A ‘ Room 14-0551
] . 77 Massachusetts Avenue
M"’lera” eS Cambridge, MA 02139
Ph: 617.253.5668 Fax: 617.253.1690
Document Services Email: docs@mit.edu

http://libraries. mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

Due to the poor quality of the original document, there is
some spotting or background shading in this document.

December 1987 LIDS-P-1721

COMMUNICATION ASPECTS OF
PARALLEL PROCESSING

Ciineyt Ozveren*
Laboratory for Information Decision Systems
Massachusetts Ins;itute of Technology
Cambridge, MA 02139

December 4, 1987

Abstract

Parallel processing was motivated by the need to solve very large computa-
tional problems, such as the numerical solutions of partial differential equations
in the context of computational fluid dynamics, structural mechanics, image
processing, etc. This report surveys recent literature on parallel processing al-
gorithms for mainly rings, meshes, and hypercubes. These algorithms include
vector, matrix computations, fixed point iterations and linear equation solvers.
A group property of above topologies has also been explored in an attempt to
develop tools for algorithms and performance analysis. Some special sparsity
structure of the iteration dependencies has also been examined. A necessary
and sufficient condition for the reducability of a dependency matrix with sparse,
nonzero extended diagonals has been derived.

*Nork of the author supported in part bv the Air Force Office
of Scientific Research under Grant AFOSR-88-0032.

1 INTRODUCTION 1

1 Introduction

This report surveys some recent literature on communication aspects of parallel
processing. Parallel processing was born out of the need to solve very large compu-
tational problems, such as the numerical solutions of partial differential equations
in the context of computational fluid dynamics, structural mechanics, image pro-
cessing, etc. [1]. Suppose that we have a large scale computational problem and
n identical computation units, or processors, connected via some communication
network or “topology”. It will be assumed that there is a relatively small number
of powerful processors (like the Intel hypercube, 128 microprocessors [7]), as op-
posed to many simple processors (like the Connection Machine, 65000 processors).
The processors cooperate in solving the computational problem. Each works on a
different part of the problem and exchange information according to need or some
schedule. The primary goal here is to minimize the total time needed to solve the

problem.

1.1 Motivation
As a motivation, let us consider the following classes of problems:
Problem 1.1 Consider a fized point problem given by the steration:
zlk + 1] = f(z[k]) (1)

where z[k] ts an N dimensional vector. Given an initial value z[0], the serial al-

gorithm sterates until \/ (z[k] — z[k — 1])!(z[k] — z[k — 1]) < € for some given error
tolerance €. Suppose that A is a “dependency matriz”, [1], for f in steration (1),

i.e. a;; ts nonzero if and only if f; is a function of x;. Then from a parallelization

1 INTRODUCTION 2

point of view, the above problem ts equivalent to the steration:
z[k + 1] = Az[k] (2)

A special case of Equation 1 is when = corresponds to the lexicographic ordering of
variables defined on a grid where the isteration for each variable depends only on
its tmmediate neighbors. A typical example of this is solving a partial differential
equation, of say two variables, numerically by discretizing it over a two dimensional

array of points and using a Jacobi type of an iteration, [14]. '
Problem 1.2 Consider solving a set of N linear equations of N variables:
Az =) (3)

given b and a square, invertible (for simplicity) A. A numerically sound way to solve
this ts by first finding a QR decomposition of A and then doing a backsubstitution
to find z (see [4]). QR decompositon reduces A to an upper triangular matriz using
orthogonal transformations. These are simultaneously applied to b. The modified
set of equations can now be solved steratively by first calculating zn and then using
this to calculate zy_1, etc. However, this approach may be undesirable for large and
sparse A since it does not make use of any sparsity structure of A. An alternative
approach is to use the conjugate gradient algorithm (see [4]). This algorithm is an
tterative one that 1s guaranteed to terminate in N steps and executes the following

in 1ts main body:

Br = Tho1Tk—1/Tk_2Tk-2 (4)
Pr = k-1 + BrPr-1 (5)
o = rh_1Tk—1/D} APk (6)

Tr = Tg-1 + QkPk (7)

1 INTRODUCTION 3

Te = rg—1 — QpAps (8)

where zo = 0,79 = b, 51 = 0,p; = b. Also, the algorithm terminates if \/;'W <e.
Parallelization of this algorithm is considered in [7] in the framework of solving .
elliptic and hyperbolic equations using multigrid methods. They also consider a
parallel preconditioner for the above algorithm, which is based on the Fast Fourier
Transform. This preconditioner estimates the inverse of A above and uses it to

tmprove the convergence rate of the conjugate gradient algorithm. '

Suppose that for each problem above, the variables in question are distributed
among some processors. Based on the following types of interconnections between

these processors, or networks:
e Ring
e Mesh
e Hypercube

which are explained in Section 2.1, this report analyzes the following standard com-

putations:

¢ Exchange information with another processor.

Inner product of two vectors.

Matrix-Vector multiplication.

Matrix-Matrix multiplication.

Matrix transpose.

These in turn motivate consideration of the following standard traffic distributions:

1 INTRODUCTION 4

e One to one: This is mainly due to one particular processor exchanging infor-

mation with another processor.

e Broadcast (Accumulation): In this case, one processor sends the same message
to all the other processors. This comes up, for example, when the termination
of an algorithm, decided on by a designated processor, is communicated to all
the other processors. Accumulation comes up in calculating the inner product
of two vectors such that their corresponding entries are stored in the same

Processor.

e Multinode Broadcast (Accumulation): In this case, all processors broadcast.
For example, when a copy of a vector needs to be stored in all the processors,
each processor broadcasts the entries it stores. Multinode accumulation is

identical to multinode broadcast.

e Scatter (Gather): In this case, a particular processor sends a different message
to every other processor. For example, a designated processor distributes a
vector over all the other processors. Gather is the dual of scatter, in that a

particular processor receives different messages from every other processor.

e Multinode Scatter (Gather): This is equivalent to matrix transpose if a num-

ber of rows (or columns) of a matrix are stored in each processor.

1.2 Overview and Outline

- Saad and Schultz [12,13] present algorithms for the standard traffic distributions
above with no specific application in mind. Bertsekas and Tsitsiklis [1] improve

these algorithms and discuss applications to the standard computations above and

1 INTRODUCTION 5

to numerical computations such as the fixed point problem. They also discuss im-
plementation aspects and timing trade-offs very thoroughly. Both of these studies
consider various classes of networks. McBryan and Van de Velde 7] concentrate on
hypercubes and discuss general purpose algorithms, such as the standard compu-
tations above, and numerical solutions of elliptic and hyperbolic equations. They
present results and performance plots for the various algorithms that they imple-
mented on the Caltech and Intel hypercubes.

Unfortunately, there seems to be a lack of mathematical tools that could ease the
analysis of different algorithms by taking advantage of common features of different
classes of networks and the repetitious nature of the standard traffic distributions.
In particular, it is not clear why certain networks are easier to analyze than others.
Therefore, all the algorithms are essentially regenerated for different classes of net-
works and for different traffic distributions. I will try to improve on this by using
group theory in describing certain classes of networks.

Section 2 defines the classes of networks considered in this report, presents best
known algorithms for the standard traffic distributions and concludes by using group
theory to derive some general results. Section 3 presents algorithms for the standard
computations and the two problems discussed above. It also presents algorithms
for iterative problems where the A matrix has some “regular” sparsity structure.
Section 4 summarizes conclusions of the author and discusses possible extensions of

the work surveyed in this report.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 6

2 Results on Standard Traffic Distributions

Efficient algorithms for standard operations motivated in the previous section are
known for various classes of networks. A network is in general represented by a
graph G = (N, A) as a collection of nodes, N, and bidirectional arcs, A. An arc
(¢,7) € A is assumed to represent a full-duplex link (communication can proceed
in either direction simultaneously) between the nodes 7,7 € N. Also, I will assume
that each link provides an error free message pipe (i.e. it is assumed that if an error
occurs, it is detected and corrected in a negligible amount of time. This is not a
very realistic assumption in general. However it is consistent with the assumptions
of the papers surveyed and the consequences will be briefly discussed in Section
4). Note that the arcs constitute a measure of distance for the set of nodes, i.e.
d(s,7) = 1if (¢,7) € A and in general the length of the shortest path between ¢ and
J. A path is specified as a sequence of neighboring nodes (distance 1 apart).
Suppose that a traffic distribution is specified in terms of messages of length
l;; to be sent from node ¢ to node j for various pairs of nodes, that are not nec-
essarily neighbors. In a communication network, a major problem, given a traffic
distribution, is how to schedule these messages such that total communication time
is minimized. This is termed routing. Routing is typically solved locally (at each
node) since otherwise communication overhead to gather traffic information and
then distribute routing results would be very excessive. This in general is a hard
problem. For parallel processing algorithms considered in this report, traffic distri-
bution is known a priori and it is assumed that the network belongs to a class which
is “regular” in some sense. This enables one to precisely specify the path followed
by each message and makes the timing analysis much easier. Different types of

networks will be compared using the following criteria (as given in [1]):

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 7

e Diameter: Maximum shortest path distance between any pair of nodes. The
time to transmit a message between any two nodes is at most a multiple (de-
termined by the communication cost) of the diameter, assuming no queueing

delays at the intermediate nodes.

e Connectivity: Provides a measure for the number of “alternate” paths con-
necting a pair of nodes. Node (arc) connectivity is defined as the minimum
number of nodes (arcs) that must be deleted before the network becomes
disconnected. If a network has arc connectivity k, then there are at least
k parallel paths, i.e. paths with no arcs in common, between any pair of
nodes (max flow - min cut theorem [8]). This is important for reliability pur-
poses. Also, the communication between any pair of nodes can be parallelized
by splitting the message into several parts and sending each on a different
path. If there is no other traffic crossing these paths and the overhead cost
for communication is low (not a valid assumption in general) then the total

communication time for this message is reduced by a factor of k.

e Flexibility: Ability to efficiently run a broad variety of algorithms. For exam-
ple, an algorithm may be most suitable for a particular type of network. If
this network can be imbedded in another network (in a way that preserves the
neighborhood structure), but perhaps not vice versa, then the latter network

is more fiexible than the former since it can run algorithms for both.

2.1 Classes of Networks

- Let us review the following classes of networks and their properties:

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 8

Figure 1: n Node Ring

2.1.1 Rings

A ring with n nodes, is illustrated in Figure 1. It has diameter n/2, and arc
connectivity 2. It will be assumed that the nodes are indexed consecutively by

integers, as in the figure.

2.1.2 Mesh

An n node d dimensional mesh is a d dimensional array of n = nins---ny4 nodes
({n:} is a positive, nonincreasing sequence of integers). It is assumed that the nodes
are indexed as d-tuples (zy,...,z4) where each z; is an integer modulo n;. Only the
immediate neigbors are connected, i.e. two nodes are connected only if their indices
differ by one only in one coordinate. A wraparound mesh is one where two nodes
-are connected only if their indices differ by one modulo n; only in some coordinate
1. This report only considers wraparound meshes due to their symmetric structure.
An example of such a mesh is illustrated in Figure 2. A wraparound mesh has

diameter (ny + - -+ 4 ny)/2 and arc connectivity 2d.

Let us now consider imbedding a ring into a mesh with the same number of

nodes. What is meant by imbedding is a one to one map that preserves neigh-

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 9

(0,0 O i (22

!
Co—— 780 (6,2)
(1,0) (D !

¢ $ D(z,2)
(3,0} (2,)

Ce *(3 N +C2)

(31 OB 7 §

SR

40) “) ‘\, [4 92)

Figure 2: A Two Dimensional 5 x 3 Wraparound Mesh

borhood structure, i.e. neighbors are mapped to neighbors. For simplicity, let us
consider two dimensional meshes. First recognize each, say, row of the mesh as a
ring. Then, join the second row with the first to form another ring (for example,
see Figure 3). To do this, break a link in the first row, and its counterpart in the
second row. Join the nodes at the end points of these liks. Next, join the third row
with the second, in the same fashion. Note that here, a link different than the one
picked in the previous case should be used. Proceed likewise with the other rings.
At the third step, the link picked at the first step can be used, etc. Therefore,
we never run out of links to pick. This can be extended to higher dimensions in
a straightforward way. Also, using above approach, conditions can be derived for

imbedding a ring in a mesh with more nodes.

2.1.3 Hypercube

Let H; represent a d-dimensional hypercube, see for example Figure 4. It has 2"
nodes. Assume that these nodes are indexed by binary numbers of length d bits,
B. Then two nodes are connected if and only if their indices differ by one bit. The

distance between two nodes is given by the number of bits they differ in. This

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS

s

Figure 3: Imbedding a Ring in a 5 X 3 Mesh

10

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 11

o

, = (|
oo no!

OIl0

|
0100 om

o\0 |

0010 : ool |-

jot!

10lo

Figure 4: Hypercube, d = 4

is termed the Hamming distance and it can be calculated using the exclusive OR
function (XOR). XOR of two bits is O if they are equal and 1 if different. Let a
and b be two nodes in a hypercube, then aXORDb is defined as the binary number
obtained by XOR of corresponding entries of a and . Hamming distance, d;(a,b),
is the number of 1’s in aXORb.

Any ring with an even number of nodes can be imbedded in a hypercube of
equal or more nodes. First of all, note that a d dimensional hypercube consists of
two d-1 dimensional hypercubes with corresponding nodes connected. Let us first
consider rings with 2¢ nodes. Clearly, we can perform this imbedding when d = 2.
Suppose we can do it for some d. For d + 1 take two d dimensional hypercubes

with a ring imbedded in each. Now, break the rings at some link in one hypercube

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 12

and the corresponding link in the other. Connect the corresponding nodes of the
two hypercubes at either side of these links. We thus have an imbedding in the
d + 1 dimensional hypercube (see Figure 5). This corresponds to traversing the
nodes in one hypercube in the reverse direction of the other and generates the so
called Binary Reflected Gray Codes [1,11,7]. In general, when the ring has an even
number of nodes, r, it can be imbedded in a hypercube with equal or more nodes
by joining the corresponding r/2 node portions of the rings at lower dimension. If
a ring has an odd number of nodes then it cannot be imbedded in a hypercube
since a hypercube has no cycles (i.e. no paths that finish at the nodes they start)
- with an odd number of nodes, [11]. A mesh with even n; can be imbedded in a
hypercube of dimension [logn;] + -+ + [logng] (all logs are base 2). Using the
imbeddings of a ring each column can be imbedded in a hypercube of dimension
[logni]. Corresponding nodes of these hypercubes form a hypercube of dimension
[lognz]. Thus, they may be combined by n; node rings. Higher dimensions are
imbedded similarly.

For all the network classes above I assume that communication can be carried
out simultaneously on all links of a node in both directions. In [7], it is implicitly
assumed that a node can transmit on only one link and receive on another at any
given time. Although in practice it seems to be possible to transmit and receive
on more than one link at a time, if not all links, I will consider both extremes
for hypercubes. I refer to them as type 1 and type d. Bertsekas and Tsitsiklis [1]

consider both extremes for all networks.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS

Figure 5: Imbedding a Ring in a Hypercube, d = 4

13

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 14

0000 0001
0010 0011
0100 0101
:ouo 0111
1000 1004
1010 1011

1100<1101
1110 un
Figure 6: Tree Used for Broadcasting in a Hypercupe of Dimension d

2.1.4 Trees

A tree is any connected network with no cycles. Note that a tree with n nodes has
exactly n — 1 links (see for example Figure 6). Thus all trees have arc connectivity
1. The tree in Figure 6 has diameter 7. In general, trees are not very practical as
physical networks due to their low connectivity. However, they are useful concep-
tually since they prevent data duplication in broadcast situations. Specifically, a
spanning tree of a network, which is a subgraph of the network that includes all the
nodes but has no cycles, is important (for example, Figure 6 is a spanning tree of a

4 dimensional hypercube).

2.1.5 Fully Connected

- Examples of these are shared memory, crossbar switch (just like a phone system
switch board), broadcast bus (every node is tapped on to a bus and only one can
transmit at a time). I will not consider these networks since, as the number of
nodes increases, shared memory and the switch network become impractical to
implement, and time available for each node to transmit on a broadcast bus goes

to zero. However, I should note that implementing switches on every node of a

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 15

hypercube to connect the incident links would relax the speed constraints on the

local processor to keep up with transmissions on each link.

2.2 Standard Traffic Distributions

I will present algorithms for some standard traffic distributions on the network
classes discussed above. I will assume that all messages are of unit length, and
in most cases, present results in terms of the order of time needed in units of the
transmission time of a unit length message. This will be denoted by O(s). If f is
O(g) but not o(g) then f will be termed O,(g), i.e. strictly order g. If the best
possible algorithm for a problem is known to be O,(g) and we have an algorithm that
is O(g) then that algorithm will be termed efficient. It is assumed that transmitting
a message of length [over a link takes ¢ + lv units of time. Here ¢ represents fixed
costs, such as the propagation delay, and v represents variable costs, such as the

transmission time.

2.2.1 Omne to one

In this case, one node sends a message to another node. The easiest way to do this
for the rings is just to send the message along the shortest path, which requires time
(¢ +1v)s where s is the length of the shortest path. Note that this may be bounded
by (¢ + lv)n/2. A better approach is to send part of the message through the
- alternate longer path, specifically a portion proportional to the length of the paths.
In this case, total transmission time may be bounded by (¢ + lv)n/4. In [12], the
message is divided into smaller messages and pipelined through the shortest path.
This yields an equation for the total transmission time as a function of the number

of messages, which can be minimized to yield the optimum number of messages.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 16

v * .
.
B
*
A . ¢ . . L . . .
. [. [« .
. . . .
. A B A B
o 3 [] L J L 4 * L] 4 L]
‘A‘*’
Y 'Y L] * L] . * Ld [] —- a g *

Figure 7: Parallel Paths on a Mesh

Yet another way is to send these smaller messages through both paths in a pipelined
fashion. In general, one to one ring algorithms are O,(n).

For a mesh, it is shown in [12] that there are four parallel paths between any
two nodes a,b of a two dimensional grid with wraparound (recall that we already

know this fact from the Min-Cut Max Flow Theorem). In particular (see Figure 7),

e If a and b are aligned on the grid, then these paths can be chosen to be of

length d(a,b) + 2 each.

e If a and b are aligned, in either the horizontal or vertical direction, but are

not neighbors, then four paths can be chosen to be of length d(a,b) + 4.

e If a and b are neighbors, then four paths can be chosen to be of length d(a, b) +
6="17.

Thus, as in rings, the message could be divided into smaller messages, and can be
sent through these parallel paths in a pipelined fashion. In general, one to one grid .
algorithms are O,(n,).

For hypercubes, it is shown in [13] that there are d parallel paths between any

two nodes a, b of a hypercube. If d(a, b) = ¢ then ¢ of these paths are of length ¢ and

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 17

the rest are of length ¢ 4+ 2. To illustrate this, note that a path can be chosen by
equalizing the differing bits of a and b in some order. Suppose, this order is chosen
in the direction from right to left. The first path is chosen starting from the first
differing bit from the right and propagating to left. The second path is chosen by
starting from the second differing bit, circulating and finally finishing with the first
differing bit from the right. In this fashion, ¢ parallel paths can be chosen. For the
rest, first flip a bit that is identical in @ and b. Then correct all the differing bits,
there are ¢ + 1 of them now, in any order but leave the previously correct bit to the
last. Since there are d — ¢ bits common to both a and b, d — ¢ additional paths can
be chosen with length ¢ + 2 each. For type d, the message can be divided up and
pipelined along these parallel paths. The resulting algorithm is O,(d). For type 1,
pipelining is not useful but the message could still be divided up into pieces. Each
piece should be sent to a different neighboring node one by one. It is slightly better
if the nodes that are further away are started from. The algorithm is still O,(d) but
the coefficient is doubled.

For all the above networks, pipelining is a final touch of optimization, otherwise

they are of the same order.

2.2.2 Broadcast

In this case, a node sends the same message to all other links.

For rings, all nodes have two links and the best strategy would be to transmit
on both sides of the broadcasting node. Here, the algorithm is O,(n). In [12], an
algorithm of the same order of transmission time is given for the pipelined case.

‘For meshes, a similar strategy could be used. The message should be transmitted

outward from the broadcasting node, but special attention should be paid to the

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 18

-~ O
-— [o
-~ >t
. e *—
-~ [o
-~ P
-~ —n
- P
e o T

Figure 8: Broadcast Directions on a Mesh

direction of broadcast at each level so that no message is duplicated (see Figure 8
for illustration). Details of this algorithm and a variation based on splitting the
message into a horizontal and vertical part are given in [12]. In both cases, the

algorithm is lower bounded by the maximum n;, i.e. it is O,(n,).

For hypercubes, algorithms for this in [13,1,7] are all based on the same idea.
There is no difference between type 1 and type d. The property that H; consisists of
two H,_; with corresponding nodes connected, is used. The broadcast node sends
its message to the adjacent H;_;. Now, we have two parallel broadcast problems on
two Hy_;. Proceeding iteratively, the message is broadcast in d steps. An alternative
representation of this algorithm is the tree in Figure 6. This tree is illustrated for
node 0. The corresponding tree for any other node a can be generated by performing

an XOR of a and each node on the tree. Note that this is a permutation of the tree

.-such that the root is node a and the neigborhood structure is preserved. This is

formally proved in Section 2.3.
The dual of the broadcast problem is accumulation, which can be executed in

the same amount of time by reversing the steps of above algorithms.

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 19

2.2.3 Multinode Broadcast

In this case, all nodes broadcast their own messages.

For rings, the algorithm in [12] uses broadcasting in a round robin fashion around
the ring. Each node receives a message from one direction and transmits it at the
next step on the other direction. This requires O,(n) time, but additional savings,
by a factor of 2 can be made by broadcasting in both directions simultaneously.
Note that this is efficient since every node can receive two messages at every step
and there is a total of n messages.

For meshes, the best algorithm in [12] is based on two passes. at the first step,
a multinode broadcast is performed on each, say, horizontal ring of the mesh. Note
that after the first pass, each node has n; messages corresponding to its horizontal
counterparts. These messages are then broadcast along vertical rings, requiring a
total of O,(n) time. Note that this algorithm is efficient since each node can receive
4 messages at a time and there is a total of n messages.

For hypercubes of type 1, multinode broadcast can be done using the vector shift
algorithm of [7]. A ring with 2" nodes is imbedded in a d dimensional hypercube.
Multinode broadcast can be equivalently formulated as storing a vector of length
n, whose elements are originally assigned to the processors in a one to one fashion,
in each processor. The elements of this vector are shifted one by one along the
- ring until all processors receive the vector elements. This algorithm is O,(n) and
efficient since each node can receive at most one message at a time and there is a
total of n messages. For type d, there are various multinode broadcast algorithms
in [13] and only one of them is efficient (Optimal Total Exchange Algorithm). It is
O,(n/d), or O,(n/logn), and efficient since there are d links from each node and a

total of » messages to be received. However, this algorithm requires all nodes, at

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 20

each step, to scan the messages they currently hold to decide on which messages
to send to their neighbors at that step. This requires processing time by the host
processor and, depending on the particular architecture, it may take a considerable

amount of time. A better algorithm is presented in Section 2.3.

2.2.4 Scatter, Gather

In the case of gather, one node receives a different message from every other node.
Note that gather is a special case of multinode broadcast. Furthermore, every node
has to receive n different messages. Thus, the algorithm for each network has a
lower bound of n divided by the number of links from each node in that network.
The multinode broadcast algorithms achieve this bound. Therefore, they are also
efficient for gather ([13] has a gather algorithm for hypercubes which is not even
efficient). Note also that a dual of gather is scatter. Efficient algorithms for scatter

can be achieved by reversing the traffic streams of a gather algorithm.

2.2.5 Multinode Scatter or Matrix Transpose

In this case, every node sends a different message to every other node. For rings
if we let each node scatter in turn, we have an O(n?) algorithm. Note that the
messages corresponding to one node traverse n/2 links on the average. Since there
are n nodes with n messages each and a total of n links, each link transmits an
“average of n?/2 messages. Therefore, the above algorithm is efficient.

For meshes (the algorithm in [12] is wrong since for example, a processor on the
diagonal never sends any messages to the processors in its row), say of dimension 2,
first at each row we have a multinode scatter of messages destined for each column

(in parallel), then we have a multinode scatter of these messages at each column (in

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 21

parallel). Thus we have a multinode scatter of messages n; units long over a ring
of ng processors and a multinode scatter of meessages n; units long over a ring of
n; processors. Therefore, the algorithm is O(nin2 +nen?) = O(nyn). Note that the
messages corresponding one node traverse O,(n; + n3) links on the average. Since
there n nodes with n messages each and a total of 2n links, the above algorithm is
efficient. For higher dimensional meshes, the corresponding algorithm will have the
same order.

For hypercubes of type 1, the algorithm in [7] uses a matrix transpose inter-
pretation. Suppose that we have an n X n matrix whose rows are distributed over
H; (n = 2%). First divide the matrix into four blocks and exchange off diagonal
blocks. This corresponds to exchanging messages between corresponding nodes of
two Hy.i. Then divide each block into four sub-blocks and apply the above step
to each block (see Figure 9). Iterating until we have 1 X 1 sub-blocks completes
the algorithm. Note that at step ¢ of the algorithm, 2¢7%2°~! = 29-! messages
are exchanged between each pair of nodes. Since there are d steps, the algorithm
is O(d2%) = O(dn). For multinode scatter, each node transmits O,(n) messages,
where each message goes through O,(d) nodes on the average. Since each node
can transmit one message at a time and there are n nodes, the above algorithm is
efficient. For hypercubes of type d, consider the following algorithm in [1]: This
algorithm has two parts. First, a multinode scatter is performed in each H;_; and
- ‘in parallel each node sends the data for the other hypercube to the corresponding
node (2""1 messages). Then, a multinode scatter is performed on each Hj;.; for
these messages. It can be shown inductively that this algorithm is O,(n). Note
that this algorithm can also be generated from the above algorithm for type 1.

While off diagonal blocks are exchanged, diagonal blocks can be transposed (this is

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 22

Figure 9: Matrix Transpose Algorithm for Hypercube Dimension 3, Type 1

Ring | Mesh Hypercube
Typel Typed
One to One n n d d
Broadcast n ny d d
Multinode Broadcast | n n n n/d
Scatter n n n n/d
Multinode Scatter n? nn dn n

Table 1: Orders of algorithms for standard operations on regular networks

the first part). Then, off-diagonal blocks are transposed (this is the second part).
Note that this algorithm is also efficient.

The results presented in this section are summarized in Table 1.

2.3 Group Properties of Some Networks

It turns out that the nodes of rings, meshes and hypercubes can be indexed such
that the set of indices is a group under some operation. Morover, neighborhood
structure and the shortest path between any pair of nodes can be described in a

natural way using this operation. A group is defined as follows [10]:

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 23

Definition 2.1 A group 1s a set G with an associative binary operation * : GXG —

G such that:

1. There ts an element e in G with
exa=a for all aceG
2. For every a € G there s a b in G with
bxa=ce
(Then b is the inverse of a, denoted by a™!.)

Moreover, a group ts abelian sf x commutes. oo

For rings, let Z,, be the set of integers modulo n. Then Z,, is an abelian group
under addition modulo n, call this *,. The shortest path distance on a ring d,(a, b)
for any a,b € Z, is given by min(a %, 67!,a71 %, b).

For meshes, suppose that the nodes are indexed consecutively along each di-
mension by Z,, X -+ X Z,, = M. Let a,b € M and a = (ay,...4a4),b = (by,...bs).
Then M is an abelian group under addition, ¢ = a %, b, such that ¢; = a; *; b; or
¢ = a; + b; (mod n;). Then, the shortest path distance between any two points
a,be Mis:

dm(a,b) = Zd: min(a; *; b7, a; *; b;)

=1

For hypercubes, define a function g, : B — Z as the number of 1’s in a binary
number. Note that B is a group under bit by bit XOR, %5, and the shortest path
distance, which is the same as the Hamming distance, is given by dx(a,) = gn(a*sb). -
Note that the inverse of any element in B is itself.

Consider a network such that the indices of nodes form an abelian group G

under some operation *, such that the shortest path distance between any two

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 24

nodes a,b € G satisfies d(c * a,c *x b) = d(a,b) for all ¢ € G. Specifically, it is
important that arcs map to arcs. Note that this is satisfied by rings, meshes and
hypercubes. Suppose that we have an algorithm for broadcast from node e (the node
whose index is the identity element in the group). In particular, this algorithm is
specified as a set of distinct directed arcs A; that transmit a message at step ¢
of the algorithm. Let (a,b) € A; and consider ¢ * (a,b) = (¢ * a,c * b). Since
d(c*a,c*b) = d(a,b) =1, c*(a,bd) is also an arc. Moreover, since broadcast from e
sends the message from e to all other nodes and operating on these nodes by some
node c is just a permuation of the nodes such that e maps to ¢, transmitting over
the arcs ¢ * A; at step ¢ achieves broadcasting from node ¢. Therefore, it is sufficient
to construct a broadcast algorithm from one node. The rest can be generated from
this.

A straightforward approach to multinode broadcast is to let each node broadcast
simultaneously using a broadcast algorithm. Recall that for the broadcast from
node e, its message is transmitted over the arcs A; at step ¢. This algorithm may
be generalized to multinode broadcast such that at step ¢z, the set of directed arcs
Ai o = a* A; (* of each element of A; by a) transmit the message corresponding to
node a. Let (z,y) be an arc and r;(z,y) be the number of 4;, that contain (z,y),
i.e. r;(z,y) is the number of messages that need to be sent on arc (z,y) at step 1.
Thus step ¢ takes
ri(z,y)

T { = max
maz (z.9)EA; . aEG

units of time. The sequence of sets A; should be picked such that total completion

time of the algorithm, }; 74z, is minimized. I claim the following:
Proposition 2.2 Given A;, let (z,y) € A; and

Ri(z,y) = {(2,w) such that (z,w) € A; and z*xy™ ' =z w™'}

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS 25

Then,
T,‘(.’D, y) = '.R,'(IE, y)l

Proof: First of all, let (2,w) € Ri(z,y) and a = y + w™! (note that @ € G. Then,
(@axz,a%xw)=(y*xwlxz, y) = (z,y) (using commutativity). On the other hand,
Let (z,y) € 44 for some a. Then, (z,y) = (a * z,a * w) for some, but only one,

(2,w) € A;. Wehave,z+y l=axz+wlsa! =zl o

Note that we can apply the above result to all A;q individually. But also,
R(a* z,a *y) = a * R(z,y). Thus,

Tmaz,s = (I’n)aé); T,(.’B, y)

i.e. we only need to look at the arcs for node e, and we have:

Pmasi = MAX |Ri(z,y)| (9)

In short, we wish minimize the number of arcs that carry traffic in the same
direction at the same step. For hypercubes, these arcs correspond to arcs that flip
the same bit. Note that the tree in Figure 6 would lead to a multinode broadcast
in O(n) steps. Conceptually, we should be able to generate a tree with about n/d
levels and at most d arcs at each level such that all arcs at the same level flip a
different bit. I propose the following: Consider a tree generated by d major steps

and some minor steps in each major step. At major step ¢, all nodes with labels

that have exactly ¢ bits equal to 1 are connected to the other elements of the tree ..

generated upto step 7. In each minor step corresponding to step 7, d of these nodes
are connected to any previously generated element of the tree such that each arc

corresponds to a different bit flip. The tree is generated when finally node 1¢ (a

2 RESULTS ON STANDARD TRAFFIC DISTRIBUTIONS

oo /w Bl ol ¥
VAl 09 o e Ol
s W22 efoio
& OI0Q ale PRIIYS

T g o
1000 i OO ol
R e . P]

QGo0

Figure 10: Multinode Broadcast Tree for Hypercube of dimension 4

r—b

Figure 11: Multinode Broadcast Tree for a Mesh

26

node with index all ones) is connected. The total number of minor steps is bounded

by (¢)/d + 1 (see Appendix B). Such a tree for d = 4 is illustrated in Figure 10.

This algorithm is O,(n/d) and efficient.

Note that above procedure is a proof that the multinode broadcast algorithm,

described previously, for rings work. Similarly, a broadcast tree may be generated

for a mesh, as in Figure 11, that produces an efficient multinode broadcast algorithm

(compare to Figure 8). Note that this approach could also be applied to multinode.

scatter problems or any other problem such that the transmissions for all the nodes

can be generated from the transmissions for one node using the group operation.

3 APPLICATIONS 27

3 Applications

This section presents applications of standard traffic distributions of the previous

section to vector, matrix computations, linear equation solvers and fixed point prob-

lems.

3.1 Vector Computations

Let us first consider computation of the inner product of two vectors. This is
important for calculating the termination condition of a relaxation algorithm (for
example checking to see if the norm of the error vector is small enough) and also
constitutes a basis for matrix-vector multiplications. Suppose that two given vectors
of length n each are distributed over n processors in a way that corresponding entries
of each vector reside in the same processor. Let each processor calculate that portion
of the inner product corresponding to the entries it holds. It then sends its result
to another processor which adds it to its own computation and sends the result to
another processor etc. The result is finally summed up at a designated processor.
Thus, we have an accumulation (of the designated processor) problem. In relaxation
algorithms, when this inner product is the norm of the error vector, if this norm is
small enough then the designated processor sends a termination message to all the
other processors. This is a broadcast problem.

Next let us consider a problem of shifting a vector by a certain amount. This is
particularly interesting and important (since it constitutes a basis for matrix-vector
multiplication, etc.) for type 1 hypercubes. In this case, ordering of distribution
over the processors of the hypercube is important. In particular, assuming that

the vector has n elements, each consequtive entry of the vector will be distributed

3 APPLICATIONS 28

according the embedding of a ring into the hypercube (as generated using Binary
Reflected Gray Codes). As a result of this imbedding, nodes that have logical
distance 2* on the ring, for some k, have physical distance 2 on the hypercube
[1]. The algorithm in [7] uses this to construct a logical hierarchy of the ring in
the hypercube (see Figure 12). The important issue here is that at level k of this
hierarchy, there are 2* parallel cycles corresponding to connections of each node with
the nodes of logical distance 2*. Thus, it takes two units of time to shift a vector by
2% elements, for any k > 1 and one unit of time for k = 1. Consider shifting a vector
arbitrarily by some amount s > 0. We can assume that s < 29 since shifting by 2¢ is
the same as not shifting at all. Also, we can assume that s < 247! since shifting in
one direction by s is the same as shifting in the other direction by 2¢ — s and when
s > 2% we could save on the number of shifts by shifting in the other direction. Let
us take the binary expansion of s, i.e. let s = bj_z:--bo. In [7], they achieve this
shift by a combination of shifts depending on which bits of s are set. Since shifting
by one requires one step and the rest require two steps each, they have an algorithm
that works in O(2(d — 2) + 1) time in the worst case. Note that for a shift by 7,
this requires shifting by 4, shifting by 2 and finally shifting by 1. However, it would
take less time if this vector was first shifted by 8 and then shifted in the reverse
direction by 1. To generalize this, one needs to solve a shortest path problem. It
can be shown that any shift can be done in at most d steps, an improvement by a

factor of two (see Appendix A).

3.2 Matrix Computations

Let us first consider how to store a matrix in n processors. Let us assume that the

matrix is n X n. There are three main forms of storage considered in [7] and [1]:

3 APPLICATIONS 29

LOGICAL STRUCTURE

)

PHYSICAL STRUCTURE

Level 0

Level]
1010

Level 2

Level 3

Figure 12: The logical hierarchies of rings in a 16-node hypercube and the commu-
nication channels used to implement them.

3 APPLICATIONS 30

¢ By rows: Store each row in a processor.
e By columns: Store each column in a processor.

e By diagonals: The matrix A is converted into diagonal form D (see Figure

13) and D is stored by columns.

Note that conversion from storage by rows to by columns and vice versa requires

multinode scatter. For each case above, we have the following algorithms:

e Suppose that the matrix is stored by rows and each processor has a copy of
the vector. Then in O(n) computation time the product is calculated and
entry p of the resulting vector is stored in processor p. If we are running a
relaxation algorithm, we need to redistribute the entries of the vector to all

the processors. Thus we do a multinode broadcast.

e Suppose that the matrix is stored by columns and processor p has entry p of
the vector. Each vector multiplies the column and the vector entry it stores.
Then in O(n) computation time, we have n vectors that are distributed over
processors and need to be summed up. Since we want processor p to have
entry p of the resulting vector, each processor needs to gather corresponding
entry from every other processor. Here we have multinode gather. Note that
alternatively, the entry may be added up at the intermediate processors. In
this case, we have a multinode accumulation which would make the total
cost of running the algorithm same as the storage by rows. However, as
each processor accumulates its message, intermediate nodes need to add the
different messages destined for the same node and form a new message. Thus,

in practice, depending on the particular architecture this form of storage could

3 APPLICATIONS 31

00 01 02 03 04 05 00 11 22 33 44 55
10 11 12 13 14 15 50 01 12 23 34 45
Ao|20 21 22 23 24 25 D_‘;' 40 51 02 13 24 35
30 31 32 33 34 35 130 41 52 03 14 25
40 41 42 43 44 45 20 31 42 53 04 15
50 S1 52 S3 54 55 10 21 32 43 S4 05

Figure 13: Conversion of A to Diagonal Form D

result in longer running time than the previous one, but perhaps the same

order of magnitude.

e Suppose that the matrix is stored by diagonals and processor p has entry p of
the vector. Then an algorithm can be constructed that consists of n successive
shifts by one, and O(n) computation before each shift (see [7]). They argue
in [7] that this storage is portable in the sense that it does not bias A towards
either row or column storage. This seems to be a reasonable argument for
hypercubes of type 1. However, if the same storage is used for hypercubes of

type d, corresponding calculation would take time by a factor of d larger than

that of either row or column storage.

When multiplying two matrices A and B, the most favourable case is when A
is stored by rows and B is stored by columns. The algorithm would be to perform
n successive matrix-vector multiplications. The resulting matrix is stored by rows, ..

in a total of O(n?) computation time and n multinode broadcasts.

3 APPLICATIONS , 32

3.3 Fixed Point Problems with Sparse A

Fixed point problems can simply be solved by a repeated application of the matrix-
vector product considered above. However, for sparse A, this approach may not
be very efficient. Some forms of sparsity structure are examined below. When
necessary, applications to hypercubes of type d are used for illustration. In what
follows, it is assumed that A is a square matrix of dimension N X N where N = mn

and n is the number of processors as usual.

3.3.1 Banded

Suppose that A is distributed among the processors in blocks of m rows, and sim-
ilarly, = is distributed in blocks of m elements. Moreover, corresponding blocks
of A and z reside in the same processor (for example, first m rows of A and first
m elements of z are stored in the same processor) and the consecutive blocks are
stored in neighboring processors (for example, for the hypercube, the imbedding of
a ring into the hypercube would be used). To define what is meant by banded let
us first consider the notion (of [7]) of an eztended diagonal. An extended diagonal
p of A is the set of entries {a;; such that j —¢ = por¢— j = n — p}. The sym-
metric counterpart of this diagonal is the set of entries {a;; such that ¢ — j = p or
J— ¢ =n—p}. When an extended diagonal is nonzero, it will be assumed that
its symmetric counterpart is also nonzero. A matrix A will be termed banded with
width b if extended diagonals 1,- -- b and their symmetric counterparts are nonzero
and the rest of the matrix is zero. It will be assumed that b is a multiple of m,
say b = rm. Then the corresponding fixed point iteration can be computed by r
consequtive shifts in both directions. Each shift consists of transmitting m elements

of z to a neighbor. Since the links are bidirectional, shifts to both directions can be

3 APPLICATIONS 33

~ done in parallel and thus the algorithm takes O(mr) communication time. There
is also O(m) computation after each shift. Note that, on a hypercube of type d,
this method will be preferable to the matrix-vector multiplication method of the

previous section if roughly, r < n/d.

3.3.2 Mesh

In certain cases, such as the 5-point discretization of a partial differential equation
using the Jacobi method (see [14]), the “dependency graph” (i.e. the graph gener-
ated by modelling each variable as a node, and defining an undirected arc between
nodes ¢ and j for all nonzero a;; of the dependency matrix) may be a wraparound
mesh. Distribution of variables among n processors is modelled, in [7], as a prob-
lem of dividing a rectangle into n regions with minimum perimeter to area ratio.
They assume that the mesh is Ny X N = n1p; X n2p, and the number of available
processors is nins. In this case, they argue that, to minimize communication, the
mesh should be divided into squares with p;p, points each, if possible (otherwise
near square rectangles). Each processor is assigned one of these rectangles. The
dependency graph for the processors is then a wraparound mesh itself. At each
iteration of the fixed point computation, each processor exchanges data with its
horizontal and vertical neighbors. Recall that wraparound mesh consists of rings
in horizontal and vertical directions. Thus, a shift by one in each direction of all
horizontal and vertical grids may be done in parallel. This algorithm takes roughly
O(/P1pz) communication time (on the appropriate mesh or type d hypercube).

In 9-point discretizations, the dependency graph includes diagonal connections
(see Figure 14). Suppose that this graph is N x N and n = p? for some integer p that
divides N. As before, the graph could be divided into r x r squares where r = N/p.

3 APPLICATIONS 34

Figure 14: 4 X 4 Mesh Corresponding to a 9-Point Discretization

Step L Step 2
®

Figure 15: Decomposition of Diagonal Exchange

In this case, we have a similar p X p graph for which data corresponding to r points
need to be exchanged on the vertical and horizontal directions, and 1 point on the
diagonal directions, at each iteration. The data exchange can be performed on a
p X p mesh of processors in two steps. Suppose that diagonal exchange is divided into
its horizontal and vertical components as in Figure 15. At the first step, horizontal
and vertical exchange takes place. This also covers the first components (horizontal
or vertical) of the diagonal exchange. At the second step, the second components

of diagonal exchange take place. Thus data exchange completes in r 4+ 1 time units.

3 APPLICATIONS 35

3.3.83 Scattered Off-Diagonals

This section analyzes fixed point iterations where A, N X N, has p extended diag-
onals, rg, 7y, - - rp—1 nonzero (see Figure 16). In [1] it is noted that a special case of
the above where r; = (¢ + 1)k and N is a multiple of k (see Figure 17), is undesir-
able when the matrix-vector multiplication method above is applied. However, this
problem can be divided into k disjoint problems, each indexed by 7 € {0,---,k—1}.
Problem 7 corresponds to iteration of variables {¢,k + ¢,---,N/k — 1 + ¢}. For
the general case, group theory is useful. Let G be the group of integers modulo N
with group operation of addition modulo N. In general, decomposition into disjoint
problems relies on finding R, = [ro] * [r1] % - - - [rp—1], Wwhere [a] denotes the set of all
powers of a, which is a subgroup of G, [10], and [a] * [b] = {&’ b/, for some 7 and j}.

The disjoint problems are R, and its cosets, [10]. I first make the following claim:

Proposition 3.1 R, = [ro] # [r1] %+ -+ % [rp_1] = [gp] where g, = ged(ro,- - ,7p-1, N).
Proof: I prove this inductively. First, [ro] = [¢1]: Since ro = ¢{ for some integer s,
[ro] C [g1]- Let a € [q1] then a = ¢ for some h. Note that h € G. Since s, above,
and N are relatively prime and s € G, [s] = G and thus for any h € G, there exists
some w € G such that h = s®. Therefore, a = ¢ = r¥ € [ro].

Suppose, R, = [g,], then Ryi1 = [gp] * [rp] = [gp] * [s] where s = ged(r,, N). On
the other hand, N = gp+1(¢p/qp+1)(8/gp+1)w for some w. Thus,

Rot1 = [N/(s/gp+1)] * [N/w] % [N/(gp/gp+1)] * [N/w]
= [N/(s/gp+1)] * [N/(gp/ gp+1)] * [N/]

= [qp+1]

3 APPLICATIONS 36

[X J
Note that there are exactly g, cosets of [¢,]. To summarize, we have the following:

Proposition 3.2 For a fized point problem, or a matriz-vector multiplication prob-
lem, where A s structured as above, the problem can be divided into g, disjoint
problems (i.e. A is reducible to a block diagonal form) and moreover, the indices of

the variables that belong to each problem are given by [q,] and its cosets. '

If the number of available processors, n, is less than or equal to ¢, then one
or more subproblems can be assigned to each processor appropriately. (If n < gy,
depending on the problem, it may be better to distribute some of the subproblems
over all the processors to balance the computation load on the processors.) If n = gy,
then there is no communication cost, and the computation executes n times faster
than the serial one. If n > ¢,, say n = mg, for simplicity, then m processors could
be assigned to each problem. In this case, if possible, either band or grid structure
could be exploited as above or a straightforward matrix-vector multiplication type
of an algorithm could be applied.

In general, comparison of a parallelized fixed point iteration to its serial version
is hard because the performance is strongly coupled to the sparsity structure of
A and how it is exploited. In the case of linear iterations with dense A, a serial
algorithm takes O(m?n?) computation steps. For hypercubes of type d, parallel ver-
sion takes O(mn/d) communication steps and O(m?) computation steps. Typically,
computation is much faster than communication (for example for. Intel hypercube .
[7]). Thus, for moderate m, communication will dominate computation and paral-
lelization will be beneficial when unit communication cost to unit computation cost
is roughly less than md/n. For large m, computation will dominate and paralleliza-

tion will be O(n?) faster than the serial version. Another criterion given in [1] and

3 APPLICATIONS 37

- s §‘,\ww(~ric Counterp art
e mded
“"’%‘/ d;aﬂa—omﬁle—

Figure 16: Scattered Extended Diagonals (entries nonzero only along the lines in-
dicated)

Lk Kk kK Kk k

I
N

Figure 17: A Special Case of Scattered Extended Diagonals

[7] is the communication penalty, which is defined as the ratio of communication
time per iteration to computation time per iteration. In this case, communication
penalty is O(n/dm) which approaches zero as m increases implying that processors

are fully utilized.

3 APPLICATIONS 38

3.4 Linear Equation Solvers
3.4.1 Orthogonalization

Let us first consider the QR decomposition (Q is not constructed explicitly, but
the same transformations are applied to b). Suppose that A is mn x mn and
stored by rows. In this case the dimension of the matrix being worked on de-
creases with each step. To preserve effective use of each processor, suppose rows
psp+n,---,p+ (m—1)n are stored at processor p. At each step, one column is or-
thogonalized. At step ¢, each processor first orthogonalizes that piece of the current
column it stores, and this takes O((m —¢/n)(mn — ¢)) computation time. Then the
remaining part of the{ column (one entry per processor) need to be orthogonalized.
However, the resulting transformation must to be applied to the rest of the rows.
This can be achieved either using Modified Gram-Schmidt or a series of Givens
transformations, [4], over a tree (such as the tree in Figure 6). In either case, the
required communication time is O(d(mn — 7)) and the computation time is also
O(d(mn — 1)). Summing this over mn steps, we get O(dm?n?) communication time
and O(m®n?) computation time. Backsubstitution takes O(mn) time. The serial
version of this algorithm takes O(m3n®) computation steps. Thus parallelization is
favourable when unit communication time to computation time ratio is roughly less
than mn/d. Communication penalty is O(d/(m + n)) which approaches zero as m

increases.

3.4.2 Conjugate Gradient

In this section, I calculate the execution time of Equations (4-8) of the first section.
All vectors and the matrix A, mn X mn, are assumed to be distributed by rows. The

calculations below assume a type d hypercube. Equation (4) relies on computing

3 APPLICATIONS 39

a single inner product. Recall that this takes O(mn/d) time. Equation (5) is
immediate after Equation (4). Equation (6) requires a multinode broadcast (Note
that p} Ap; can be computed at the same time with Ap; since every processor has
a copy of pi), and thus takes O(mn/d) communication time. If A is sparse, this
may of course be further improved, if possible, using the approach of Section 3.3.
Equations (7) and (8) are immediate after Equation (6). Thus each iteration takes
a total of O(mn/d) communication time and O(m?n) computation time. In the
serial version each iteration takes O(m?n?) computation steps. Therefore, if the
communication to computation ratio is roughly less than mnd, it will be preferable
to parallelize. Note that the iterative version is faster, by a factor of O(d?), than the
QR decomposition approach above even in the worst case convergence of mn steps.
Furthermore, the iterative version can be made faster if A is sparse. Note also that

the communication penalty is O(1/md) and approaches zero as m increases.

4 CONCLUSIONS AND FURTHER QUESTIONS 40

4 Conclusions and Further Questions

This report has surveyed part of the recent literature on the communication aspects
of parallel processing. Among the topologies considered, hypercubes have the best
properties in terms of diameter, connectivity, and flexibility. For the standard oper-
ations, efficient algorithms are known for the popular topologies. From a practical
point of view, matrix vector product seems to be the most important computation.
This computation, for dense A, is rather straightforward. However, exploiting the
sparsity structure of A is a hard problem in general.

As a tool for exploring structures of “regular topologies” and analysing timing
properties of algorithms for these topologies, the application of group theory was
proposed and carried out to some extent. An interesting result was presented on the
reduceability of a sparse matrix with nonzero extended diagonals. One could argue
that such matrices may not be found in practice since if the matrix is reducible, then
this perhaps can be recognized at the modelling stage. However, the matrix may
be “almost reducible” in the sense that appropriate extended diagonals are O(e) for
some small €. This would correspond to weakly coupled subproblems of the large
scale problem. Then a processor can be assigned to each subproblem and a two time
scale update could be carried out, i.e. variables corresponding to each subproblem
are updated frequently with respect to other variables in that subproblem and are
updated at a slower rate (perhaps bounded by communication time) with respect
to the variables in other subproblems.

The algorithms considered in this report were essentially synchronous. Although
the processors operate asynchronously in principle, each processor waits for all the
variables necessary for an update before performing that update (local synchroniza-

tion, [1]). This may potentially lead to some reliability problems. In particular, if

4 CONCLUSIONS AND FURTHER QUESTIONS 41

a message is lost while being transmitted (for example when a link goes down),
depending on how these losses are treated by the particular network, it may be de-
layed arbitrarily. This would in turn lead to an arbitrary delay in the update of the
particular processor the message is destined for. Since other processors will wait for
the results of this update in their next update, execution of the algorithm would be
delayed arbitrarily. A potentially more robust approach is the use of asynchronous
algorithms, [1]. Typically, in this case, each processor performs the updates as
many times as possible regardless of whether it has the most recent values of the
variables in other processors. A major drawback of these algorithms is that their
convergence properties are much harder to analyze.

Another aspect of reliability is the extent of damage caused by a failure, such
as a link or node crash, on the overall communication properties of the network.
For example, when a link crashes, a natural remedy would be to reroute the packet
through an alternate path. However, there could conceivably be other packets using
the links on this path, and they will be delayed due to the rerouted packet. For
example, for the algorithms considered in this report, the precise scheduling of the
messages would be disrupted and communication time estimates would not be valid
anymore. Note that the nodes are generally aware of the current traffic distribution.
The network may use this to its advantage by implementing a different (perhaps
pre-calculated) schedule.

I believe that the recent developments on the control of Discrete Event Dynamic
Systems, [2,3,5,6,9], may be used to address robustness problems. In particular, the
work of Ramadge and Wonham [9], Lin and Wonham [6] and Cieslak et al. [2]
could be helpful in designing a local control that reacts to link failures. The work of

Cohen et al. [3] could be used in analyzing the effects of the traffic distribution and

4 CONCLUSIONS AND FURTHER QUESTIONS 42

the times at which the messages are introduced into the network, on the queue sizes.
Finally, perturbation analysis of Ho [5] might be useful in analyzing the effects of

small changes in the scheduling on the overall performance.

A MINIMUM DISTANCE ON A HIERARCHICAL RING 43

A Minimum Distance on a Hierarchical Ring

This appendix formulates the problem of finding the optimal combination of shifts
on a hierarchical ring in a hypercube to achieve an arbitrary shift, as a shortest
path problem and shows that this can be done in at most d steps. Consider the

following scalar linear system:
zlk + 1] = 2z[k] + u[k]

where u|k] is restricted to 1 (forward shift), O (no shift), —1 (reverse shift). Let
be the desired amount of shift and consider a minimum energy control problem to
reach z in the above system in some number of steps. Let us plot the state space
of this system and formulate this as a shortest path problem where absolute values
of u[¢] are the arc lengths. Figure 18 illustrates this for a 32 node ring. Note that
initial input of -1 is omitted due to the symmetric nature of the state space and we
do not need to consider any states larger than 16 since we can equivalently achieve
it by reversing the shifts. The numbers in squares beside the states are the shortest
path lengths. For example, a shift of 7 can be achieved by a shortest path through
0, 1, 2, 4, 7, with a corresponding length of 2, and input string 1, 0, 0, -1 which
corresponds to a forward shift by 2° = 8 and a reverse shift by 1. The graph for
larger rings can be generated by bulding on this ring. A ring with 2% nodes will
“have a graph with d — 1 levels. At each level, maximum shortest path length of
an even numbered state is the same as maximum shortest path length of an odd
numbered state in the previous level. On the other hand, maximum shortest path
length of an odd numbered state is one plus maximum shortest path length of an
even numbered state in the previous level. It can be shown inductively that at level

k, maximum shortest path for an even state is k/2 and odd state is k£/2 + 1 if k

B MULTINODE BROADCAST TREE FOR HYPERCUBES 44

2

Figure 18: State Space for a 32 Node Ring

is even, and (k + 1)/2 for all states if k is odd. Recall that shifts that are nozero
powers of 2 take two steps. Also, note that exactly one shift of an odd numbered
node will be a single step shift and all shifts of even numbered nodes take two steps.
Therefore, it follows that arbitrary shifts require at most d steps for hierarchical

rings with 2¢ nodes on a hypercube.

B Multinode Broadcast Tree for Hypercubes

To prove the existence and the timing properties of a multinode broadcast tree for
hypercubes as derived in Section 2.3, I will use the equivalence classes defined in

[13]. Let A(d,?) be the set of d bit binary numbers with exactly ¢ ones. Divide this

B MULTINODE BROADCAST TREE FOR HYPERCUBES 45

set into disjoint equivalance classes using the relation: a$b if and only if a = S7b
for some positive integer 5, where S is the left cyclic shift operator.

In each minor step of the tree construction, an equivalance class is connected.
Note that in all the equivalance classes, there is an element with a one in the first
bit and other elements are shifts of this element. Given an element of A(d,?), if we
change a one entry of this number to a zero, the resulting number is an element of
A(d,7—1). Therefore, all elements of an equivalance class of A(d, 7) can be connected
to elements of A(d,7—1) in a way that each connection flips a different bit. To prove
that the number of minor steps in a major step is bounded by (¢)/d+1, it suffices to
prove that at most one equivalance class of A(d,?) has less than d elements (others

have exactly d elements).

Proposition B.1 There are ezactly [(¢)] equivalance classes of A(d,1).

Proof: Let us first prove that there is at most one equivalance class with less than
d elements in it. Let a € A(d,7) and j be the smallest integer such that a = S7a.
Suppose 5 < d and without loss of generality, assume that a has a one as the
rightmost bit. Denote the positions of ones in a by integers modulo d such that e is
the position of the rightmost bit. By the property of cyclic shift, ones are located
at [j], that is, at 7,27,... etc. By the proof of Proposition 3.1, [j] = [p] where
p = ged(n,7). Also, p* = e and thus pi = d. Therefore, given ¢, p is unique and
furthermore, it exists if and only if ¢ divides d.

Using the fact that A(d,) has (¢) elements, we achieve the desired result. ee

Note that the tree in Figure 10 can be improved by filling the gaps (see Figure
19). However, if d is prime, then all equivalance classes (except for the one corre-
sponding to ¢ = d) have d elements and improvement is not possible. Note that

Caltech hypercube has dimension 5 and Intel hypercube has dimension 7, [7].

B MULTINODE BROADCAST TREE FOR HYPERCUBES

Figure 19: Improvement of Multinode Broadcast Tree for Hypercube d = 4

46

REFERENCES 47

References

[1] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Algorithms, Chapter
1, Prentice Hall, Inc., to be published.

[2] R. Cieslak, C. Desclaux, A. Fawaz, P. Variaya, “Modeling and Control of Dis-
crete Event Systems”, Proceedings of CDC, Dec 1986.

[3] G. Cohen, D. Dubois, J.P. Quadrat, M. Viot, “A Linear System Theoretic
View of Discrete Event Process”, Proceedings of CDC, Dec 1983.

[4] G. H. Golub, C. F. Van Loan, Matriz Computations, Johns Hopkins University
Press, 1983.

[5] Y. Ho, “Performance Evaluation and Perturbation Analysis of Discrete Event

Dynamic Systems”, IEEE Trans. on Automatic Control July 1987.

[6] F. Lin, W.M. Wonham, “Decentralized Supervisory Control of Discrete Event
Systems”, Unsversity of Toronto Paper, July 1986.

[7] O. A. McBryan, E. F. Van de Velde, “Hypercube Algorithms and Implemen-
tations”, Stam J. Sect. Stat. Comput., March 1987.

(8] C. H. Papadimitriou, K. Steiglitz, Combinatorial Optimszation, Prentice-Hall,
Inc., 1982.

[9] P.J. Ramadge, W.M. Wonham, “Supervisory -Control of a Class of Discrete

Event Processes”, University of Toronto Paper, Nov 1985.

[10] J. J. Rotman, The Theory of Groups, Allyn and Bacon, Inc., 1965.

REFERENCES . 48

[11] Y. Saad, M. H. Schultz, “Topological Properties of the Hypercube”, Yale Uni-

versity Report, February 1985.

[12] Y. Saad, M. H. Schultz, “Data Communication in Parallel Architectures”, Yale
University Report, March 1986.

[13] Y. Saad, M. H. Schultz, “Data Communication in Hypercubes”, Yale University
Report, August 1987.

[14] G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Dif-
ference Methods, Clarendon Press, Oxford, 1985.

