
SEPTEMBER 1988 LIDS-P- 1750

Guaranteed roperties for Nonlinear Gain Scheduled Conmrol Sysvems

Jeff S. Shamma
Michael Athans

Laborator. for Information and Decision Systems
Massachusetts Institute of Technology / Rm. 35-406

Cambridge, MA 02139

Abstract

Gain scheduling has proven to be a successful design methodoiogy in many The remainder of the paper is organized as follows. In Section Z the
ennee.rmag appiications. However in the absence of a sound anaivsis. these notation and some mathematical preliminaries are given. Furthermore, a
designs come with no guarantees on the robustness, performance. or even brief review of the results found in [10] regarding stabilirv of linear time-
nominal stability of the overall gain scheduled design. This paper presents varvnmg Volterra interodifferential equations is presented. Sections 3 and 4
such an analysis for two nvoes of nonlinear gain scheduled controi svsanns: discuss the two gain scneduling situations to be addressed Tev are.
(1) scheduling on a reference trajectory and (2) scheduling on the plant respectively, (1) a nonlinear plant scheduling on a reference trajectory and
output. Conditions are given which guarantee stability, robustness, and (2) a nonlinear plant scheduling on the plant output. Conditions are given
performance properties of the global gain -scheduled designs. These which guarantee stability and robustness, performance properties of the
conditions confirm and formalize popular notions regarding gain scheduled global gain scheduled designs. Finally, concluding remarks are given in
designs, such as the scheduling variable should "vary slowly" and "capture Section 5.
the plant's nonlinearities." These results extend previous work by the For the sake of brevity, only sketches of proofs are given throughout
authors which addressed the case of linear plants whose dynamics depend
on exogenous parameters. Section 2. Background Material

Section 1. Introduction A. Noaznion and Marhe.rmaca! Preimirnaries

Gain scheduling is a popular engineering method used to design
P.+ denotes the set { t E R- I t > 0}. I - I denotes both the vectorcontrollers for systems with widely varying nonlinear and/or parameter

dependent dynamics. The idea is to select several operating points which
., in norm on R. and its induced matrix norm.

cover the range of the plants dynamics. Then, at each of these points, the
designer makes a linear time-invariant approximation to the plant and I Df denotes the derivative of f: .n - SR.m. D if denotes the
desirns a linear compensator for each linearized plant. In between opeatig derivative with respect to the ng variable of
points, the parameters (gains) of the compensators are then interpolated, or
scheduled thus resulting in a global compensator. f: Ral x R, x _. x R.i' X ... x R- -- Ram (2-1)

Despite the lack of a sound theoretical analysis, gain scheduling [11] is
Letf: R -4 R Df demotes the Dini derivative off defined by

a design methodology which is known to work in a myriad of operating
control systems (e.g. jet engines , submarines, and aircraft). However in flx + h) -flx)
the absence of such an analysis, these designs come with no guarantees. D ) imsup h (2-2)
More precisely, even though the local operating point designs may have
excellent feedback properties, the global gain scheduled design need not

Let f: R+ - R.'. f denotes the Laplace transform of f. P T denotes
have any of these properties (even nominal stability). In other words, one
typically cannot assess a priori the guaranteed stability, robustness, and the standard truncation operator on f. WT denotes the truncation and
performance properties of gain scheduled designs. Rather, any such exponential weighting oerator on f defined by
properties are inferred from extensive computer simulations.

In the place of a sound theoretical analysis, a collection of intuitive e ,t <f( 3, z c T
ideas have developed into heuristic guidelines for gain scheduled designs. (Wf)(t) = (2-3)
For example, two common rules of thumb are "the scheduling variable
should vary slowly" and "the scheduling variable should capture the plant's
nonlinearities." Thus, a sound analysis would prove very useful in better

understanding these designs. Lebesgue function spaces. Similarly, Cp,p E [1, ,], denote the
In an earlier paper [10], such an analysis was performed for a special

class of gain scheduled control systems, namely linear plants whose appropriately summable sequence spaces. B denotes the set of functions
dynamics depend on exogenous parameters. In this paper, the results in such that
[10] are extended to analyze two nonlinear gain scheduling situations: (1) a
nonlinear plant scheduling on a reference trajectory and (2) a nonlinear plant 11 f 11 sup I f(t) I < (2-4)

scheduling on the plant output. In both cases. the analysis confirms and t 
formalizes the popular notions regarding the design of gain scheduled
control systems and enables one to give gu.rantees on the stability. B denotes the set of functions such tha Pf P B , V T R--.

roebusmess. and performance of gain scheduled designs. In this sense. the
k&(n denotes the set whose eiernents are of the form

anaiysis can be used towards the ultimae goal to develop a compiete and
systemanti m schedling desiEn friamzworkL
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whret.,: e f, ti > 0, iE and t

x(t) = A x(t) + f B A(t - I) C x() dr, t > to (2-13)

Ilfll )f- if (t)e Idt+ If/e I< (2-6) 0
AIVZO at) i. iO 0 with initial condition

For any two elements of A(c),f* g denotes the convolution off and x :" = Q(), 0 < ' < E (2-4

g, a"(c) denotes the set of n by m matrices whose elements are in x(t) = (o!

A sufficient condition for exponential stability is that there exist a constant

,z(c-). Let A AlXm(Co) and let A' E Rnzm as .'.j = j ll(). B > O such that

s -4(I .A - B (S)j C (-2 ) (2-15

Then define II A II,( A- IA' I. Finally, A(a) and ,-(a) are defined (2-16,

as tme set of Laplace transforms of elements of A(a') and A""(at. where the rate of d'eav is ,/2.

resp,.-tiveiv. For further detaiis on AY4ca) and .4ttcr), see [2, 6].-rspectively. For further details on-Aoa) arid Aita', see [2. 6]. Finally, the following theorem gives a sufficient condition for
exponential stability of (2-7) in the case where (2-7) is exponentially stable

B. Linear Volterra Integrodifferential Equations for all frczen-values of time. This generalizes a standard result for ordinary

differential equations [e.g. [6]).
This section presents background material for equations of the form

Theorem 2.2[10] Consider the VIDE (2-7) with initial condition (2-8)
x(t) = A(t) x(t) + f B(t) A(t - r) C(r) x(r) dr, t > to (2-7) under Assumption 2.1. Now define the following measure of the time-

0 variations of (2-7):
with initial condition

K - LA + LB I A II,4( kc + k A II A 11 Lc (2-17)

x(t)= 9(), 0 < t < t(o , A E { xQr=) 0( , 0 • r< to, O (2-8) Fminally, assume that there exists a constant / > 0 such that

, x( ) sI- A(z)-B( sr) C(S) C(t) ) (-2) VT R (2-18)

where it is assumed that for some a > 0, A E A(G).
These equations are known as linear time-varying Volterra A E .(-2/) (2-19)

integrodifferential equations (VIDE's). VIDE's and their stability have been Under these conditions, given any 77 e (0, P ), (2-7) is exponentially
studied in [3, 4, 8, 10] and references contained in [5]. In this section, the stable with a rate of decay 7,/2 for sufficiently small K, or equivalently for
assumptions on (2-7) are given, a definition of exponential stability is sufficiently slow time-variations.
presented, and sufficient conditions for exponential stability are given in
both cases of time-invariant or time-varying A, B, and C matrices. Further Note that (2-18)-(2-19) imply exponential stability for all frozen-values of
details may be found in [10]. time using Theorem 2.1.

The following assumption is made on (2-7):
Section 3. Scheduling on a Reference Trajectory

Assumption 2.1 A, B, and C are bounded and globally Lipschitz A. ProbmStat nt
continuous. Thus, there exist constants kAB,c and LAB, C > 0 such

that V t, -r R' Consider the block diagram of Fig 3.1. This figure shows a standard

lIA(t) l < kA, I A(t) -A(qr) I LAI t- (2-9) unity feedback configmration in which the command trajectory, r*, is
I A(t) 1 I < k, I A(t) - A(T)i I < LAI - ·ri (2-9)

generated by passing a reference control signal, u*, through a model of the
lB(t) I < kB, IB(t) - B(x) I < LBI t- rl (2-10) plant, P,. This may be the outcome of a nonlinear optimal control
I C(t) I S kcC, I C(t) - C(zt) I S Ld t - rl (2-11) problem, or some other off-line design process. The control input. u, to the

actual plant. P, then consists of the reference control, u*, and a small

pe'rturbational control, 5u. In the ideal situation of no modeling errors.

.Definition 2.1 The V E (2-7) with initial condition (2-8) is said to be .disturbances, or other uncertainties, the perturbational control 6u = 0, andDefinition 2.1 The VIDE (2-7) with initial condition (2-8) is said to be
perfect command tracking is achieved, i.e. v = r*.

exponentially stable if there exist constants m, )., and / > 0 where P/
Such perfect knowledge is rare, hence the need for feedback and

2 A such that for t 2 to compensator design. Now consider the block diagram of Fig. 3.2. This

- (i -t ) diagram represents the feedback system of Fig. 3.1 in the presence of three
Ix(t) I < me I11,0 0 (2-12),I x(t) I - modeling errors : (1)j , unnodeied sensor dynamics, (2) A,y unmodeied

actuator dynamics. and (3) Ap, an artificial uncertainty which corresponds

It is stressed that the constants m. i, and /3 are independent of the initial to a performance speficanion see [7] for a detailed discussion on how
condition (c. !)!. The convention B > X follows from the reasoning tina various performance specifications can be put into the form of artificial

untmcrinamties).solutions to (2-7) cannot decay fast- than they are forgortt. is,
A gain scheauied aproach to contol desin for Fg. 32 would be as

follows. Let the plant model. P. be given by
In the case of rime-invarian: A. B. and C matrices. one has the

following condition for exponentiai stability. x(r = ftx(:)) - B u(t), x(0) = x 5 -1

y(t) = C x(t) (y-2
Theorem 2.10] Consider the time-invariant VIDE Euaions (3-1)-(3-2) are quite genral smece many systems may be put into



-3-

jus state-space reaczatior

PuK u xt t) = At(t) Xk(t) + Bk(t) e(t) (3-13)

bu(t) = Ct(z) xt(t) (3-14)
Using (3-8)-(3-10) along with (3-13)-(3-14), the feedback equations of Fig.
3.2 are given by

Figure 3.1 Scheduling on a Reference Trajectory r. 1
Dfx)) B Ck(t)l I A I 8

k (t) -B() C A(t) x L 0 , +)

usrX +t 1 716u*7 fl~r Iv(3-15)

the above form by selecting state variables as outputs and augmenting ( - (

dynamics at the plant input. Applying the reference command input. u*,
.A- = A~* A (3-17)

x*(t) = f(x*(t)) + B u*(t), x*(0) = xo* e R
n (3-3) PY P Y

r*(t) = V*(t) = C x*(t) (3-4) Rewriting (3-15),

Now, define

5x(t) = x(t) - x*(t) (3-5) z(t) = A(t) z(t) + B(t) A(t - T) C(r) z(T dr+ 8F(t, z(t)) + d(t) (3-18)

By(t) = (t) -y*(t) (3-6)

5u(t) = u(t) - u*(t) (3-7) where A, B, C, 5F, A, and d are defined in the obvious manner. Note

Then, subtracting (3-3) from (3-1) and linearizing about x*(t), that the feedback equations may be decomposed into (1) a linear time-
varying VIDE, (2) a nonlinear residual of the linearization, and (3) an

8x(t) = Df(x*(t)) 5x(t) + B Bu(t) + 5f(t, 5x(t)), (3-8a) exogenous disturbance.

8x(0) = xO - ex* E AR (3-8b) The stability of (3-18) will be shown as follows. Recall that the
compensator (3-13)-(3-14) was designed so that the VIDE

6y(t) = C ox(t) (3-9)

where 
z(t) = A(t) z(t) + jB(t) A(t - r) C(Qr z(r) d (3-19)

6f(r, 5x(t)) = f(x(t)) - { f(x*(t)) + Df(x*(t)) 8x(t) } (3-10) o

These equations may be decomposed into (1) a linear time-varying plant and is stable for all frozen A, B, and C. Using results from Section 2-B, it

(2) a nonlinear residual from the linearization. Let 8P denote the nonlinear is shown that (3-19) is exponentially stable for sufficiently slow time-
e-varying perturbational plant (3-8)-(3-10). Furthermore, let variations. Given this time-varying exponential stability, a Lyapunov

functional for (3-19) is constructed. This generalizes the concept of
denote the linearfrozen-imne plant

'Converse Theorems of Lyapunov' for ordinary differential equations (e.g.

ox(t) = fDf(x*(r)) ox(t) + B Bu(t), ox(0) = xo - xo* E Ra (3-11) [1, 9]). This Lyapunov functional is then used to give guaranteed stability

by(t) = C 5x(t) (3-12) margins for (3-18).

Then a gain scheduled approach would be to design a compensator for (3- Step 1 Slowly Time-Varying Stability of (3-19)

: 11)-(3-12) so that for allfrozen-values of time, the feedback system of Fig.

3.3 achieves robust stability and robust performance. Since (3-19) is precisely the class of equations addressed in Section 2-
B, one can use Theorem 2.2 to guarantee stability for sufficiently slow

time-variations as follows:

40+ K_ i+y sP I+Assumption 3.1 The matrices A, B, and C satisfy the boundedness

and Lipschitz continuity conditions of Assumption 2.1.

Assumption 3.2 There exists a constant /3 > 0 such that V re RC+

Figure 3.3 Diagram for Frozen-Time Compensator Design -
s ( sI -A(z) - B() A(s) C(r) ) e ,A (-2/3) (3-20)

Since the original plant model, 5P, is nonlinear and time-varying, none A(-2) (3-21)

of the desired feedback properties - including nominal stability - of the
frozen-time designs may be present in the overall gain-scheduled system. In

Section 3-B. conditions are wien which guarantee the robust stability and The following theorem is a direct consequence of Theorem 2.2.

robust nerformance of the ziobal _ain-scheduled desian.
Theorem 3.1 Consider the linear time-varying VIDE (3-19) under

Assumptions 3.1-3.2. Under these conditions, (3-19) is exponentiallyB. Stabili, Robusness, and Peorrnnance Anaiysis
stable for sufficientiv slow time-variations in A, B. and C.

Suppose that one has carried out the gain schedued design prcerdure

outlined in Section 3-A. Then at each instant of time. one has designed a In terms of the rierence state-trajctory, x*. this slowness condition on the
finitim-dimensional compnsator which stabilizes the feedback configura i s of (3-19 s s that ie sould var slowly.
of Fig. 3.3. Let the resulting time-varvying compensator have the following

. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~_~_~ .~_~_~___ _ _ . . _. . . ,



Step 2 Construction of a Lyapunov Functional Theorem 3.3 Consider the nonlinear VIDE (3-29). Let the linear time-
varying VIDE (3-19) be exponentially stable. Let V be defined as in

Assume now that one has satisfied Theorem 3.1 to guarantee the time- Theorem 3.2. Then given any r' E (0, 1),
varying stability of (3-19). Let

s(t; , to) (3-22) IIIx < i .t (3-31)
denote the solution to (3-19) with initial conditions (4). to). From the m rk
definition of exponential stability, there exist constants m, ). and P

where /3 > X such that for any initial condition (4), to)( 2
Il d I (1 ')' (3-32)

s(t; ¢, to) I < me W (3-23) m6F
together imply

Theorem 3.2 Consider the linear time-varying VIDE (3-19). Suppose I s<
that (3-19) is exponentially stable and satisfies (3-23). Under these 

Fm kF
conditions. there exists a function 1': Be x R7 -- R- which satisfies Proof Let (3. 2 9) denote V evaluaed along trajectories of (3-29):

V(3.29)(t!) - V(s'(t; , to),), , t > to (3-34)
I Wd,8 X IIB < V(x,O ) < m 1I W,,p X ll (3-24) Then one can show that for t > to

I V(X, t) - V(x', t) I < m II W, fi (x -x ') IB (3-25) +

Furthermore, let T1(3-19 ) denote V evaluated along trajectories of (3-19),
i.e.

V(31 9)(t)-V(s(t; , to), t), > t, (3-26) mrnkF I S'(T; 4, to) + m I d IIL _ (3-35)
Then for some y7 (O, 1), Vsatisfies

The desired result then follows from appropriate manipulation of (3-35).

D+V( 3 19)(t) < - y II1 W,. s(.; 4, to) 1Bl, t > to (3-27) Theorem 3.3 can be interpreted as a type of small signal finite gain

stability result [1, 12]. It states that provided the disturbance, d, is
Proof Let yr (O, 1). Then define

sufficiently small, then the mapping d v s'(.; 4, to) is finite-gain stable.
; V(x, ) _ sup { e 11 W s(; x,) (3-28) However, recall the definition of d

-,r , (3-28) [ B (A u*)(t)
Then Theorem 3.2 follows using standard Lyapunov techniques (e.g. [9, d(t) (3-36)d~l (t(3-36)
13]) generalized to linear VIDE's. B[ ) (A7 r* + Ayr*)(t)

As mentioned earlier, Theorem 3.2 represents a type of 'converse Thus, the condition "d sufficiently small" essentially states the intuitive
theorem of Lyapunov' [1, 9]. It is noted that the existence of a function condition that the reference trajectories u* and r* should not excite the
which satisfies (3-24)-(3-27) can be used to prove exponential stability of umodeled actuator or sensor dynamics.
(3-19). Thus, Theorem 3.2 is also a statement of the equivalence of To summarize, it has been shown that a gain scheduled approachTo summarize, it has been shown that a gain scheduled approach(31) TuTeoe . i loa ttmeto heeuvlec f applied to the feedback system of Fig. 3.2 has guaranteed robustness and
exponential stability and existence of Lyapunov functions. Finally, it is

performance properties under the following conditions. First of all, it isnoted that Theorem 3.2 does not require that the exponential stability of (3-
19) is due to slow time-varia.tions. required that the reference trajectory x* is sufficiently slow. this comes as

no suprise since the gain scheduled designs are based on linear time-

Step 3 Stability of the Overall Gain Scheduled System invariant approximations to the plant The restriction of slow variations
simply states that such a frozen-time approximation should be accurate.

Recall that the feedback configuration of Fig. 3.2 leads to dynamics of Since the system is actually nonlinear, the internal stability is only local. As
the form the nonlinearities approach zero (i.e. ks& -- 0), one has that the internal

t stability approaches global internal stability. Again, the restricition that
z(t) = A(t) z(t) + f B(t) A(t - r) QCr) z(T) dr+ WF(t, z(t)) + d(t) (3-29) nonlinearities impose are reminders that the design plants are linear time-

0 invariant. The nonlinearities place another restriction on feedback system,

In light of Steps 1 and 2, these equations may be viewed as perturbations this time on the reference trajectories u* and r*. Namely, from (3-36) it is
(5F and d) on an exponentially stable time-varying VIDE. Using the required that these reference trajectories do not excite the unmodeled

dynamics. For example, if the reference control trajectory, u*, hasLyapunov functional of Theorem 3.2, conditions will be placed on 5F and
significant frequency content in the reion of unmodeled actuator dynamics,d to guarantee the boundedness of solutions to (3-29).
then one cannot make demands on the resulting stability and performance of

First, the following assumption is made on F. the closed loop gain-scheduled system. In fact, since the reference control
trajectory is fedforward to the plant, it is unlikely that any control strategy

Assumption 3.3 There exists a constant ke > O such that can remedy this situation.

I F(t.z)! < klzt -z . VtE zP-. v z R'2 (3-30)
Section 4. Schedulina on the Plant Output

This quadratic bound reflects that 5F is a residual from a linearization. A. rom Seent
A. Problem Statement

The stability of (3-29) is now addressed. Let s'(t: o, t,) denote the

solution to (3-29) with initial condition (ti. t). Crnsider the plant model given by



derdivative of zq,(J) (4-9) takes the form
_ zl= f(y, z) + B u y(t) E , z(t) 1 R , u(t) e X (4-1) [ 1 F ) ~ o 1

where the plant output. y, is explicitly a state variable. The following d z (Y) I = (y,) -D I)Z ) y(Y.Z) + r(t)+ (4-11)
assumption is made on (4-1). . X B,(v)

Assumption 4.1 f: Rm x R"M -7 Rm satisfies 0 D yf. z (y)) B, C(y) -

:fO, 0) = 0 (4-2) 0.fqy D
;f r,(y. z.,y))- Dz,,(y)Df,(. z,p)) B, Ck(y)- Dz(y) B, C,Vy) z- ,)

Assumption 4.2 There exist unique continuously differentiable -BRe) A,(w) X

functions which represents the nominal feedback equations for Fig. 4.1. It is noted
that the 'dvnamics matrix' A(y) of (4-11) differs from the closed loop

u,,: Am R ' (4-3)7 i dynamics matrix which would occur from applying the compensator

zea: R" -- ."n-m'" dynamics iAk(vj). Bk(yO). Ck(Yvo) to linearized plant dynamics (41-6).

which satisfy In the following sections, conditions are -iven for the normnal
which satisiy

( = f(y, Zeq(Y)) + B Ueq(y) (o5) stability and robust stability of Fig. 4.1.

B. Nominal Stability
Assumption 4.2 essentially states that one has a family of equilibrium

conditions parameterized by the output, y. In terms of gain scheduling, each
The nominal gain scheduled feedback equations (4-11) of Fig. 4.1 may

of these equilibrium conditions is a possible "operating condition."
be put in the form

A gain scheduled approach to controlling (4-1) would be as follows.
The plant linearized about a possible operating point, y0, is given by y()

- doYo Y - Y)w l. and = A(y(t)) + 5F(y, v) + B(y(t)) r(t) (4-12)
d- z-zeq(Yo) = Df(Yo, Zq(Yo)) z - z ' (v °) + B (u - uq(yo)) (4-6) ;(t)

? (. 1P where A, B, 8F. and v are defined in the obvious manner. Furthermore,

Thus at each operating point, one would design a compensator based on a define
local linear time-invariant approximation (4-6). This procedure would result

in afamily of linear time-invariant compensators {Ak(yo), Bk(yo), x=i (4-13)

C.(yo)} parameterized by the operating condition yo. These compensators v

are then used as in HFg. 4.1. The following assumptions are made on (4-12)

I 1 Assumption 4.3 The matrix A is bounded with constant kA and

r | e K tiu + u P 1 ! .Lipschitz continuous with constant LA.
K U) .

Ueq . Assumption 4.4 The constant eigenvalues of A(y) are uniformly

_F 1bounded away from the closed complex RHP for all constant y.

Assumption 4.5 The linearization residual satisfies
Fligure 4.1 Scheduling on the Plant Output

I F(y, v) I k v 12 (414)
In this figure, the current operating condition is instantaneously

It is important to note that in (4-10), the linearization is proportional
updated as the current plant output. Thus, the compensator dynamics would
evolve as only to z - z,C(y). This implies that if the dynamics of (4-1) are linear in z,

then k-F O. In this sense, the notion of "the scheduling variable capturing

Xk(t) = Ak(y(t)) Xk(t) + Bk(y(t)) e(t) (4-7) the plant's nonlinearities" is precisely quantified.
5u(t) = Ck(y(t)) xk(t) (4-8)

This procedure leads to feedback equations of the form Before examining the stability of (4-12), consider the unforced

d z-z e(Y) = Z-0,O) * o z(y,Y zCV(y)) B.Y Z eYuations
flA,(Yf)~~~~ 1J~~~~~ j = 'A&y) (4-15)

From Assumption 4.4, it follows that solutions of (4-15) will decay
Y ° l 5fY(y' z) 4 0 ° l provided that the tme-variations in (4-15) are sufficiently slow. This is

r+ B| ! d |+) z( y) quantified in the following theorem.+ 0 r+1 ar Cy. Z) (-,-9)

wBhvre l * 0 i i ° J Theorem 4.l110] Consider (L-15) under Assumptions 4.3-4.4. Under

these conditions, there exist constants m. ;_ and E > 0 such that

f(, z)=f(yv, z) - DfY. , V)) n.fl zY .))(z-z.f~'E )\ v(z)! <¢ T , !x()! c <Re iox i, re [0.7] (T16)

and the subscripts y and: denote decomposition of the matrix functions
into their y and z components, respectively. Explicitely evaluating the time This is used in showing exponential stability of (4-15) as follows



Theorem 4.2 Consider (4-15) under Assumptions 4.3-4.4. Let L/ be V(x) , sup e7: I s(i; x) 1 (4-26)
such thU l2 0

The thcorem then follows from arguments found in [1, 91.
191 < Lylxl (4-17)

Under these conditions, Step 2 Nominal Stability

Ig15p -- P -1 Let s'(r; x,) denote the solution to (4-12) under initial conditions
A (4-18) x(0) = x<.

mLYm/y

implies Theorem 4.4 Consider the nominal gain scheduled feedback equations
(4-12) under Assumptions 4.3-4.6. Let V be defined as in Theorem 4.3.

I xk)l I me~! xo !. f l {E R (4-19) Let y' be such that

Proof Condition (4-18) implies that I y i < E for some interval T.
During this interval, Theorem 4.1 assures that the state decays r' < p (-7)L,,'
exponentiallv. If the interval T is sufficientlyv long. the state at time T is F

for any yI' a (0, 1). Under these conditions,small enounh so that y I < E for all time. which in turn impiies (-19. for an . Under these conditions.

In Theorem 4.2, the notion of a slow scheduling variable plays an ML (4-28)
important-role. Namely, the slower the time-variations of the output y (i.e.

as Ly - 0), then from (4-18) the larger the neighborhood for local (1 -
exponential stability. Furthermore, the size of this neighborhood increases L (4-29)

as the size of allowable time-variations increases (i.e. as E-- - ). This 8F
- together imply

dependence is important since the parameter E£ is a function of the frozen
operating point closed loop designs. I s x) I

The stability of the nominal dynamics (4-12) is now addressed. First t (4-3)
note that (4-12) may be decomposed into (1) locally exponentially stable

Proof Let V(4-12) denote V evaluated along s'(t; Xo). Then
dynamics A(y), (2) a nonlinear residual 8F, and (3) an exogenous input r.
This is precisely the same sort of decomposition which existed of the) < - y (t) + 2 +

Volterra equation (3-18) in Section 3-B. Thus, stability of (4-12) may be (4-12)

shown in the same manner, namely use the local exponential stability of (4-
15) to construct a Lyapunov function and use this Lyapunov function to Lv B() r , for V(4 12)(t) < p (4-31)

prove local exponential stability in the presence of 6F and small-signal Theorem 4.4 then follows from arguments found in [1, 9
finite-gain stability in the presence of r. Unlike Section 3-B. the equations
of interest are ordinary differential equations. C. Robustness to Plant Input Unmodeled Dynamics

Step 1 Construction of Lyapunov Function Consider the block diagram of Fig. 4.2. This represents the nonlinear
gain scheduled system of Fig. 4.1 in the presence of input unmodeled

Let s(t; xo) denote the solution to (4-15) under initial conditions x(0) dynamics. In this gain scheduling framework, such unmodeled dynamics
0= x' not only limit the bandwidth but also destroy the linearization through u,f.

In this section, it is outlined how one can guarantee that the robust stability
of the frozen operating condition designs carries over to the full gain

V I x I, 1 x' 1 < mp scheduled system.

I ACy) x-A(y') x' I < L Ix-x' (4-20)

r+ e ' ,u ,, I

Theorem 43 Consider the locally exponentially stable system (4-15)A u F
under Assumptions 4.34.6. Under these conditions given any ye (0, 1),

there exists a Lyvaunov function V: R" - aR
+ such that

I x l < V(x) < m lx l, VIxI < p (4-21) Fizure 4.2 Unmodeled Dynamics at the Plant Input

IV(x)-V(x')l < L/,vx-x't, VIxl,lxl' < p (4-22)
where The feedback equations of Fig. 4.2 are given by

(4-23) e = A(y) Li + 5F(y, v) + BCy) r +

D_ t) vI O P (Liz D i ; ec Xi

Proof Define V as iL JJi0
or eauivalentlv
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Finally, the methods used here generaliz the concepts of Lyapunov

. y stability / expoential stability equivalence 1] and small-signal finite-gain

The main linitations of these results am
(1) In the eorems dealing with infinite-dimensional unmodeled dynamics,

B 1 verification of the sufficient conditions reouires hard-to-obtain information

f [0t 1on the uncertainties, such as the exponentially weighted input / output norm

Bz - Dzfq(y(t))By Aut - Z) 0 [0 Cv(y()) dr

f Ck )[A 1i in (2-17).

(2) Even if the sufficient conditions are verified, they are apt to be

vmcre g is dcfmed as conservative, which is typical of Lyapunov analyses of nonlinear systems.
However, the conservatism of the stability conditions is simply a reminder

BY that the orignai gain scheduled designs were based on linear rime-invariant

I B; - approximations to the nonlinear plant If these approximations are
A (t - 'n u (yt')) ar . inaccurate, then one should not demand ruarantees on the overall cain

1 L 0 scheduled svstem.
L In spite of these limitations, the theorems are useful in that they help to

Thus, it is seen that (4-33) may be decomposed into (1) an output-varing identify various paraeters which in turn improve the feedback properties

VIDE, (2) an exogenous input r, (3) a linearization residual $F, and (4) a of the gain scheduled design. That is although the sufficient conditions may
nonlinear perturbation g due to the feedback of the equilibrium control, not be explicitely verified, one can still use them to gain new insights for

uar- design purposes.
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