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Abstract

Gain scheduling has proven to be a successful dssign methodoiogy in many
engineering appiications. However in the absence of a sound anaiysis. these
designs come with no guaraniees on the robusmess, performance. or even
nomunal stability of the overall gain scheduled design. This paper presents
such an anaivsis for two types of noniinear gain scheduied controi sysiems :
(1) scheduling on a reference majectory and (2) scheduling on the plant
output. Conditions are given which guarantee stability, robusmess, and
performance ‘properties of the global gain scheduled designs. These
conditions confirm and formalize popular notions regarding gain scheduled
designs, such as the scheduling variable should "vary slowly™ and “caprure
the plant's nonlinearities.” These results extend previous work by the
authors which addressed the case of linear plants whose dynamics depend
on ex0genous parameters.

Section 1. Introduction

Gain scheduling is a popular engineering method used to design
controllers for systems with widely varying nonlinear and/or parameter
dependent dynamics. The idea is to select several operating points which
cover the range of the plants dynamics. Then, at each of these points, the
designer makes a linear time-invariant approximation to the plant and
designs a linear compensator for each linearized plant. In between operating
points, the parameters (gains) of the compensators are then interpoiated, or
scheduled, thus resulting in a global compensator.
Despite the lack of a sound theoretical analysis, gain scheduling [11] is
a design methodology which is known to work in a myriad of operaring
. conrrol systems (e.g. jet engines , submarines , and aircraft). However in

the absence of such an analysis, these designs come with no guarantees.
. - More precisely, even though the local operating point designs may have

- excellent feedback properiies, the global gain scheduled design need not
have any of these properties (even nominal stability). In other words, one
typically cannot assess g priori the guaranteed stability, robusmess, and
performance properties of gain scheduled designs. Rather, any such
properties are inferred from extensive computer simuiations.

In the place of a sound theoretical analysis, a collection of intuitive
ideas have ceveloped intwo heuristic guidelines for gain scheduled designs.
For exampie, two common rules of thumb are "the scheduling variable
should vary slowly” and "the scheduling variable should caprure the plant's
nonlinearities.” Thus, a sound analysis would prove very useful in better
understanding these designs.

In an earlier paper [10], such an analysis was performed for a special
class of gain scheduled control systems, namely linear plants whose
dynamics depend on excgenous parameters. In this paper, the results in
{10j are extended to analyze two nonlinear gain scheduling situations : (1) a
nonlinear plan: scheduling on a reference wajectory and (2) a nonlinear plant
scheduling on the plant output. In both cases. the analysis confirms and
formalizes the popuiar notions regarding the design of gain scheduled
coowol systems and enmabies one 1o give guarantees on the suabiliry.
ropustmess. and performance of gain scheduied designs. In this sense, the
- anaiysis can be used towards the ulumare goal 10 develop a compiere and
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The remainder of the paper is organized as follows. In Section 2. the
notation and some mathematical preliminaries arc given. Furthermore, a
briei review of the results found in [10} regarding stabiiiry of linear time-
varymng Volierra integrodifferential eguations is presenied. Secrions 3 and 4
discuss the rwo gain scheduiing siuations 10 be addressed. They are.
respectively, (1) a nonlinear plant scheduling on a reference wajectory and
(2) a nonlinear plant scheduling on the piant ourput. Conditions are given
which guarantee stability and robustness, performance properties of the
global gain scheduled designs. Finally, concluding remarks are given in
Section 5.

For the sake of breviry, only sketches of proofs are given throughout.

Section 2. Background Material

A. Nowtion and Mathemazcal Preliminaries

R* denotes the set { re R 1z = 0}. !« | denotes both the vector
norm on R.” and its induced marrix norm.

Df denotes the derivative of f: R" — R™. D f denotes the

derivative with respect to the i variable of

FRMxR?x . xR¥x . xR* 5 R” -
Letf: R — R. D'f denotes the Dini derivative of f defined by
. fix,+ k) -fx )
Dfx,) =limsup ——e (2-2)

Ao 0" h

Let f: R* — R™ T denotes the Laplace transform of f. P 7 denotes

the standard truncation operator on f. 3, denotes the truncation and
exponential weighting operator on f defined by

!é“““)ﬂa
0, t1>7T

t<T

(Wr.o D) = @-3)

Lp and L po D E [1, e}, denote the standard Lebesgue and extended
Lebesgue function spaces. Similarly, [,.p e [1, <], denote the

appropriately summable sequence spaces. B denotes the set of functions
such that

NN = suplf(r)! < = )
- p ! f(2) (24)
teR

B, denotes the set of functions such har Pof e B, VTe R,
A0 denotes the set whose eiements are of the form
! o
LR S F K-t >
ﬁpz(._.a(z) __5‘.o(t . t 20 .5
fu=5 - 2-5)
10, t<0




wheref, : R —R,1; 2 0,f;€ R, and

4

| < oo (2-6)
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For any two clements of A(0), f * ¢ denotes the convolution of f and

g. A" (o) denotes the set of n by m matrices whose elements are in

A(o). Let Ae A™™(0)and let A'e R as A%y =114, 126

Then define Il A 3= 14" | Finally, A(0) and A™™(0) arc defined

as tne set of Laplace rransforms of elements of A () and A (o,

respectively. For further details on -4(0) and ;i.(d). see [2, 6].
B. Linear Volterra Integrodifferential Equations

This section presents background material for equations of the form

@7

o

x(n=AMx0+[BOAC-DCOXDIT, 121
0
with initial condition

0<1<1, 6eB

{x(x>=¢»<r), 2 -8

X)) = o)

where it is assumed that for some ¢ 2 0, A € A(0).

These equations are known as linear time-varying Volterra
integrodifferential equations (VIDE's). VIDE's and their stability have been
studied in [3, 4, 8, 10] and references contained in [5]. In this section, the
assumptions on (2-7) are given, a definition of exponential stability is
presented, and sufficient conditions for exponential stability are given in
both cases of time-invariant or time-varying A, B, and C matrices. Further
details may be found in [10].

The following assumption is made on (2-7) :

Assumption 2.1 A, B, and C are bounded and globally Lipschitz

comtinuous. Thus, there exist constants kypc and Ly p e 2 0 such
that Vs, 7e RT
TA@ L < kg 1AM -A(DI S Lylz-4 (2-9)
1B £ kg, 1B@O-B(D! < Lplz-7l (2-10
1C() < ke, 1IC(DH-C(DI S LAz-7l (2-11)

A definition of exponential stability is now presented.

Definition 2.1 The VIDE (2-7) with initial condition (2-8) is said to be
exponentially stable if there exist constants m, A, and > 0 where 8
2 Asuchthatforz 2 g,

SRG-t)

Ix()! £ me w ol
1B B

o

(2-12)

It is stressed that the constants m. 4, and f3 are independent of the initial

condition (@, ). The convention 8 > A follows from the reasoning that
solutions to (2-7; cannot decay faster than they are forgouesn

In the case of rime-invarian: A, B. and C martricess. one has the
foliowing condition for exponentiai stability.

Theorem 2.1710] Consider the time-invariant VIDE

T

t
xO=Ax0+[BAC-DCx(Ddr, 1231, (2-13)
0
with iniual condition

(=l <tr<: s
X0 = 6(2), 0<r<:,0eB 2-14)

e

.-

Cx() = ol1,)

A sufficient condition for exponential stability is that there exist a constant

B > 0such that
s=(sI-A-BACile A (2B (2-18)
Ae A28 (2-16

where the ratc of decay is 572,

Finally, the foliowing theorem gives a sufficient condition for
exponential stability of (2-7) in the case where (2-7) is exponentially stable

for all frozen-values of time: This generalizes a standard result for ordinary =

differenual equations (e.g. [6]).

Theorem 2.2[10] Consider the VIDE (2-7) with initial condition (2-8)
under Assumption 2.1. Now define the following measure of the time-
variations of (2-7) :

KELA-l—LB ”A“A(~B) kc+kB IlAlla(_B)LC (2-17)

Finally, assume that there exists a constant 8 > 0 such that
s = (I-AD-BOADCD)Y' e 2728, Ve R (2-18)
Ae A(2B) (2-19)

Under these conditions, given any 171 e (0, B ), (2-7) is exponentially
stable with a rate of decay 17/2 for sufficiently small X, or equivalently for
sufficiently slow time-variatons.

Note that (2-18)-(2-19) imply exponential stability for all frozen-values of
tme using Theorem 2.1.

Section 3. Scheduling on a Reference Trajectory
A. Probiem Statement

Consider the biock diagram of Fig. 3.1. This figure shows a standard
unity feedback configuration in which the command trajectory, r*, is
generated by passirig a reference conwrol signal, u*, through a model of the
plant, P,,. This may be the ouwcome of a noniinear optimai controi
problem, or some other off-line design process. The control input. u, o the
acwal plant, P, then consists of the reference control, u*, and a small
permurbational conwrol, du. In the ideal siation of no modeling errors,
disturbances, or other uncertainties, the perturbational control du =0, and
perfect command mracking is achieved, i.e. ¥ =r*.

Such perfect knowledge is rare, hence the need for feedback and
compensator design. Now consider the block diagram of Fig. 3.2. This
diagram represents the feedback system of Fig. 3.1 in the presence of three
modeling errors : (1) 4, unmodeied sensor dynamics, (2) A,, unmodeied
actuator dynamics. and (3) A, an antificial uncertainty which corresponds
to a performance specification (see [7] for a detailed discussion on how
various performance specifications can be put into the form of artificial
uncenaintiss ).

A gain scheduied approach to conrrol design for Fig. 3.2 would be as
follows. Let the plant model. P,,.. be given by

x(=f(x()) +Bu@), x(0O=x=zR" 3-10
¥(n=Cx(s) (3-2)

Eguations (3-1){(3-2) are quite general since many systems may be put into




Figure 3.1 Scheduling on a Reference Trajectory
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Figure 3.2 Scheduiing in Presence of Robusmess / Performance
Uncertainties
the above form by seiecting staie variables as outputs and augmenting
dynamics at the piant input. Appiying the reference command input, u*,

x*(1) = f(x*(1)) + B u*(), x*(d) - x;,“ e R" (3-3)

r*(@) = y*(1) = C x*(1) 3-4)
Now, define

3x() = X(2) - x*(1) (3-5)
Sy =y - y*®) (3-6)
du(®) = u(r) - u*(?) (3-7)

Then, subtracting (3-3) from (3-1) and linearizing about x*(z),
5x(f) = DE(x*()) 6x(r) + B du(r) + 8f(z, 8x(1)), (3-8a)
5x(0) =X, - X, * e R” (3-8b)
Sy(t) = C x(r) (3-9)

where

81z, 5x(0)) = f(x(2)) - { f(x*(#)) + DI(x*(1)) 6x(2) } (3-10)

These equations may be decomposed into (1) a linear time-varying plant and

(2) a nonlinear residual from the linearization. Let 8P denote the nonlinear

time-varying perturbational plant (3-8)-(3-10). Furthermore, let 3P,
denote the linear frozen-time plant

3x(2) = DEx*(1)) 8x() + B du(r), 8x(0) =x,-x.*e R" (3-11)
i Sy(r) = C x(2) (3-12)
“Then a gain scheduled approach would be to design a compensator for (3-
: 11)-(3-12) so that for all frozen-values of time, the feedback system of Fig.
- 3.3 achieves robust stability and robust performance.

5
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Figure 3.3 Diagram for Frozen-Time Compensator Design

Since the original plant model, &P, is nonlinear and time-varying, none
of the desired feedback properties - including nominal stability - of the
frozen-time designs may be present in the overall gain-scheduled system. In
Section 3-B. conditions are given which guaranzee the robust stability and
robust perfcrmance of the giobal gain-scheduied design.

B. Swbiliry, Robustness, and Performance Anaiysis

Suppose that one nas carried out the gain scheduied design procedure
outlined in Section 3-A. Then at each instant of time. one has designed 2
fimte-dimensional compensator which stabilizes the feedback configuration
of Fig. 3.3. Lzt the resulting &ime-varving compensator have the following

-3-

state-space reaiization

X((1) = A0 x,(1) + B,(0) e(t) (3-13)
ou(t) = C() x,(9) (3-14)
Using (3-8)-(3-10) along with (3-13)«(3-14), the feedback equations of Fig.
3.2 are given by
r. 1 - -
8x(n)l IDftx=() BC,0

0

[ 8¢, 5x(®)
.

B (8 u")(9
.

[- B.wC A0 -By(n s s )0

ox(¢)
%, @ XD
(3-15)

14

B 0 ‘H:.“(:-r, 0 } 0 C:"ﬂ[ 5x(1)

! B i dz
0 -BO[l 0 acameas-nesunilc o [xm

ST A e R
AF-(I 8) *a (3-16)

A~ =A~*A : (3-17)
124 P y

Rewriting (3-15),
!
z(1) = A1) z(2) +fB(t) A(t- 1) C(7) (1) dT+ OF (2, (1)) + d(?) (3-18)
0

where 4, B, C, 8F, A, and d are defined in the obvious manner. Note
that the feedback equations may be decomposed into (1) a linear time-
varying VIDE, (2) a nonlinear residual of the linearization, and (3) an
exogenous disturbance.

The stability of (3-18) will be shown as follows. Recall that the
compensator (3-13)-(3-14) was designed so that the VIDE

z
z(5) = AD) z(2) +jB(z) A@-DC(Dz(ndr (3-19)
0

is stable for all frozen A, B, and C. Using results from Section 2-B, it
is shown that (3-19) is exponentially stable for sufficiently slow time-
variations. Given this time-varying exponential stability, a Lyapunov
functional for (3-19) is constructed. This generalizes the concept of
‘Converse Theorems of Lyapunov' for ordinary differential equations (e.g.
{1, 91). This Lyapunov functional is then used to give guaranteed stability
margins for (3-18).

Step 1 Slowly Time-Varying Stability of (3-19)

Since (3-19) is precisely the class of equations addressed in Section 2-
B, one can use Theorem 2.2 10 guarantee stability for sufficiently slow
time-variations as follows :
Assumption 3.1 The martrices A, B, and C satisfy the boundedness
and Lipschitz continuity conditions of Assumption 2.1.
Assumption 3.2 There exists a constant 8 > 0 such that V 7€ r*

~ 'l ~ nxn
s = (sI-A(D-BMDAS)C(D) e A (2B (3-20)

Ae A28 (3-21)

The following theorem is a direct consequence of Theorem 2.2.
Theorem 3.1 Consider the linear tme-varving VIDE (3-19) under
Assumptions 3.1-3.2. Under these conditions, (3-19) is exponentially

stable for sufficiently slow time-variations in 4, B. and C.

in terms of the reference siate-rajectory, X*, this slowness condition on the
dvnamics of (3-19) states that x* itself should vary slowly.




Siep 2 Construction of a Lyapunov Functionat

Assume now that one has satisfied Theorem 3.1 to guarantee the time-
varying stability of (3-19). Let
s(t:9,1,) (3-22)
denote the solution to (3-19) with initial conditions (¢, £,). From the
definition of exponential stability, there exist constants m, 4, and B
where 8 2 A such that for any initial condition (¢, £,)

-A@-1) .
Is(t;6,2)1 £ me . ‘50 llB (3-23)

Theorem 3.2 Consider the linear time-varying VIDE (3-19). Suppose
that (3-19) is exponenually stable and satisfies (3-23). Under these

conditions, there exists a function V : B. x ™ — R~ which satisfies

1w, gxllg € V(x,) € mliw, gxlly (3-24)
IV, -V, Dl £ mll W, g(x- x") g (3-25)
Furthermore, let V(Hg) denote V evaluated along trajectories of (3-19),
ie.
Vs 10)(®) = Vis(t: 0, 1), 1),
Then for some ye (0, 1), V satisfies

t 21, (3-26)

DV S -AUW s 0. 1)l 121, (-27)

Proof Let ye (0, 1). Then define

YA (T-1) .
Vx, 1) = f:];) { € I wfﬂ s(; P!X, )] “B } (3-28)

" Then Theorem 3.2 follows using standard Lyapunov techniques (e.g. [9,
~ 13]) generalized to linear VIDE's.

As mentioned earlier, Theorem 3.2 represents a type of ‘converse

. theorem of Lyapunov' [1, 9]. It is noted that the existence of a function

which satisfies (3-24)-(3-27) can be used to prove exponential stability of

© (3-19). Thus, Theorem 3.2 is also a statement of the equivalence of

exponential stability and existence of Lyapunov functions. Finally, it is

noted that Theorem 3.2 does not require that the exponential stability of (3-
19) is due to slow time-variations.

St=p 3 Stability of the Overall Gain Scheduled System

Recall that the feedback configuration of Fig. 3.2 leads to dynamics of
the form

t
z() = AQD) z(1) + IB(:) A(t- 1) C(7) z(7) d7+ 8F (1, (1)) + d(2) (3-29)
0

In light of Steps 1 and 2, these equations may be viewed as perturbations
(8F and d) on an exponentally stable time-varying VIDE. Using the
Lyapunov functional of Theorem 3.2, conditions will be placed on 8F and
d to guarantee the boundedness of solutions to (3-29).

First, the following assumption is made on &F.

Assumption 3.3 There exists a constant kgz 2 0 such that

18F(t2)! € kgelz ! YieR™. ¥zeR®  (3-30)

This quadratic bound reflects that &F is a residual from a linzarization.
The stability of (3-29) is now addressed. L=t s'(z: 9, 1) denote the
sohution to (3-29) with initial condition (6. £,). S

—4-

Theorem 33 Consider the nonlinear VIDE (3-29). Let the linear time-
varying VIDE (3-19) be exponeatially stable. Let V be defined as in
" Theorem 3.2. Then given any 7' e (0, 1),

o, golilg < ——%_2 T (3-31)
N
SF
a2
A,

nan < O gy (3-32)

m kéF

together imply

IS0l € —2—y' 125, (3-33)

mk

§F
Proof 1et Va,zg) denote V evaluated aiong wajectories of (3-29):
V(3-29)(l) = V(' 0,8, 1), 12 (3-34)
Then one can show that for 7 2 ¢,

D V0@ < - ANW, 58" 6, 1) lig +

mkspl $(T: 0, 1) P +miidll (3-35)
SF o L.

The desired result then follows from appropriate manipulation of (3-35).

Theorem 3.3 can be interpreted as a type of small signal finite gain
stability result [1, 12]. It states that provided the disturbance, d, is
sufficiently small, then the mapping d = s'(* ; ¢, £,) is finite-gain stable.
However, recall the definition of d

B (A u%)(1)

() = (3-36)
-ByH) (B=r* + AX(®)

Thus, the condition "d sufficiently small" essentally states the intuitive
condition that the reference trajectories u* and r* should not excite the
* unmodeled actuator or sensor dynamics.

To summarize, it has been shown that a gain scheduled approach
applied to the feedback system of Fig. 3.2 has guaranieed robustness and
performance properties under the following conditions. First of all, it is
required that the reference rajectory x* is sufficiently siow. this comes as
no suprise since the gain scheduled designs are based on linear time-

invariant approximations to the plant. The restriction of slow variations
simply states that such a frozen-time approximation should be accurate.
Since the system is acmally nonlinear, the internal stability is only local. As
the nonlinearities approach zero (i.e. ksz — 0), one has that the internal
stability approaches global internal stability. Again, the restricition that
nonlinearities impose are reminders that the design plants are linear time-
invariant. The nonlinearities place another restriction on feedback system,
this time on the reference trajectories u* and r*. Namely, from (3-36) it is
required that these reference trajectories do not excite the unmodeled
dynamics. For example, if the reference control trajectory, u*, has
significant frequency content in the region of unmodeled actuator dynamics,
then one cannot make demands on the resulting stability and performance of
the closed loop gain-scheduled system. In fact, since the reference control
trajectory is fedforward to the plant, it is unlikely that any control strategy
can remedy this situation.

Section 4. Scheduling on the Plant Output
A. Problem Siatement

Cansider the plant model given by
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a

y m n-m »~
{z}=f(y'z)+3u ,YDeR ,z(DeR ,u®eR (41)

where the plant output, y, is explicitly a state variable. The following
assumption is made on (4-1).

Assumption 4.1 f:R™xR"" " 5 R"™ saisfies

f0.0)=0 (4-2)
- Assumption 4.2 There exist unique continuously differentiable
functons
U, R"—R™ (4-3)
Z,:RT=SR"" &)
wiiich satisfy
(4-5)

0=1(y,2,,(5)) + B u,(y)

Assumption 4.2 essentially states that one has a family of equilibrium
conditions parameterized by the output, y. In terms of gain scheduling, each
of these equilibrium conditions is a possible "operating condition."

A gain scheduled approach to controlling (4-1) would be as follows.
The plant linearized about a possible operating poin, ¥, is given by

y-¥ y-¥,

d Yo

@ 2oz, |70 )

R MR

Thus at each operating point, one would design a compensator based on a
local linear time-invariant approximation (4-6). This procedure would result
in a family of linear time-invariant compensators {A,(Y,), Bu(¥,).
Cu(y,)} parameterized by the operating condition y,,. These compensators

are then used as in Fig. 4.1. !

r+ e K Su +Ou P y
- uQ:T
F

Figure 4.1 Scheduling on the Plant Ourput

In this figure, the current operating condition is instantaneously
updated as the current plant output. Thus, the compensator dynamics would
evolve as

() = Ay()) X(1) + By (1)) 1) @7
ou(r) = Cyy()) x,(1) 4-8)
This procedure leads to feedback equations of the form
y 0 DGz BGO|T oy
2lrn®ll 0 Dieze) BLO|[T%O
* | B, 0 AWM || %
0 o1 (y. 2) " 0
+| 0 r+! 8.2 | -i—.i z,,¥) (2-9)
QLB"‘('V)_{ 0 i E_ L

where
3y, 2) = f(y,2) - / fiv.z_i¥) = DALy N ( (v} Yo
(RERD A ET AR )= ;\.‘~Z¢q(}‘) Z-qu»v,, J Cad 1%2]
and the subscripts ¥y and = denote decomposition of the marrix functions
into their y and z componerus, respectively. Explicitely evaluating the time

" derivative of z,,(y), (4-9) taies the form

y 6fy(y,z) 0
i% 2-2,0) | _|80,2) - Dz, ) S, 2) |+ 0 lrn+ @-11)
S x |1 0 LB"(’V) ]
0 DI Gz, ) B, C,(») y
0 DNy -DZ G5B 6.2, B,C0)-Dz, 3B, Ca) || D)
B, 0 A3 L5

which represents the nominal feedback equations for Fig. 4.1. It is noted
that the ‘dynamics matrix’ A(y) of (4-11) differs from the closed loop
dynamics marrix which would occur from applying the compensator
dynamics {A,(¥,). By(¥o). Cily,)1 10 linearized piant dynamics (4-6).

In the following sections, conditons are given for the norunal
stability and robust stabiliry of Fig. 4.1.

B. Nominal Stability

The nominal gain scheduled feedback equations (4-11) of Fig. 4.1 may
be put in the form

¥(0 ¥

} + 8F(y, v) + B(y()) r(t) (4-12)
v(1)

= A(y(®) [
v(f)

where A, B, 8F. and v are defined in the obvious manner. Furthermore,

. define
X=
v

The following assumptions are made on (4-12)

(4-13)

Assumption 4.3 The marrix A is bounded with constant k, and
Lipschitz continuous with constant L.

: Assumption 4.4 The constant eigenvalues of A(y) are uniformly
bounded away from the closed complex RHP for all constant y.

Assumption 4.5 The linearization residual satisfies

18F(y, V)| < k&FI v 4-14)

It is important to note that in (4-10), the linearization is proportional
only to Z - Z,,(¥)- This implies that if the dynamics of (4-1) are linear in z,
then kg = 0. In this sense, the notion of “the scheduling variable capruring
the plant's nonlinearities™ is precisely quantified.

Before examining the stability of (4-12), consider the unforced
equations

(4-15)

From Assumption 4.4, it follows that solutions of (4-15) will decay
provided that the time-variations in (4-15) are sufficiently slow. This is
quantified in the following theorem.

these conditions, there exist constants m, A. and £ > 0 such that

i € e Ve [0,T] =!x(m! < me ¥ix LV1e [0.7] “-16)

This is used in showing exponential stability of (4-15) as follows




Theorem 4.2 Consxdcr (4-15) under Assumptions 4.3-4.4. Let L, be
such that

Iyl < Ljixl @17
. Under these conditions,
X< p= ‘Tﬁ*— (4-18)
: m°~ L
+ y
implies
A h
Ix(D £ me Ix,. VieR (4-19)

Proof Condition (4-18) implies that | y | < £ for some interval T.
During this interval, Theorem 4.1 assures that the state decays
exponentially. If the interval T is sufficienty long. the state at time T is

small enough sothat | ¥ | € £ for ali ime. which in turn impiies (£-19).

In Theorem 4.2, the notion of a slow scheduling variable plays an
impornant role. Namely, the slower the time-variatons of the output y (i.c.
as L, — 0), then from (4-18) the larger the neighborhood for local
exponential stability. Furthermore, the size of this neighborhood increases
as the size of allowable time-variations increases (i.e. as £ — =). This
dcpcndencc is important since the parameter £ is a function of the frozen
operating point closed loop designs. :

The stability of the nominal dynamics (4-12) is now addressed. First
note that (4-12) may be decomposed into (1) locally exponentially stable
dynamics A(¥), (2) a nonlinear residual 6F, and (3) an exogenous input r.
This is precisely the same sort of decomposition which existed of the
Volterra equation (3-18) in Section 3-B. Thus, stability of (4-12) may be
shown in the same manner; namely use the local exponential stability of (4-
15) to construct a Lyapunov function and use this Lyapunov function to
prove local exponential stability in the presence of 8F and small-signal
finite-gain stability in the presence of r. Unlike Section 3-B, the equarions
of imterest are ordinary differential equarions.

Step 1 Constructon of Lyapunov Function

Let s(¢; x,,) denote the solution to (4-15) under initial conditions x(0)
= xo'
Assumption 4.6  There exists a constant L,, such that

VixLix'l € mp
lA(y)x-A(_v')x'lSLAxlx-x'l 4-20)

Theorem 4.3 Consider the locally exponentally stable system (4-15)

under Assurnptions 4.3-4.6. Under these conditions given any ye (0, 1),

there exists a Lyapunov function V : R” — R such that

Ixl £ Vix) £ mixl, Vixl<p (4-21)
V) - V)1 € Lytx-x'l, VixLiIx'I <p 4-22)
where
(oL, 5T
L, = e AT (4-23)
inm
T= (4-24)
(1-wa

Furthermore. let V. ;5 denote V evaiuated along st?; X). Then

fé-‘xf,'(”') < - 77_\-«“:‘_15)(;) . Vix isp (£-25)

Proof Define V as

V(x) = sup cw l s(t x) i (4~26)
20

'I‘hclbeorunmenfollowsﬁnmargnmcms found in (L9

Step 2 Nominal Suability

Let s'(z 5 x,) denote the solution to (4-12) under initial conditions
x(0) = x,

Theorem 4.4 Consider the nominal gain scheduled feedback equations
(4-12) under Assumptions 4.3-4.6. Let V be defined as in Theorem 4.3.
Let ' be such that

Yi__ < (4-27)
L" K 4 p
v O8F

for any y' € (0, 1). Under these conditions,

71
Ix | < v
L‘/&&: (4-?8)
(7/)
IBy)rit < (1-
Wl < Y @2
oF
together imply
' YA
Is'ix )l < Y, 120 (4-30)
o vaJCSF

Proof Let ‘7’(4_12) denote V evaluated along s'(z; x,). Then
7, win® < Ay ®+ Lx FE @+
Lv IBG)r I!L_ , for V lz)(z) <p @-31)
Theorem 4.4 then follows from arguments found in [1, 9].
C. Robustness to Plant Inpwt Unmodeled Dynamics

Consider the block diagram of Fig. 4.2. This represents the nonlinear

- gain scheduled system of Fig. 4.1 in the presence of input unmodeled

dynamics. In this gain scheduling framework, such unmodeled dynamics
not only limit the bandwidth but also destroy the linearization through u,,.
In this section, it is outlined how one can guarantee that the robust stability
of the frozen operating condition designs carries over to the full gain
scheduled syst=m.

Lk 7g LN IEPIN LR Y WIFTN N 1

- -
g
F

Figure 4.2 Unmodeled Dynamics at the Plant Input

The feedback equations of Fig. 4.2 are given by

t { A(v){ }+OF(} v)+B@)r+
v

B Dz, w(mB\_ 'IA..“"")(Ck(y("))xk(ﬂ‘“ub’(ﬂ) j‘gd'{ 2.37)

f 'i
I




y y
J = A(y) L} + 8F(y,V+B(y)r+(gy Xo + (4-33)
A\ 4 .
By ‘
" . - ¥(7)
[|[B,-Dz, B, ||a4-0 [0 [0 com H i
o 0 V(D)

‘[B: -Dz,_(y(1)B

T

Thus, it is seen that (4-33) may be decomposed into (1) an output-varying

y

1
1 .
@y EJ X E A(1-Du (WD) AT (234
|

[ B
y

|

|

L

VIDE, (2) an exogenous input r, (3) a linearization residual 6F, and (4) a
nonlinear perturbation g due to the feedback of the equilibrium control,
Yo

An outline 10 proving stability of (4-33) now follows. The procedure
essentially parallels that of Section 4-B with the exception that Section 4-B
deals with ordinary differential equations.

First, since the output-varying VIDE , is a product of a gain-scheduled
design

B
y

¥y y] ¢
_ =ALv>H+J [B,} A“(r-r)[o [0 ng(m]}
\4

0 .

(1)
dr (4-35)
0 v(1)

is guaranteed to be a stable VIDE for all frozer values of the output. Using

Theorem 2.2, it follows that if | y | is sufficiently small over some interval
T then the state decays exponentially during this interval (¢f. Theorem
4.1). Thus, one can place restrictions on the initial function of (4-33) to
guarantee local exponential stability (¢f. Theorem 4.2). Given the local
exponential stability of (4-35), one can construct a Lyapunov functional
using solutions of (4-35), (¢f. Theorem 3.2 and Theorem 4.3). One can
then use this Lyapunov functiona! prove the local exponéntial stability and
small-signal finite-gain stability of (4-33) (¢f. Theorem 3.3 and Theorem
4.4). It is important to note that as in the case of nominal stability, the ideas
of "a slow scheduling variable" and "capturing the nonlinearities” explicitely
affect the resulting stability conditons.

Section 5. Concluding Remarks

This paper has presented a formal analysis of two types of nonlinear
gain-scheduled control systems : (1) scheduling on a reference rajectory
and (2) scheduling on the plant output. In both cases, conditions were given
which guarantee that certain stability, robustness, and performance
properties of the frozen operating condition designs carry over to the overall
gain scheduled design.

The main results may be summarized as follows. In the case of
scheduling on a reference wajectory, given that the feedback system (3-15)
is stable for all frozen values of time, then robust stability and robust
performance is maintained provided that (1) the reference trajectory varies
slowly and (2) the reference trajectory does not excite unmodelled
dynamics. In the case of scheduling on the plant output, conditions were
given which essentally verify and formalize the two sitandard gain
scheduling guidelines of "scheduling on a siow variable" and "capruring the
plant’s nonlinearities.” That is. in the limiting cases where the rate of the
output time-variations approaches zero and the non-output nonlinearit
approach zero, then the feedback properties of the gain scheduied designs
approach those of the frozen-time designs.

-7-

Finally, the methods used here gencralize the concepts of Lyapunov
stability / exponeatial stability equivalence [1] and small-signal finite-gain
stabilty [1. 12} 1o Volterra integrodifferential equations.

The main limitations of these results are
(1) In the theorems dealing with infinite-dimensional unmodeled dynamics,
vezification of the sufficient conditions requires hard-to-obtain information
on the uncenainties, such as the exponentially weighted input / output norm

LAl in (2-17).
IAA(-ﬁ)m( 7

(2) Even if the sufficient conditions are verified, they are apt to be
conservative, which is typical of Lyapunov analyses of nonlinear systems.
However, the conservatism of the stability conditions is simply a reminder
that the original gain scheduled designs were based on Lnear time-invariant
approximations 10 the noniinear plant. If these approximations are
inaccurate, then one should not demand guarantees on the overall gain
scheduled svstem.

In spite of these limitations, the theorems are useful in that they help to
identify various parameters which in tumn improve the feedback properties
of the gain scheduled design. That is although the sufficient conditions may
not be explicitely verified, one can still use them to gain new insights for
design purposes.
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