is randomly generated from {5,...,10}, each Pj is randomly

generated from {1,...,1000}, and each si is randomly generated from

{-1000,..., 1000} .

Both SR1 and SR2 are ran on a gVAX-II with 8 Mbytes of RAM

under the operating system VMS 4.6. The CPU time (in seconds) and

the number of iterations till termination for SR1 and SR2

respectively are shown in Tables I and II. In general, SR2 requires

more iterations than SR1 and their ratio increases proportionally

with m/n, which suggests that SR2 generates more conservative

stepsizes as each Il(i) I increases (it can be verified that

Jilt(i)li = 2m) . The performance of SR2 is better on transshipment

problems than on transportation problems. The reason for this is

not yet clear. In either case, it can be seen that SR2 is slightly

faster than SR1 on transshipment problems, although it uses twice

the number of iterations. On parallel machines or for more general

cost functions, the speedup of SR2 over SR1 should increase since

the former is more parallelizable. Also, for problems where the

uj's are small, dynamically adjusting Psj can decrease the number of

iterations for SR2. One such rule is to make Psj larger if

aj(JieijPi-Dj) is inside the interval [-£,uj+E], where £ is some

positive scalar (this is motivated by the observation that Vgj(tj) =
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max{0,min{uj,(tj-- j)(jI}} has zero slope if (tj-Ij)(aj is outside the

interval [O,uj]).

Table I. Uncapacitated Transportation Problems*

SR1 SR2

No. sources No. sinks No. arcs Time No. iter. Time No. iter.

500 500 5,000 27.07 9,003 55.86 47,744

750 750 7,500 42.40 13,784 83.59 72,400

1000 1000 10,000 58.18 17,993 130.50 109,124

1250 1250 12,500 70.67 20,666 127.34 107,783

500 500 10,000 54.40 6,407 139.34 71,342

750 750 15,000 78.92 9,491 188.49 92,977

1000 1000 20,000 106.24 12,782 259.24 128.730

1250 1250 25,000 135.62 15,638 307.63 154,353

* For each j, uj = large positive number. Every node is either a

pure source or a pure sink (a node i is a pure source (sink) if si >

o (Si < 0) and it has no entering (leaving) arc).

Table II. Capacitated Transshipment Problems*

SR1 SR2

No. sources No. sinks No. arcs Time No. iter. Time No. iter.

500 500 10,000 34.08 5,545 28.35 13,062

750 750 15,000 50.86 8,098 41.95 19,107

1000 1000 20,000 67.16 10,475 56.39 25,660

1250 1250 25,000 86.88 13,670 74.69 34,429

* For each j, uj is randomly generated from {500,...,2000}. Every

node is either a source or a sink (a node i is a source (sink) if si

> 0 (si < 0)).
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For quadratic cost problems, exact line search can be

implemented quite efficiently by computing successive breakpoints of

q along a coordinate direction. For problems having general costs,

more complex procedures are needed (see [4], [46], [47]) to

implement exact line search. For these problems, we may expect the

stepsize procedure of §7.1 to have a further advantage over

traditional stepsize rules.

8. Conclusion and Extensions

In this paper, we have presented a general algorithmic

framework for dual coordinate ascent and have unified a number of

existing methods under this framework. These results, however, can

be generalized further. For example, Propositions 1 and 2 also hold

for the algorithm comprising a mixture of the BCR iteration and

other dual ascent iterations. The only requirement is that (3.1)

and Assumption C (or Assumption C' for Proposition 2) hold. This

then allows us perform gradient ascent iterations or quasi-Newton

iterations between BCR iterations. Such a mixture of iterations may

in certain cases improve the rate of convergence.
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