
LIDS-P-1791 July 1988

Relaxation Method for Large Scale
Linear Programming using Decomposition

by

Paul Tseng t

Abstract

In this paper we propose a new decomposition method for large scale linear programming. This

method dualizes an (arbitrary) subset of the constraints and then maximizes the resulting dual

functional by dual ascent. The ascent directions are chosen from a finite set and are generated by a

truncated version of the painted index algorithm [13]. Central to this method is the novel notion of (e,8)-

complementary slackness (e > 0, 8E[0,1)) which allows each relaxed problem to be solved only

approximately with O(e8) accuracy and provides a lower bound of Q(c(1-6)) on the amount of

improvement per dual ascent. By dynamically adjusting e, the relaxed problems can be solved with

increasing accuracy. We show that (i) the method terminates finitely, provided that £ is bounded away

from 0, (ii) the final solution produced by the method is feasible and is within O(e) in cost of the optimal

cost, and (iii)the final solution produced by the method is optimal for all e sufficiently small.

KEYWORDS: Linear programming decomposition, dual ascent, Tucker tableau, (£,6)-complementary

slackness.

*Work supported by the National Science Foundation under grant NSF-ECS-8519058 and by the Army
Research Office under grant DAAL03-86-K-0171. This paper is based in part on the technical report [17].

tThe author is presently with the Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA 02139.

Acknowledqement: The author wishes to thank Professor D. P. Bertsekas, the honorary co-author, for
his many helpful suggestions in this work.



1. Introduction

Consider linear programs with m (m > 1) bounded variables and n' (n' 2 1) equality constraints:

T (P)Minimize a x

~~~Ex = f, ~~(1)Ex - f,

subject to Dx = b(2)

(3)
l <_x_< c,

where a, I and c are given vectors in lm, f is a given vector in an, b is a given vector in Rn'-" (1 C n s n'), E is

a given nxm real matrix, D is a given (n'-n)xm real matrix, and the inequalities in (3) hold

componentwise (here superscript T denotes transpose). We will denote the jth component of a, I, c and x

by aj, Ij, cj and xi respectively, the kth component of b and f by bk and fk respectively, and the (i,j)th entry

of E by e...

We have separated the equality constraints into the two subsets (1) and (2) to emphasize their

decomposition nature. An example is the multicommodity network flow problem ([1], [6], [7], [13])

where (1) corresponds to the network flow constraints and (2) corresponds to the joint capacity

constraints.

By assigning a Lagrange multiplier pi to the ith constraint of (1) and by denoting p the vector whose

ith component is p,, we can write (cf. Lagrangian duality [4], [101, [13]) the dual of (P) as

Maximize q(p) (D)

subject to pER n

where q denotes the dual functional (q is concave and piecewise linear)

q(p) = pTf + min{ (a-ETp)Tx I Dx = b, < x c }. (4)



2

We will call p the price vector and pi the price of row i. The dual problem (D) has two nice properties - (i)

it is unconstrained and (ii) the minimization problem (4) typically decomposes into many small

subproblems (as in the case where (P) is a multicommodity network flow problem).

We make the following standing assumptions:

Assumption A: (P) is feasible, i.e. there exists xE m satisfying (1), (2) and (3).

Assumption B: For each p(R n, the minimization problem (4) has a unique optimal dual solution

associated with the constraints Dx = b.

Assumption B has been made for simplicity. If Assumption B does not hold, we can either apply the

classical technique of perturbation to b (see for example [22]) together with (redundant) constraint

elimination or modify our method accordingly. For any k > 1, any [ERk (whose ith component we

denote by Ei) and any subset B of {1,..,k}, we will denote by [B the vector whose components are ki, iEB.

For any matrix A with k columns, whose columns are indexed from 1 to k, and any subset B of {1 ,..,k}, we

will denote by AB the matrix comprising the columns of A whose indexes are in B. For any real vector x

and square matrix A, we will denote by IlxllX and lIAII the L.-norm of x and A respectively. We will say that

a scalar quantity is O(A) (Q(X)), for some scalar A, if it is upper (lower) bounded by some positive constant

(depending on the problem data only) times A.

Solution of the Lagrangian dual (D) using either the subgradient method [21], [23]-[28] or the primal

dual ascent method (e.g. steepest ascent) [26], [29]-[31] has been well studied. Each of these methods

has some drawbacks - the subgradient method requires estimates of the optimal cost and heuristics to

generate a primal feasible solution; the primal dual ascent method requires solving certain restricted

primal problem to find each dual ascent direction (the e-subgradient method in [21], [26], [31] further

requires calculation involving the e-subdifferential of q). In this paper we present a new dual ascent

method for (D), called the relaxation method, that is finitely convergent, does not require exact solution



3

of the subproblem (4) at each iteration, and is easy to implement. This method is based on the novel

notion of (e.6)-complementary slackness that allows each subproblem to be solved with only O(68)

accuracy and provides a Q(8(1-6)) lower bound on the improvement in q per dual ascent. The

parameters e and 6 can be dynamically adjusted to control the accuracy of the solution and the

computational effort per iteration. The dual ascent directions are generated from a finite set using a

truncated version of the painted index algorithm (Rockafellar [13], 10G). Although we do not present

any computational results with the new method here, its efficiency has been verified for the special case

where n' = n, i.e. without decomposing the constraints ([3], [151). One particular implementation,

under which the coordinate directions have priorities as candidates for dual ascent, has been particularly

successful on network flow problems ([2], [31) and has motivated the name "relaxation" for the new

method. Based on the experience in [2], [3] and [15], we are very hopeful that the new method will be

competitive with other methods for large scale linear programming.

Our paper is organized as follows: in §2 we introduce (e,8)-complementary slackness and describe its

relation to O(e8)-optimality; in §3 we estimate the rate of dual ascents using (e,6)-complementary

slackness; in §4 we describe the painted index algorithm for generating Tucker tableaus possessing

certain sign patterns; in §5 and §6 we describe and prove finite convergence of the relaxation method,

using the results of §3 and §4; in §7 we discuss algorithmic variations and practical implementation for

the relaxation method; in §8 we specialize the relaxation method to network flow problems with side

constraints; and in §9 we present our conclusion.

2. (e,6)-Complementary Slackness

For each pE R", let ¢(p) denote the optimal dual solution in (4) associated with the constraints Dx = b.

¢4(p) is well defined since, for each fixed p, this optimal dual solution is unique by Assumption B. For each

p, q(p) equals the optimal dual cost for (4). By writing down the dual of (4), we obtain, after some

algebra, that



4

q(p) = pTf + ~(p)Tb + E (aj-tj)lj + E (aj- tj)C.j,
t.< a. t.> a.
JJ J J

where t = ETp + DTr(p).

Central to our method is the following notion-of (,6)-complementary slackness. Fix scalars e > 0 and

6E [0,1), and define, for each pE R" and each rf , column j to be

e-inactive if j < aj- e,

c-balanced if aij-e < _ j C aj+ E,

s-active if -j > aj + ,

where t = ETp + DTrl. Then a primal dual pair xERm and (p,rq)ER" is said to satisfy (£,6)-complementary

slackness ((e,6)-CS for short) if

xj = Ij V c-inactive j, (6a)

Ij _ xj < cj V e-balanced j, (6b)

xi = cj V e-active j, (6c)

Dx = b, (7)

IIDTri-DT,(p)11 < Ec. (8)

In the special case where n' = n, the above definition reduces to that of s-complementary slackness

given in [3] and [15]. Note that any xERm satisfying Dx = b, I < x < c, and (p,rl)E: ~' will satisfy (s,8)-C5 if

8 > 0 and e is taken sufficiently large. Also note that, for any x and (p,j) satisfying (0,6)-CS, if Ex = f,

then x and (p,rl) are respectively (cf. linear programming duality) optimal primal and dual solutions of

(P). Hence we sense that, for small c, if a primal dual pair satisfying (e,8)-CS also satisfy Ex = f, then they

should be near optimal. We make these notions precise below (compare with Proposition 6 in [15]):

Proposition 1 If xER m and (p,rl)E Rn' satisfy (e,6)-CS then

T T m (9)
0 < aT x + pT (f-Ex)-q(p) < e (C -I ) (9)

j=1

Proof: See Appendix A.



For each pER n, how do we compute x and rl that satisfy (e,8)-CS together with p? By Assumption B,

there exists a p > 0, depending on the problem data only, such that if

min{ (a-ETp-rDI)T I-- c },

is within pe6 of

T (10)
mint (a-ETp) | DE = b,l < • - c },

then rl satisfies (8). This observation can be used to show that, if x and (p,rl) satisfy (6a)-(6c) and (7), with

e replaced by e' = pe6/j (cj-lj), then x and (p,rl) satisfy (e,8)-CS. In the terminology of [15], such x and rl

satisfy e'-complementary slackness and primal feasibility for the minimization problem (10). We can

compute such x and rl using either the method in [15] or any linear programming method that is suitably

modified to generate primal and dual solutions satisfying e'-complementary slackness and primal

feasibility. [Note that the larger the e', the easier it is to compute x and rl.] If D has a simple structure

(e.g. Dx = b are generalized upper bound constraints), x and rl can be computed very easily.

If x and (p,rl) satisfy (e,8)-CS and Ex = f, then (9) implies that

0 < aTx - q(p) < (C) (c--l.) 
j=1

in which case x and p can be thought of as near optimal solutions of (P) and (D) respectively. Moreover,

it can be seen from (6a)-(6c) that x may be viewed as an optimal solution to a perturbed problem of (P),

where each cost coefficient a. is perturbed by an amount not exceeding e. Since we are dealing with

linear programs, it is easily seen that if e is sufficiently small, then every optimal primal solution of the

perturbed problem is also an optimal primal solution of (P). Therefore, for e sufficiently small and

6E [0,1), any vector that is feasible for (P) and satisfies (e,6)-CS with some price vector is in fact optimal for

(P). The required size of for this to occur may be estimated a priori by

min{aTx-aTx* x is a basicfeasiblesolutionof(P), aTx X :t aT } (cjIj) ,
J= 1

where x* denotes any optimal solution of (P). Although such a theoretical bound is loose and difficult to

compute, in practice, e need not to be very small (typically e = .0001 (lEll, + IIDII.)Ilc-IIl works well).



6

We remark that, for the case n' = n, (e,8)-CS possesses other properties [18], [19], [20] that are useful

for improving method efficiency. The notion of (e,6)-CS also relates to that of e-subgradient [10], [13],

[21], [26],. [31], but the methods based on e-subgradient tend to be impractical, except in some special

cases [13], [31].

3. Estimating the Rate of Dual Ascent

In this section we will use (e,8)-CS to derive a lower bound on the rate of dual ascent. This bound plays

a key role in the generation of good dual ascent directions ("good" in the sense that f(e(1-6))

improvement in the dual functional q can be made along these directions; see Propositions 2 and 5).

Consider any pEl" and any u(Ef. Denote by q'(p;u) the directional derivative of q at p in the

direction of u, i.e.

q(p + Au)-q(p)
q'(p;u) - lim p u)(p)

.,o X

Using (5), q'(p;u) has the more explicit formula

q'(p;u) = uTf + T Tb - L' l.v.- cv. (12)
.'- J Ji'

t . <a. or t.>a. or
J J J J

t.=a., v.<0 t.=a., v.>O

where

t = ETp + DTcp(p), v = ETu +DT, (13)

and tr is the unique vector in n"'-n satisfying

4p(p+Xu) = Q(p) + Xq for X>O sufficientlysmall. (14)

[It is shown in Appendix B that such qi exists and is computable.]

Analogous to (12), (13), we define the following quantity. For any p and u in R" and any rl and n in

R"l-", denote



7

C(p, rl;u,n) =u T f T v+ -b v . C(15)
Jj JJ

a.-t.>e or a.-T;.<-e or
J J J J

laj-jl -e,v.<O aj-<, vi>O

where

= ETp + DTrl v = ETu + DTn (16)

Note that q'(p;u)= C°(p,Q(p);u,lJ), where J is given by (14). The relationship between CE(p,rl;u,n) and

q'(p;u) that is of particular interest to us is the following:

Proposition 2 For any p, u in R" and any rl, n in R"'-" satisfying jID Trl-DT4(p)ll 5- e8,

q'(p+au;u) > Ce(p,rl;u,n) V aE [O,e(1 -8)/0(u)],

where 0(u) = max { Ilvlij I v given by (13) and (14) for some p ).

Proof: See Appendix C. Note that 0(u) is well defined since it can be seen from Appendix B that, for a

fixed direction u, the number of distinct p's satisfying (14) with some p is finite.

Proposition 2 says that, if CI(p,rl;u,ri) > 0 for some rq near 4b(p) and some ri, then u is a dual ascent

direction at p. Furthermore, the line search stepsize in the direction u is at least e(1--)/O(u). We will see

in §5 that, for any (p,rl) satisfying IIDTrl-DT<P(P)llI < c8, if there does not exist a x satisfying (e,6)-CS with

(p,rl) and Ex = f, then there exists (u,n) such that CE(p,rl;u,n) > 0. A result analogous to Proposition 2 is

obtained in [15] for the special case where n' = n.

For computational efficiency, let us express C'(p,rl;u,n) in a simpler form. Let x and (p,rl) be any primal

dual pair that satisfy (e,6)-CS and denote d = Ex-f. Then we have (using (15), (16) and the definition of

(e,8)-CS)

CE(p,r;U,) = UTf+ UTb - vTx v.(i.-x.) - v.(x.-C.)
aj.- Ijl < aj- I <jl 

v.<O v.>O
J J

= uTf + nrb -(urE+nTD)x- v.j(l-xj) - E vj(xj-c)i

lai.- ijl-<8 I aj.- ijl- e

v.<O v.>O
J J



8

- -uTd + vj.(xj.-I) + Vj(XJ-c), (17)
v.< 0 v.> 0
J J

j e-balanced j c-balanced

where the last equality follows from the fact that Dx-b = 0 and d = Ex-f. Computing C5(p,rl; u,n) using

(17) is more efficient than using (15) since the number of e-balanced columns is typically O(n').

4. Tucker Tableaus and the Painted Index Algorithm

In §3 we saw (cf. Proposition 2) that, if (p,rl) and (u,n) are such that CC(p,rl; u,n) > 0 and rl is near cp(p),

then u is a dual ascent direction at p. To generate such (u,rI) for a given (p,l) such that rl is near Pq(p), we

will use two classical results from monotropic programming theory - Tucker tableaus and the painted

index algorithm ([13], Ch. 10) - an algorithm which generates, via pivoting, a finite sequence of Tucker

tableaus the last of which possesses certain special sign pattern. In this section we briefly review these

two results.

Consider the linear homogeneous system

Tx =- 0, (18)

where T is a real matrix of full row rank. Let the jth column of T be indexed by j, and denote the set of

indexes for the columns of T by J. Consider any partition of J into B and N such that TB is an invertible

matrix (this is possible since T has full row rank). The matrix

-(TB) TN (19)

is called a Tucker tableau representing (18) (note that the number of distinct tableaus is finite). The rows

and the columns of -TB'BTN are indexed by the elements of B and N respectively, and every element of B

(N) is said to be in row (column) position. With respect to a given tableau, an index is basic if it is in row

position and nonbasic otherwise. The set of basic indexes is a basis.



9

Tucker tableaus play a fundamental role in the theory of monotropic programming. However, the

following property of Tucker tableaus suffices for our purpose (its proof is straightforward using (19)):

Proposition 3 For a given Tucker tableau, let aij denote the entry of the tableau in the row indexed by

basic index i and the column indexed by nonbasic index j. For any nonbasic j*, the vector z = (...z/...)j j

whose jth component is

1 if JZJ (20a)
z= aj , if j isbasic

0 else

satisfies Tz = O. For any basic index i*, the vector v = (...vj --)j whose jth component is

1 if j=i (20b)
v. = -a if j is nonbasic

0 else

satisfies VT = uTT, where UT denotes the i*th row of (TB)' 1and B denotes the set of basic indexes.

By a painting of the index set J we will mean a partitioning of J into four subsets (some possibly

empty) whose elements will be called "green", "white", "black", and "red", respectively.

For a given tableau, a column, indexed by say s, of the tableau is said to be column compatible if the

colour of s and the pattern of signs occuring in that column satisfies the requirements shown in Figure

1. Note that a column whose index is red is never compatible. The requirements for a compatible row

g w b r

r 0 O O arb = arbitrary

b 0 _ 0 ->0
inc

w O > 0 s O inc = incompatible

g arb arb arb

Figure 1. Column compatibility for Tucker tableau.

are analgously shown in Figure 2.



10

9 w b r

r 0 0 0 arb arb = arbitrary

b 0 >0 _0 arb

w 0 < 0 > 0 arb inc = incompatible

g inc

Figure 2. Row compatibility for Tucker tableau.

The painted index algorithm takes any painting of the index set J and any initial Tucker tableau and

performs a sequence of pivoting steps to arrive at a final tableau that contains either a compatible

column or a compatible row. More explicitly, for any given index s that is black or white, the algorithm

generates a sequence of tableaus, the final one of which has either a compatible column using s or a

compatible row using s (we say that a column (row) uses s if s is either the index of the column (row) or

the index of some row (column) whose entry in that column (row) is nonzero). We describe the

algorithm below:

Painted index algorithm ([13], Ch. 10)

Start with any Tucker tableau. The given white or black index s may correspond to either a row

or a column (s is called the lever index).

If s corresponds to a row, check whether this row is compatible. If yes, we terminate the

algorithm. Otherwise there is an entry in this row that fails the compatibility test. Let j be the

index of any column containing such an entry, and check whether this column is compatible. If

yes, we terminate the algorithm. Otherwise, there is an entry in this column that fails the

compatibility test. Let k be the index of any row containing such an entry. Pivot on (k,j) (i.e.

make j basic and k nonbasic) and repeat with the new tableau. If s corresponds to a column,



11

we act analogously to the above, with the words "column" and "row" interchanged and the

words "basic" and "nonbasic" interchanged.

The Tucker tableau can be recursively updated after each pivot in a manner similar to that for simplex

iterations. Finite termination of the painted index algorithm is ensured by using Bland's priority rule (i.e.

arbitrarily assign priorities to the indexes and break ties in choosing the index to leave/enter basis by

favouring the one with the highest priority), which we will hereon assume is used always.

An important observation we make regarding the painted index algorithm is that each intermediate

tableau generates a vector v via (20b) with i* equal to the lever index, and since the number of distinct

Tucker tableaus is finite, the number of distinct v's that can be generated this way is also finite.



12

5. The Relaxation Iteration

For each primal vector xE Rm, we define the deficit of row i to be

m

d. = e..x - fi
j=1

Let d be the vector with components di ( in vector form d = Ex-f). We define the total deficit of x to

be

n

i=1

The total deficit is a measure of how close x is to satisfying Ex = f (Ex = f if and only if x has zero total

deficit).

Based on the discussions in §3 and §4, we can now formally describe the relaxation iteration for (P)

and (D). Each iteration begins with a primal dual pair x and (p,rl) satisfying (e,6)-CS and Ex t f, and

returns another pair x' and (p',rl') satisfying (e,6)-CS for which either (i) q(p') > q(p) or (ii) (p',rl') = (p,rl)

and (total deficit of x') < (total deficit of x).

Relaxation Iteration

Step 0 Given a primal dual pair x and (p,rl) satisfying (e,6)-CS and Ex ; f. Denote d = Ex-f and select

some row s of E for which d5 * O. In the description to follow we assume that d < 0 . The

case where ds > 0 may be treated in an analogous manner.

Step 1 (Dual Primal Resolution)

Consider the linear homogeneous system (whose columns are indexed from 1 to n' + m)
1,..,n n + 1,...,n' n'+ 1,...,n' +m

0 -I D Y ,

with index i (corresponding to w;), i = 1,...,n, painted



13

white if di > 0,

black if di < 0,

red if di = 0,

with index n+ k (corresponding to y,), k = 1,...,n'-n, painted

red

and with index n' +j (corresponding to z,), j = 1,...,m, painted

green if j is e-balanced and I. < x; < cj,

black if j is e-balanced and Ij = x; < c;,

white if j is c-balanced and Ij < x. = cj,

red if j is not c-balanced or if j is s-balanced and I. = x. = c.

Let the initial Tucker tableau representing (21) be one for which s is basic. Let s be the lever

index and assign the lowest priority to index s (this ensures that s is always basic, as is shown in

Appendix B of [15]). We will call the row in the tableau indexed by s the lever row. Go to

Step 1.1.

1.1 (Dual Ascent Check)

Denote by ahr the tableau entry in lever row and the column indexed by r. Let the vectors u,

nand v be given by:

1 if i=s (22)
u.i = -asi if i isnonbasic, i = ,...,n,

0 otherwise

-a if k + n is nonbasic
r -= s,k+n , k = 1,...,n'-n, (23)
k O otherwise

V. =| ,sj +n' ifj+n' isnonbasicj (24)
iJ O otherwise

If Ce(p,rl; u,n) > 0, go to Step 2. Otherwise go to Step 1.2.



14

1.2 (Primal Rectification Check)

There is an entry in the lever row that fails the compatibility test. Let r be the index of any

column containing such an entry. If this column is compatible, go to Step 3. Otherwise

there is an entry in this column, indexed by some h, that fails the compatibility test. Pivot

on (h,r) and go to Step 1.1.

Step 2 (Dual Ascent Step)

Let X be any stepsize inside [e(1-4)/0(u),X*], where X* is any line search stepsize, i.e.

q(p+X*u) = max {q(p+au) I a >O} .

Set p' - p + Au and compute x' and r' to satisfy (e,8)-CS with p'. Exit.

Step 3 (Primal Rectification Step)

It can be seen from Figure 1 (and the fact that the column indexed by r uses s) that r is either

black or white. Let the vectors w* and z* be given by:

Case 1 If r isoftheform r=i* forsomei*E{1,...,n} and r isblackthen set

: 1 if ii* a j+n'r if j+n' isbasic

W = { air if i isbasic, z j else 

O else

Case2 If r is of the form r=j*+n' for some j*E{1,...,m} and r is black then set

a if i isbasic * i ifj
Wi i ib asz aji +nr ifj+n' isbasic.

t 0O else 0 else
O else

Case 3 If r is of the form r=i* forsomei*E{1 ,...,n} and r is white then set

-1 if i * r - a ifj + n' isbasic

W* = | airif i s basic, z. = n',r
O else0 else



15

Case4 If r isoftheform r=j*+n' forsome j*E{1,...,m}and riswhite then set

W*- { - air if i isbasic * -1 ifj=j
Wi |0 e-a + n',rfJ ' isbasic .

0 else

Let

min c.-x. min I.-x. min -d.
= = min

.>0 . . z <0 Z . O W

and set x' v- x+pz*, p' - p, rl' - rl. Exit.

Validity of the Relaxation Iteration

We show below that all steps in the relaxation iteration are well defined, that x' and (p',rl') satisfy

(e,8)-CS, and either (i) q(p') > q(p) or (ii) (p',rl') = (p,rl), (total deficit of x') < (total deficit of x).

Clearly Step 1.1 is well defined. To see that Step 1.2 is well defined, note that (cf. (20b) and (21)) u, r

and v given by (22)-(24) satisfy v = ETu + DTn. Hence if the Tucker tableau is such that its lever row (row

indexed by s) is compatible, then our choice of index painting, the hypothesis ds < 0, and the definition

of a compatible row (cf. Figure 2) would imply

ds < 0 and asid i > 0 for all i such that i is nonbasic,

xj = Ij for all j such that j is e-balanced and as,j + n' < 0,

xj = cj for all j such that j is e-balanced and as,j + n > 0,

which in view of (17), (22) and (24) implies that CE(p,rl;u,rn) > 0. Therefore the lever row is not

compatible when we begin Step 1.2, so Step 1.2 is well defined. We know that the painted index

algorithm, using Bland's priority rule, terminates finitely with either a compatible row using s or a

compatible column using s. Hence Steps 1.1 and 1.2 can be repeated only a finite number of times

before either Step 2 or Step 3 is entered.To see that Step 2 is well defined, it suffices to show that X*

exists and e(1-6)/O(u) < A*. If A* does not exist, then (cf. concavity of q)



16

q'(p+au;u) > 0 a > O,

which, in view of the piecewise linear nature of q, implies that q'(p+au;u) is bounded away from 0.

Therefore

lim q(p+au)= +o
a -, oo

and Assumption A is contradicted. That e(1-6)/O(u) < X* follows from Proposition 2. To see that Step 3 is

well defined, note that (cf. (20a) and (21)) w* and z* defined in Step 3 satisfy w* = Ez*. Furthermore,

our choice of index painting, together with compatibility of the column indexed by r, guarantee that (i)

Dz* = 0 and (ii) for l > 0 sufficiently small, x+pz* satisfies (e,8)-CS with (p,rl) and x + pz* has strictly

smaller total deficit than x.

(e,6)-CS is clearly maintained in Step 2. In Step 3, the only changes in either the primal or the dual

vector occur in the components of the primal vector whose corresponding column is e-balanced. Since

the amount of change p is chosen such that the new primal vector satisfies the capacity constraints (3),

(e,6)-CS is maintained (the choice of p is the largest for which (e,8)-CS is maintained and the deficit of

each row is monotonically decreased in magnitude).

6. Finite Convergence of the Relaxation Method

The relaxation method that consists of successive iterations of the type described in §5 (for the

moment assume that E is fixed throughout) and terminates when (1) is satisfied is not guaranteed to

terminate finitely. We distinguish the following two difficulties:

(a) Only a finite number of dual ascents may take place because all iterations after a finite number

end up with a primal rectification step.

(b) An infinite number of dual ascents take place.

Difficulty (a) may be bypassed by choosing an appropriate priority assignment of the indexes and

difficulty (b) is bypassed by choosing e to be positive:



17

Proposition 4 If in the relaxation method the green indexes are assigned the highest priorities and the

black and white indexes belonging to {1,...,n}, except for the lever index, are assigned the next highest

priorities, then the number of primal rectification steps between successive dual ascent steps is finite.

Proof: This is a special case of Proposition 3 in [15] where the indexes n + 1 up to n' are always painted

red.

Proposition 5 For any e > 0 and 6E([0,1), the number of dual ascent steps in the relaxation method is

finite.

Proof: Since the number of distinct dual ascent directions u used by the relaxation method is finite

(recall that u is given by the row entries of some Tucker tableau (cf. (22)) and the number of distinct

Tucker tableaus is finite), the number of distinct values of rate of ascent (cf. (12), (13) and (14)) is finite

and so it follows the rate of each dual ascent is lower bounded by a positive constant. By Proposition 2,

the line search stepsize at each dual ascent step is lower bounded by the positive scalar c(1-8)/O, where

0 = max{0(u) I u given by (22) }. Therefore the improvement in the dual functional q per dual ascent

step is lower bounded by a positive constant (which depends on the problem data and E(1-6) only) and it

follows that the total number of dual ascent steps is finite. Q.E.D.

Propositions 4 and 5 together yield the main result of this section:

Proposition 6 If the conditions of Proposition 4 are met, the relaxation method terminates finitely for

any e > Oand 68[0,1).

Since (e,6)-CS holds at all iterations of the relaxation method and the method terminates only if the total

deficit reaches zero, the final primal dual pair produced by the method must satisfying (e,8)-CS and (1).

We can then compute the respective cost of this primal dual pair to see if they are close enough (an



18

a priori bound on this "closeness" is given by (11)) and, if not, to reduce e and repeat. As shown in the

discussion immediately following Proposition 1, if e is sufficiently small, then the final primal vector is

optimal for (P).

8. Algorithmic Variations

For simplicity, we thus far have not paid much attention to refinements that improve the efficiency of

the relaxation method. In this section we consider a few such refinements:

1. (Computation of Ce(p,rl;u,ri))

Since (u, n, v) given by (22), (23) and (24) satisfies v = Eru + DTI, we can compute Ce(p,rl;u,n) in

Step 1.1 using u and v only (cf. (17) ). For sparse problems, CC(p,rl;u,In) can even be updated

instead of recomputed each time the Tucker tableau changes. Alternatively, we can check say

every third tableau (instead of every tableau) for a dual ascent direction. Experimentation shows

that it is typically beneficial to check frequently in the first few iterations.

2. (Dual ascent stepsize)

Perhaps the most efficient scheme for implementing the stepsize rule in Step 2 is to move along

the breakpoints of q, in the ascent direction u, until either the stepsize is sufficiently large or the

directional derivative becomes nonpositive. At each such breakpoint, we can update the

directional derivative (cf. (12), (13) and (14)), as well as the distance to the next breakpoint, using

sensitivity analysis on the cost for the subproblem (4). Some amount of overrelaxation (i.e.

allowing the stepsize to exceed X*) is possible, provided that the increase in the dual functional q

is bounded away from zero. The quantity 0(u) is typically difficult to estimate, except for special

cases such as network flow (in fact, it can be shown that 0(u) < maximum magnitude of an entry

in a Tucker tableau representing (21)).



19

3. (Dynamically adjusting e and 8)

For simplicity we have fixed e and 8 throughout the relaxation method, but it can be seen that

both £ and 8 can be changed immediately after each dual ascent (£ and 8 can also differ from one

component to another). Finite termination will still hold, provided that the sequence of c's is

bounded away from zero and the sequence of 8's is bounded away from 1. In this case, the x and rl

satisfying (e,6)-CS with the current price vector needs to be recomputed after each decrease in

either £ or 8, which may or may not be expensive, depending on the structure of D. Alternatively,

we can fix e at a large value, solve using the relaxation method, decrease c and then resolve, and

so on (while using the same 6 all the time). This technique closely relates to c-scalinq [18], which

improves the complexity of network algorithms in the case where the cost coefficients have large

magnitudes.

4. (Coordinate ascent implementation)

One particular choice of the initial Tucker tableau (in Step 1 of the relaxation iteration) that has

been particularly successful for the case n' = n is

for which the indexes 1 to n' are basic [3], [15], [16]. Since the direction associated with the lever

row s of this tableau (cf. (22)) is the sth coordinate vector in An, this implementation may be

viewed as a generalized coordinate ascent or relaxation implementation whereby coordinate

directions are given priorities as candidate for dual ascent. Computational tests showed that, on

network flow problems without side constraints, the coordinate directions typically contribute

between 80 to 90 percent of the improvements in the dual functional [16].

5. (Convergence for e = 0)

In general, if e is set to zero, the number of dual ascent steps can be infinite, as shown by the

example in [16], Appendix G. The only exception is when n' = n, E is the node-arc incidence matrix



20

for an ordinary network, and both the cost vector and the initial price vector are rational.

Alternatively, we can place additional restrictions on the relaxation iteration in a manner

reminiscent of the out-of-kilter method ([13], §1 1 K):

(a) Use only dual ascent directions those given by a compatible lever row, and then move along

the dual ascent direction only as far as the first breakpoint of q encountered.

(b) Assign higher priorities to black or white indexes of the form i, iE{l,...,n}, except for the

lever index, over black or white indexes of the form n'+j, j E {1,...,m}.

(c) If the previous iteration terminated with a dual ascent, use the same lever index as in the

previous iteration and use the final tableau from the previous iteration as the initial

tableau.

It can be shown that, under the conditions of Proposition 4 and the above modification, the

relaxation method terminates finitely for c= 0 (the proof of this is however quite long [17]).

Experimentation for the special case where n' = n [15] suggests that it is typically beneficial to

implement this modification only after a sufficiently large number of dual ascent steps have been

performed. We remark that the modified relaxation method differs from the out-of-kilter

method in that it does not require the same lever index (which always corresponds to a row of E

in our case) be used at successive iterations until the corresponding deficit reaches zero, but in its

place it requires modification (b).

6. (Tucker tableau storage)

For large problems, it would be inefficient to store and update the entire Tucker tableau

representing (21) in Steps 1.1 and 1.2. Below we present three techniques for reducing this

storage: (a) column elimination, (b) product form of the inverse, and (c) row factorization:



21

(a) Since no entry in a Tucker tableau column whose index is red can fail the row compatibility

test (see Figure 2), this column can be eliminated from consideration until a dual ascent is

made. Since the number of non-red indexes is at most n + (number of e-balanced columns)

and the number of c-balanced columns is typically O(n'), for £ small (see [15], [16]), we

would typically need to store only O(n') columns of each Tucker tableau.

(b) Analogous to the revised simplex method [4], [22], each sequence of pivots can be

represented by a sequence of n' x n' matrices, each of which differs from the identity in only

one column. By storing this sequence of matrices (which can be stored compactly by storing

only the nonzero entries), we only have to store and update the lever row of each Tucker

tableau. The tableau column whose index is to enter the basis (namely index r) can be

computed by multiplying the corresponding column in the matrix appearing in (21) by the

above sequence of matrices. Moreover, only those entries in rows whose corresponding

index is non-green need to be computed (since no entry in a Tucker tableau row whose

index is green can fail the column compatibility test (see Figure 1)). Since the number of

pivots (until either Step 2 or Step 3 is entered) is typically much smaller than n' [15], [16],

storing the above sequence of matrices is quite efficient.

(c) Suppose that D has relatively few rows and the Tucker tableaus representing the reduced

system

[-I E] [ z

can be stored and updated very efficiently (perhaps using the techniques in (a) and (b)).

Then we can apply a factorization scheme of Rockafellar ([13], Ch. 10F), whereby pivoting is

done only on those rows of the Tucker tableaus representing (21) that correspond to D and

on the Tucker tableaus representing the above reduced system. We will discuss this scheme

in greater detail in §8, together with an application to network flow with side constraints.



22

8. I Network Flow with Side Constraints

In this section we review a factorization scheme of Rockafellar ([13], Ch. 10F) for decomposing Tucker

tableaus by row and we apply this scheme to the special case of (P) where E is the node-arc incidence

matrix for a directed network. By exploiting the network structure of E, we show that most of the

Tucker tableaus can be stored and updated using the data structure for this network only.

Consider the following two tier linear homogeneous system

Fo x = 0, (25)
where

F xz:_ 0 (26)

is the auxiliary system. Consider any Tucker tableau representing (25)

[ A'
where we have partitioned the tableau row-wise to correspond to a partition of its basis such that the

indexes corresponding to the rows of A" form a basis for the auxiliary system (26). Thus if we let B", B'

and N denote the subset of indexes that are respectively basic for (26), nonbasic for (26) but basic for

(25), and nonbasic for (25), then

XB. = A 'RN , -tBBT = AnxNx .(27a)
XB' = AXN ' XB" = AXN

Furthermore, let

[ A 0 Ao

denote the Tucker tableau representing (26) for which B" is a basis and whose columns are partitioned

into A 0' and AO to correspond to B' and N respectively. Then

XB = A XB + AO N . (27b)

Combining the first equality in (27a) with (27b) we obtain that

XB. = (A' A' + AO)XN '

which, togetherwith the second equality in (27a), imply

A" = A'A' + A. (28)



23

Eq. (28) essentially states the Factorization Theorem in Ch. 10F of [13]. It allows us, instead of

maintaining A' and A", to maintain A', A 0' and A. and compute the columns of A" only when needed.

This is computationally attractive when A" is dense while [ A0' AO ] is sparse. Note that if an element of B'

becomes nonbasic during a pivot, only A' needs to be updated, while if an element of B" becomes

nonbasic during a pivot, then, after updating A', it will be necessary to also update [ A0' A 0 ]. In the latter

case, it may be necessary to also exchange an element of B' with the index just pivoted into B" in order

that B" remains as a basis for the auxiliary system (26). We will apply the factorization (28) to the system

(21) with

F= [O -I D], F 0 =[ -I E].

This choice of factorization allows us to efficiently store [ A0' A0 ] in terms of a spanning tree on the

original network and to avoid storing A", which has a large number of rows and is not necessarily sparse.

Alternatively, we may apply the factorization scheme with F = [ -I 0 E ] and FO = [ 0 -I D i, but this

can be computationally expensive (since E typically has many more rows than D) unless A' is stored using,

say, the product form of the inverse (cf. note 6 in §7).

We will assume that E is the node-arc incidence matrix for a connected, directed ordinary network G,

whose nodes are numbered from 1 to n and whose arcs are numbered from n'+1 to n'+ m. In other

words,

1 if there exists an arc n' +j leaving node i,
e . = -1 if there exists an arc n' +j entering node i,

0 otherwise.

Let us add to G a node n+ 1 and an arc i joining node n+ 1 to each node i (i = 1,2,...,n) and call the

resulting network G' (we will refer to the nodes and the arcs by their numbers). We first give a network

characterization of [A0' A0]. Since [A0' A0] is a Tucker representation of

[ 0E [ 1= (29)-IO E Y =0

(the columns of [-I 0 El we index from 1 to n' + m) and its dual, whose basis is characterized by a spanning

tree T on G' rooted at node n+ 1 (see [13], Ch. 10C), we can compute the nonzero columns of [A0' A0]

directly using T. More precisely, the arcs in T form B" and the arcs not in T form (B'UN) \ {n + 1 ,...,n'}.



24

Entries in the nonzero columns of [A 0' A0] are given by (letting aij° denote the entry correspond to arc i

in T and arc j not in T)

0 1 if i is in unique cycle of TU{j} and is oriented in same direction as j,
a.. -= 1 if i is in unique cycle of TUj} and is oriented in opposite direction as j,

0 otherwise.

We will assume that T is stored in an array whose kth entry records the arc joining node k to its

immediate predecessor in T. To compute aij ° for each arc i in T and each arc j not in T requires

tracing backwards along the path from the root to each end node of j in T to see if the unique cycle of

TU{j} contains i. The greatest work however comes from performing a pivot where we exchange an

element of B" for an element of N and the resultant B" does not form a basis for the auxiliary system

(29), in which case we have to find an element of B" and an element of B' whose exchange would make

B" a basis. More precisely, let i (j) denote the arc of G' that is to be pivoted out of B" into N (out of N into

B") and suppose that the unique cycle in TU{j} does not contain i. Then there exist an arc k in B' that

connects the two components of T \{i} (since (B'UB"U{j})\{i} forms a basis for (25), it must contain a

subset that is a basis for (29)). Then (B"U{kl) \{i} forms a basis for (29) and (B'UB"U{j}) \{i} forms a basis

for (25) (see Figure 3). However, to find such k requires searching through the elements of B' to find an

i 7

Figure 3. If the unique cycle in TU{j} does not contain i, we must find some k

in B' to replace i in Tinstead of j (the dark arcs comprise T).

arc that joins the two components of T\{i}. A simple scheme for this is to, for each element k in B', trace

backwards along the path in T from the root to each end node of arc k to see if the unique cycle of

TU{k} contains i (if yes, then we use k). However, if n'-n = (cardinality of B') is large or if T has large

depth then more sophisticated data structures and algorithms would be needed. Techniques used by



25

dual simplex methods may be useful here since finding a k that connects the two components of T\{i} is

analogous to a dual simplex pivot.

We remark that D sometimes possesses special structure which makes solving (4) easier. One such

example is the multicommodity network flow problem [1], [7], ([13], Ch. 1 OF) for which E has the form

E'"

where E"a nistend r i1eE"

where E", say n" x m", is the node-arc incidence matrix for some directed network and D has the form

D [I I ... Ij,

where I denotes the m" xm" identity matrix. Subproblem (4) then decomposes into m" disjoint

subproblems, where the jth (j = 1,...,m") subproblem has the form

K

Minimize (a (E.) P)X.
r =1

subject to x + +x + .. + K = b.

r Xr < r r=,, K
J J J

and K = m/m" denotes the total number of distinct commodities, Ej" denotes the jth column of E", xjr

denotes the flow of the rth commodity on arc j, pr denotes the price vector associated with the

constraint E"xr = ,..., etc. In general, if D is block diagonal with K blocks along its diagonal then (4)

decomposes into K subproblems.

9. Conclusion and Extensions

We have presented a new dual ascent method for linear programming, based on (E,8)-CS, that

decomposes the problem in a manner similar to Lagrangian relaxation. This method uses inexact line

search, terminates finitely for any e > 0, E([0,1), and produces a primal dual pair within O(e) of



26

optimality. For the special case of network flow problems with side constraints, it can be efficiently

implemented using network data structures.

The relaxation method also extends directly to the case where some of the constraints are inequality

constraints. In this case the dual variables associated with the inequality constraints are constrained to

be nonnegative. This method perhaps also extends to monotropic proqramming problems [13], but

more work are needed. Although it may be interpreted as a primal dual method, the relaxation method

differs quite substantially from either the primal dual ascent [29]-[31] or the out-of-kilter method [13].

The relaxation method generates dual ascent directions more rapidly, solves each subproblem to within

O(s6) accuracy, and owes its convergence to an Q(E(1-8)) improvement in the dual cost per iteration.

Furthermore, experimentation on ordinary network flow problems [3], [16] suggests that the relaxation

method may be an order of magnitude faster than the primal dual ascent method.



27

Appendix A

In this appendix we show that, for any xE Rm and (p,ql) E {n satisfing (e,§)-CS,

O < aTx + pT(f-Ex)--q(p) < (j-Ij). (A.1)
j=1

Proof: Since (cf. (7)) Dx = b,
a x =T T -nTDX + rITbF (A.2)

a x =a x -- TDx+ Tb.

Let

a = a-ETp-DTr, = a-ETp- DT4(p).

Then (A.2) and (6a)-(6c) imply

a x-pTEx = b + j aj.L + a .c. + a .x.. (A.3)
a.>e a.<- -E -Ea. e
J J J

Since (cf. (8)) IIDTr-D Tp(p)L-< c S _< , we have

3j > 0 ifa. > e,

Pj < O if a < -e.

This together with (cf. (5))

q(p) = pTf+ 4 (p)Tb + p iL + f.cj + P jy,

i, >0 i< Ij -o

where y = (...yj...) is any primal vector satisfying (0,0)-CS with (p,4p(p)) (so b-Dy = 0), imply

q(p) = pTf+ p(p)Tb + Z 1.1 + C fj.c + P yyj
a.>e a.<--e -e-a.- E

J J J

Tf_ _ _+ (A.4)
pTf+qTb + a.l + a + _ a +c .+

a >E a.<-E -£5a.S£
J J J

where the last equality follows from (rl-((p))T(b-Dy) = 0. Combining (A.3) with (A.4), we obtain

aTx + pT (f-Ex) - q(p) = a(xj-yj),
-e<a. <

from which it follows that

aTx + pT(f-Ex) -q(p) < e (c -I.)
j=1



28

and the right hand inequality in (A.1) is proven. To prove the left hand inequality, we note that, since

Dx = band I < x s c, (4)impliesthat

q(p) = p Tf + min{(a- ETp) T ,T D= b, 1< c} < pTf + (a - E Tp) x.

Q.E.D.



29

Appendix B

In this appendix we show that, for each pER" and uE Rn, there exists a (n'-n) x n real matrix L from a

finite set that satisfies

4(p+Au) = 4(p) + A(Lu) for A > 0 sufficiently small,

where 4b(p) denotes the optimal dual solution to the subproblem (cf. (4))

Minimize (a-ETp)Tx (p))

subject to Dx = b, 1 < x < c

Proof: Let B denote the optimal basis for Q(p'), where p' is p perturbed in the direction u. Then, for

sufficiently small positive X, B is an optimal basis for Q(p+Xu) and the corresponding optimal dual

solution is

'(p+ Xu) = (D )Tr (B. 1)B B'

where r denotes the cost vector of Q(p + Au), i.e.

(B.2)
r = a -ET(p+Au).

Combining (B.1) with (B.2), we obtain

1 E T± -iT T -1iT T -1
:)(p+u) = (DB ) (aB - E(p+Nu) ) = (DB ) (a -EBp)- X(D ) E - p(p))- X(EBDB ) UB BB B B B B

It follows that

L =-(EBDB ).

(Note that the above analysis suggests a way to update )(p+ Xu) as A changes by updating the optimal

basis for Q(p+ Au).]



30

Appendix C

In this appendix we show that, for any p, u in R" and rl, n in tn'-n such that IIDT-r-DT((p) Lj - < e8, ( -> O,

E [0, 1)),

q'(p+au;u) 2 CC(p,rl;u,nr) V aE[O,(1-8)/O(u)],

where 0(u) _ max { Ilvill I v given by (13) and (14) for some p }.

Proof: Let y be a primal vector that satisfies (e,rl)-CS with p, let a be a fixed stepsize in [O,(1-6) /0(u) ],

and let x be a primal vector that satisfies (0,0)-CS with (p+au,4(p+au)). For notational simplicity denote

p' = p + au, t' = ETp' + DTP(p') and t = ETp + DTrl. Then (cf. (15) and (16))

C,(pri;u,n)= T f+ T b _ v.I - v .1 - c.- v. v. (C.1)
a.- t.>E a.- tjl'e a.- t.<-E la.- tj '
iJ J J Ji

v.<O v.>O
J J

where

r =Eu±T (C.2)v = E'u + D n,

and also (cf. (12), (13), (14))

q'(p';u) = UTf+Tb - v 1. - VC. - uc C. (C.3)

a.- t.>O a.- t.=O a.- t.<O a.- t.=O
J J JJ J J J J

v <0 v.>O
J J

where
(C.4)

v = ETu + D T(C

and TJ satisfies

p(p' + X u) = 4P(p') + AX for A > 0 sufficiently small.

Using (C. 1), (C.2) and the fact

1j. Vj aj tj>E (C.5)
j c Cj ) Vjand Dy-b = 0O

we obtain that

Ce(p ,;Un) =u Tf + -Tb - v..- Vjy . V.C
a.- t.>e la.- tj|'e a.- t.<-e

------ ------ ----- ------ -----ii ii-



31

- v3 (-j -Y v .(c. -y)
la.- t91-- Ia.- t91-eJ J

v.<O v.>O
J J

Tf - (ET')j , (ETU)Yj- (ETa- 
a.- t.>E a.- t.j a. t.<-

Ja-j J JJ

la- t < laj.- tj- e

v.<O v.>O
J J

On the other hand, x satisfies (O,O)-CS with (p',4i(p')) and therefore

I a- t' .>0,
x. V= a- and Dx-b =O.

From the definition of O(u) we have

IIt'-(ETp+DP(p'))1 1 •_ aO(u)

which, together with the hypothesis IIDT'r-D T p(p))l1 - le and a _ E(1-6) /8(u), imply that

II(a-t')-(a-t)l1 < a0(u)+e8 < e(1-8)+e5 = e.

It follows that

a.- t'. > 0 if a.-t. > e,
JJ J J

a.-t' < 0 if a- t < -e,

Then combining (C.3), (C.4) with (C.8), we have

q'(P';u)= T T ' (ETEu)xT.

a.- t.>e la.- tIl< tj a.- t.<tj'

C8 .prl;un) - q'(p';u) (E. (ET)(y.-x) - v.(l..-Y.)- V V(C.-Y.).

v.<O v.>O
J J



32

Since b-Dy = O0 and b-Dx = 0, we have D(y-x) = 0, so nTD(y-x) = O0. This together with (C.5) and (C.8) imply

J 3o = (D .)%j-x i.. (C. 1 O)
laj- tj-<e

Adding (C.10) to CE(u,n,p)-q'(p';u) gives

C'(p,rl;u,n)-q'(p';u) = . j-yj) + vfYj-) + .) vj(yj-c.)
Ia.- tjl <s laj- tjl -< I -a tjl -<E

J J

= Vj(xj.-lj) + , .v(XC. -)(C1)
la.- tjl. e lai- tjl-eC

v.<O v.>O
IJ 

The right hand side of (C. 11) is nonpositive and therefore

q'(p';u) 2 C8 (p,rl;u,n).

Q.E.D.



33

References

[1] Assad, A. A., "Multicommodity Network Flows - A Survey," Networks, Vol. 8, pp. 37-91 (1978).

[2] Bertsekas, D. P., "A Unified Framework for Minimum Cost Network Flow Problems," Mathematical

Programming, Vol. 32, pp. 125-145 (1985).

[3] Bertsekas, D. P. and Tseng, P., "Relaxation Methods for Minimum Cost Ordinary and Generalized

Network Flow Problems," LIDS Report P-1462, Mass. Institute of Technology (May 1985; revised

September 1986), Operations Research J., Vol. 36, pp. 93-114 (1988).

[4] Dantzig, G. B., Linear Programming and Extensions, Princeton Univ. Press, Princeton, N.J. (1963).

[5] Golden, B. and Magnanti, T.L., Network Optimization, currently in draft form.

[6] Jewell, W. S., "A Primal Dual Multicommodity Flow Algorithm," Operations Research Center

Report 66-24, University of California, Berkeley (1966).

[7] Kennington, J. L., "A Survey of Linear Cost Multicommodity Network Flows," Operations Research,

Vol. 26, No. 2, pp. 209-236 (1978).

[8] Magnanti, T., "Optimization for Sparse Systems," in Sparse Matrix Computations (J. R. Bunch and

D. J. Rose, eds), Academic Press, New York, pp. 147-176 (1976).

[9] Magnanti, T. and Golden, B., "Deterministic Network Optimization: A Bibliography," Networks,

Vol. 7, pp. 149-183 (1977).

[10] Rockafellar, R. T., Convex Analysis, Princeton Univ. Press (1970).

[11] Rockafellar, R. T., "Monotropic Programming: Descent Algorithms and Duality," in Nonlinear

Programming 4, by O. L. Mangasarian, R. Meyer, and S. Robinson (eds.), Academic Press, pp. 327-

366 (1981).

[12] Rockafellar, R. T., "The Elementary Vectors of a Subspace of RN," in Combinatorial Mathematics

and Its Applications, by R. C. Bose and T. A. Dowling (eds.), The Univ. of North Carolina Press,

Chapel Hill, N. C., pp. 104-127 (1969).

[13] Rockafellar, R. T., Network Flows and Monotropic Programming, Wiley-lnterscience (1983).

[14] Tarjan, R. E., Data Structures and Network Algorithms, Society for Industrial and Applied

Mathematics, Philadelphia (1983).



34

[15] Tseng, P. and Bertsekas, D. P., "Relaxation Methods for Linear Programs," Mathematics of

Operations Research, Vol. 12, pp. 1-28 (1987).

[16] Tseng, P., "Relaxation Methods for Monotropic Programming Problems," Ph. D. Thesis, Operations

Research Center, MIT (1986).

[17] Tseng, P. and Bertsekas, D. P., "Relaxation Methods for Linear Programs with Side Constraints,"

LIDS-P-1696, Laboratory for Information and Decision Systems, MIT (1987).

[18] Bertsekas, D.P. and Eckstein, J., "Distributed Asynchronous Relaxation Methods for Linear

Network Flow Problems," LIDS-P-1606, Laboratory for Information and Decision Systems, MIT

(1987); to appear in Proceedings of IFAC '87, Pergamon Press (1987).

[19] Tardoz, E. "A Strongly Polynomial Minimum Cost Circulation Algorithm,"Combinatorica, Vol. 5,

pp. 247-256 (1985).

[20] Tseng, P. and Bertsekas, D. P., "Relaxation Methods for Monotropic Programs," LIDS-P-1697,

Laboratory for Information and Decision Systems, MIT (1987).

[21] Bertsekas, D. P. and Mitter, S. K., "A Descent Numerical Method for Optimization Problems with

Nondifferentiable Cost Functionals," SIAM J. Control, Vol. 11, pp. 637-652 (1973).

[22] Murty, K.G., Linear Programming, Wiley & Sons (1983).

[23] Polyak, B.T., "A General Method for Solving Extremal Problems," Sov. Math. Dokl., Vol. 8, pp. 593-

597(1967).

[24] Polyak, B.T., "Minimization of Unsmooth Functionals," USSR Comput. Math., pp. 509-521 (1969).

[25] Demyanov, V.F., "Algorithms for Some Minimax Problems," J. Comp. Syst. Sci., Vol. 2, pp. 342-380

(1968).

[26] Shor, N.Z., Minimization Methods for Non-Differentiable Functions, Springer-Verlag (1985).

[27] Held, M., Wolfe, P. and Crowder, H., "Validation of Subgradient Optimization," Mathematical

Programming, Vol. 6, pp. 62-88 (1974).

[28] Oettli, W., "An Iterative Method, Having Linear Rate of Convergence, for Solving a Pair of Dual

Linear Programs," Mathematical Programming, Vol. 3, pp. 302-311 (1972).



35

[291 Grinold, R.C., "Steepest Ascent for Large Scale Linear Programs," SIAM Review, Vol. 14, pp. 447-

464(1972).

[30] Fisher, M.L., Northup, W.D., and Shapiro, J.F., "Using Duality to Solve Discrete Optimization

Problems: Theory and Computational Experience," in Mathematical Programming Study 3:

Nondifferentiable Optimization (Balinski and Wolfe eds.), pp. 56-94, North-Holland (1975).

[31] Lemarechal, C., "An Algorithm for Minimizing Convex Functions," in Information Processing

(Rosenfeld, J.L. ed.), pp. 552-556 (1974).

[32] Murty, K.G., LinearProgramming, John Wiley & Sons (1983).

-- , . . X ------- ~


