
LIDS-P-1702

May 1987

A FAIL-SAFE LAYER FOR DISTRIBUTED NETWORK ALGORITHMS AND CHANGING
TOPOLOGIES

Pierre A. Humblet
Stuart R. Soloway

ABSTRACT

We develop a method allowing an algorithm designed for fixed topologies
to run on a network with changing topology. The method consists of
building a "fail-safe layer" that acts as an interface between the
algorithm and the communication network. The communication and time
complexities of the method are O(V**2 E) and O(V log V) respectively.

Pierre Humblet is with the Laboratory for Information and Decision Systems,
Rm 35-203, Massachusetts Institute of Technology, Cambridge, MA 02139. His
work on this research was supported in part by Codex Corporation, by the
National Science Foundation- under contract ECS 8310698 and by the Army
Research Office under grants DAAG29-84-K-0005 and DAAL03-86-K-0171. Stuart
Soloway performed this research while he was with Codex Corporation; he is
now with Digital Equipment Corporation.

Page 2

1 INTRODUCTION

A remarkable protocol has been introduced [Fin79] to guarantee reliable

end to end data transmission in a network in the presence of arbitrary

link and intermediate node failures while not requiring unbounded

numbers to identify messages; it also provided a network connectivity

test. The basic idea has also been used in [Seg83] to construct other

protocols for connectivity test, shortest path and path updating with

similar properties.

Although they contain valuable ideas the previous papers share a basic

flaw and the algorithms do not always operate correctly. This is

demonstrated in a companion paper [Sol 87]. It is possible to modify

some of the algorithms to insure the bounded sequence number property,

but unfortunately at an increase in running time and communication cost

compared to the previous (incorrect) versions. Such a modified

algorithm will be explained and proved to be correct in sections 2 and

3, while its complexity will be analyzed in section 4.

Although it is of theoretical importance, the usefulness of achieving

the bounded sequence number property for algorithms running in the

network layer or above in the ISO/OSI hierarchy should not be

overemphasized: the penalty involved in having increasing sequence

numbers is often negligible. In addition to the previous family of

algorithms which use a single sequence number for each network

component, [Per83] and [Hum86] contain topology broadcast algorithms

with an unbounded sequence number for each node, while [Spi86] proposes

a topology broadcast algorithm that does not rely at all on numbering

messages. Since this paper was first circulated, [Awe87] and [Gaf87]

Page 3

have proposed other modifications to Finn's ideas. They have better

complexity measures than this one, at the cost of more severe

assumptions in the model.

Before describing our method we outline our model. We have a finite

network of unreliable links and nodes. Nodes have distinct identities;

to simplify the notation we assume that there is at most one link

between two nodes, so that a link can be identified by the identities of

its end points. Nodes execute distributed algorithms consisting of

exchanging messages over links, receiving an external "GO signal" and

processing. A distributed algorithm starts at a node on reception of a

local "GO signal" or of a message from another node. Message passing is

the only way for the nodes to communicate. They have no access to a

shared memory or to a global clock.

Regarding the transmission of messages over unreliable links, we assume

the existence of a link protocol that interfaces with the processes that

execute the algorithms and that has the properties listed below (they

are similar but not identical to those in e.g. [Spi86] and [Awe87]).

Standard link control procedures, like HDLC with properly chosen timeout

values, provide such services (ignoring the possibility of undetected

errors). A valid scenario appears in Figure 1.

A link between two nodes X and Y can be either in an Up or Down state at

each node independently, subject to the restrictions below. A time

interval during which a link is UP at a node is called a Link Up Period

(LUP) at that node. Messages can only be sent and received at a node

during a LUP there.

- Messages are received in the order they were sent (but some may never

Page 4

be received).

- There is a one to one relationship between some of the LUPs at X and

some of the LUPs at Y. A message sent during a LUP can only be received

during the corresponding LUP (if any). (A LUP at X may not correspond

to any LUP at Y if the link goes UP then DOWN X without changing state

at Y.)

- If a message sent during a LUP is never received, all messages sent

after it during the same LUP will never be received, and the LUP will be

finite.

- The link states at X and Y can remain different only for finite

periods of time

Abusing the words slightly, when we say that a link is Up at both ends

at some time t, we will mean that t is an element of two corresponding

LUPs. Note that it is not possible for a node to determine if a link is

currently Up at both ends. However if X sends to Y a message A and

receives a message B in answer, then one deduces that the link was Up at

both ends between the moments when Y received A and sent B. However X

cannot pinpoint a moment where the link was Up at both ends. If Y

receives a third message, C, sent by X in answer to B, Y can determine

that the link was up at both ends at a precise time in the past.

Similarly nodes can be Up or Down. A node operates without errors while

it is Up but loses all its memory when going Down. [Awe87] assumes a

Down node maintains its memory. When a node goes Down, all its links go

Down within a finite time, and they cannot go back Up while the node is

Down. Initially all nodes are Down.

Page 5

2 A FAIL-SAFE LAYER RESETTING SEQUENCE NUMBERS

2.1 Definition of a fail-safe layer

Assume we have a distributed algorithm designed to operate in a network

with static topology and we desire to have it perform correctly in a

changing network, i.e. in a way such that if the network topology

eventually stabilizes then the algorithm will produce a final output

indistinguishable from one it could have produced if it had run once in

the final topology.

For some algorithms, like the original Arpanet routing algorithm

[McQ77], no modification is necessary. For others, like those to find a

spanning tree [Gal83] or a directed spanning tree [Hum83], it is

necessary to reinitialize the algorithm whenever a topological change

occurs. Naturally the algorithm must be modified so that messages

generated during an earlier version are not processed by a later

version.

More generally one may think of introducing a protocol layer between the

original algorithm and the changing communication network to make the

algorithm run correctly, where "correct" is in the sense described

above. This layer, the fail-safe layer, can reinitialize the original

algorithm, give it a "GO signal", add a "header" to its messages, and

pass to it some of the messages received on links. The decision to pass

a message is based on the state of the fail-safe layer and not on the

message contents, which do not affect the fail-safe layer in any way.

([Cid85] has coined the term "fail-safe compiler", we prefer the word

"layer" as there is no need to "process" the original algorithm in any

way.)

Page 6

For example a very simple fail-safe layer implementation keeps track of

the largest version number, includes that number in every message,

restarts with a larger number on each local topological change or

reception of a message with a higher version, and only passes messages

corresponding to the largest version. This technique is used e.g. in

[Fin79] and [Seg83].

The complexity of a fail-safe layer implementation can be measured by

the increase in communication, time or space required by the modified

algorithm when compared with those of the original (this will be defined

more precisely in section 4). Thus the complexity of a fail-safe layer

using restart numbers is unbounded as the size of the numbers increases

with the number of restarts.

2.2 A fail-safe layer implementation

In this section we describe a fail-safe layer implementation. However

we assume that the nodes have the capability to detect that a special

condition described below (inactivity) has taken place. A method to

actually implement this detection follows in section 3 while an analysis

in section 4 determines the complexity values.

The part of the fail-safe layer that we consider in this section is

called the Reset part. It is defined in Figure 2 and we explain its

behavior here.

Each node maintains for itself two integers, called LEVEL and

SENTLEVEL, and for each of its links an integer called LINK_LEVEL. To

originate a restart, because a local link changes status or for another

unspecified reason, a node fail-safe layer acts as in ReLocal

Page 7

incrementing its LEVEL. The increase is noticed by the procedure

Re_PROPAGATE which increases SENT_LEVEL and sends a message called

New_Restart (abbreviated NR) that carries that level. It will be

propagated from node to node, attempting to "capture" the network.

LINK_LEVEL keeps track of the last level received over a link. When

LINK_LEVEL(L) = LEVEL we say that the link is "Marked" (*).

One can view the diffusion of the NR messages as the expansion of a

bubble-gum balloon. Part Re_NR controls how balloons expand. As many

events can take place, there can be many balloons in a network and we

must specify how they interact. When two balloon walls grow toward each

other and they meet, the one with the highest LEVEL wins and continues

expanding; if they have the same LEVEL, they simply merge into each

other. We will say that a node "restarts" when entering a new balloon,

i.e. when it increases LEVEL. When a link is Marked at a node, the

opposite end is known to be (or to have been) in the same balloon.

When a balloon stops expanding, either because it has taken over a whole

component or because its walls have been absorbed by other balloons, we

say that its nodes are inactive (a more precise definition follows) and

we allow them to reset LEVEL, SENT_LEVEL and LINK_LEVEL() to O. If two

adjacent nodes were inactive in the same balloon but only one resets and

then restarts (with LEVEL = 1) we want the neighbor, which will receive

the NR on a marked link, to reset and restart although it has a greater

(*) One can also dispense with LINK_LEVEL(), keeping only marked/unmarked

information for each link. We do not follow this approach for the sake

of clarity.

Page 8

LEVEL. This is accomplished by the checks on the first line of Re_NR.

A balloon can split in many smaller balloons if links fail. Subballoons

of the same original balloon may still be expanding elsewhere in the

network while nodes in another part are inactive. Because LEVEL can be

reset, parts of the same original balloon may in fact come back through

the same node many times; it is thus not obvious that the algorithm

terminates I

We now give a precise definition of inactivity.

1) Two nodes X and Y are "joined" at some time if link (X,Y) is Up and

Marked at both ends.

2) A "resynch set" is a maximal set of joined nodes.

3) A resynch set is "inactive" if all links adjacent to nodes in the set

are Marked at the nodes in the set and if no NR is in transit on an Up

link outgoing from a node in the set.

4) A node is inactive if it belongs to an inactive set, else it is

active.

In this section we assume that inactivity can sometimes be detected,

although not necessarily as soon as it occurs, nor by all nodes at the

same time.

2.3 Properties of the fail-safe layer implementation

The first Lemma just points out some properties of the algorithm.

Lemma 1

Page 9

(a) At a node, LEVEL >= SENT_LEVEL and LEVEL >= LINK_LEVEL(L) for all L

in Upset

(b) When a NR(L) arrives on link Y at a node , LINK_LEVEL(Y) is set to L

and the node is or becomes active with a LEVEL not less than L.

(c) A node can only become active because of (1) a local restart, or (2)

the reception of a NR() over a link L. At the time the node becomes

active, all links are unmarked, except link L in case (2).

Proof: (a) and the first part of (b) follow directly from the

statements of the algorithm where LEVEL and LINK_LEVEL() are set. If

LEVEL was less than L, or not less than L with LINKLEVEL(Y) = LEVEL,

the node becomes active with LEVEL = L. In the remaining case, i.e.

LEVEL not less than L and LINK_LEVEL(Y) less than LEVEL, the node is

active by definition.

Part (c) follows from the observation that events at remote nodes cannot

make an inactive node become active. The fact that links are marked as

stated follows directly from the statements of the algorithm.

The second Lemma shows that the first conditions in Re_NR can only be

true at inactive nodes and thus that LEVEL can only be reset at inactive

nodes.

Lemma 2:

(a) If a node X is active and has link (X,Y) Marked, and (X,Y) is Up at

both ends, then Y is active at a LEVEL not lower than X.

(b) If a node X is active, no NR meeting the two conditions on the first

line of Re_NR can be in transit from Y to X.

(c) The LEVEL at a node is strictly increasing while the node is active,

and so are the LEVELs included in its NR messages.

Page 10

Proof: (see Figure 3) Part (c) follows directly from part (b), as only

the reception of a NR meeting the first two conditions of Re_NR can

cause a decrease in LEVEL at an active node.

Assume that the Lemma holds up to some time t, when it fails at node X

which is active (at LEVEL L say) and where link (X,Y) is marked. Lemma

1(c) implies that a NR(L) was received from Y since the last time (say

v) node X became active (v = 0 if X has always been active). The last

such NR was NR(L) that Y sent at time q and that X received at time w, v

<= w. Thus:

at X, between w and t, X is active and LEVEL = LINK_LEVEL(Y) = L

(1)

The Lemma could fail in part (a) or part (b). As Y was active at LEVEL

L immediately after q, for part (a) to fail Y must become inactive at

some time between q and t (recall that by part (c) this is the only way

its LEVEL could decrease). Similarly if part (b) of the Lemma has

failed at t there is a NR meeting the first conditions in Re_NR in

transit to X. It has been sent by Y at time s > q. The fact that it

has a level not exceeding the previous one and this Lemma imply that Y

became inactive at some time between q and s.

In either case let r be a time between v and t where Y becomes inactive.

Immediately after r, link (X,Y) is marked at Y. Also r is not less than

w, as Y cannot be inactive while it has an outgoing NR, thus by (1) link

(X,Y) is also marked at X. We conclude that X and Y were joined

immediately after time r. This is not compatible with X being active

and Y being inactive, thus proving the Lemma.

Page 11

The last Lemma of this section shows that the highest numbered active

resynch set will expand:

Lemma 3

If a link (X,Y) is Up at both ends, node X is active at LEVEL L and Y is

inactive or it has LINE_LEVEL(X) is less than L, then there is a NR(L)

in transit from X to Y.

Proof: Assume the Lemma holds up to time t when it fails. At time s

t, when X last became active at level L, it did send NR(L). Its

reception at time v must have caused LINK_LEVEL(X) to be set to L, thus

by Lemma 2 Y must have reset at time w, v < w < t after having been

active at level L. When Y increased its LEVEL for the last time before

w, it sent a NR(L'), L' >= L, to X and this must have been received as

Lemma 2 insures that Y was inactive when it reset.

It cannot have been received before s as X would have had to reset

sometime between the time of reception and s, and the Lemma would have

been violated before t (with the roles of X and Y reversed). However if

NR(L') has been received between s and w, L' must be equal to L and the

reception will cause LINK_LEVEL(Y) to be set to L. X and Y were joined

at time w and one cannot become inactive without the other.

Remark that a node can become inactive even though one of its adjacent

links is Down at the other end, or carries an incoming NR at a higher

level. Such a state of inactivity cannot last. This motivates us to

define a resynch set as being "strongly inactive" it it is inactive and

if all links adJacent to nodes in the set are Up and Marked at both

ends. A node is strongly inactive if it is in a strongly inactive

Page 12

resynch set. External events that cause a node to change from being

strongly inactive to being just inactive or active must occur AFTER

strong inactivity has been established.

Note that a strongly inactive node is part of a balloon that has never

split. Remark also that after a node has become inactive, its resynch

set will shrink as some of the other nodes become active. We will

define the maximal resynch set of a node as its resynch set at the

moment it became inactive. The maximal resynch set of a strongly

inactive node is thus an entire network component.

To recap, when inactivity is detected, Re_Inac accomplishes two distinct

tasks:

a) it prevents a monotonic level increase by clearing its local

variables. Contrary to [Fin79] and [Seg83] this method does not rely at

all on sending and tracking differences between restart numbers.

b) it restarts the original algorithm and passes to it messages received

on Marked links.

We can now state the key theorem:

Theorem 1

With the fail-safe layer of figure 2, if a finite number of restarts

originate, eventually no NR messages are in transit and all nodes in the

same connected component end up in the same strongly inactive resynch

set.

Page 13

Proof: Consider a network component the last time a NR originates

there; by assumption on the link behavior all links will be Up or Down

consistently at both ends. At that time, consider a highest level

active node X, with LEVEL = L say. When it last set LEVEL to L, at time

t say, it sent NR(L) to all its neighbors and it remains active at least

until all have been received.

When the NR(L) arrives at Y it finds Y either

a) inactive or active with LEVEL < L

Lemma 2 insures that LINK_LEVEL(Y) < L and that no other NR(L) is in

transit from Y to X. LINKLEVEL(X) is set to L and a NR(L) is sent to

X. X and Y cannot become inactive until the NR(L) arrives at X. When

it arrives, both will be joined.

b) active at LEVEL L

Lemma 2 guarantees that LINK_LEVEL(X) is less than L; it is set to L. Y

has already sent a NR(L) that has arrived or will arrive at X.

If it has arrived it must have been at or after t, otherwise Lemma 3

would have been violated just before t, when LEVEL at X (and

LINK_LEVEL(Y) by Lemma 1) was less than L, no NR(L) was in transit to X

but Y was active at LEVEL L.

If the NR(L) arrived at X at t and caused X to become active at Level L,

X must have been inactive or active at a LEVEL less than L, and this has

been discussed in a) above with the roles of X and Y reversed.

If the NR(L) arrives at X after t, there must have been a time where X

and Y each had one NR(L) in transit to the other. Lemma 2 guarantees

that LINK_LEVEL(X) and LINK_LEVEL(Y) are < L. When the first NR

arrives, at X say, X remains active because it has a NR in transit to Y

and Y remains active because LINK_LEVEL(X) < L. When the second NR(L)

arrives X and Y will be joined.

Page 14

Thus all nodes must become active at the highest level and Join the same

resynch set and no such active node can become inactive unless they all

do.

2.4 Virtual Networks

The previous theorem says nothing about the behavior of the original

algorithm as it is restarted throughout the periods of changes. Before

turning our attention to it we introduce the concept of virtual network.

A virtual network is a directed graph where the set of nodes and the set

of links changes with time, reflecting events occurring during an

execution of the fail-safe layer. A virtual network is initially empty

and it grows with time as follows. The nth time a node I restarts it

becomes a "virtual node" with "virtual identity" (I,n). A directed

"virtual link" appears from a virtual node (I,n) to a virtual node (J,m)

when (if ever) the NR sent to J by I during its nth restart causes the

link to be Marked at J during the mth restart there.

Once a virtual link (or virtual node) appears in a virtual network it

never disappears. However when a node I restarts for the n+lth time we

will say that virtual node (I,n) "dies". As we have assumed that the

nodes have distinct identities, at any time at most one "live" virtual

node can have virtual identity (I,n), for some given I and for any n.

The reason why virtual networks are interesting is that if messages are

only processed when received on a Marked link, the set of nodes that can

influence a distributed algorithm as it executes at (I,n) is the set of

nodes that can reach (I,n) in its virtual network (this is so because

nodes can only interact by passing messages).

Page 15

It is important to note that it is possible to have MANY virtual nodes

corresponding to the same node in the SAME component of a "virtual

network". There can be a virtual link from (I,m) to (J,n), one from

(J,n) to (K,o), and one from (K,o) to (I,p), with p > m. Consider the

following scenario: Initially (I,J) and (J,K) are Up; NR from I to J;

NR from J to K during the transmission of which (I,J) goes Down, I

becomes inactive and (K,I) goes Up; NR from K to I.

The following properties of a virtual network are easy to establish:

- all the connected nodes in a virtual network have the same LEVEL while

they are active.

- If I and J were Joined during the mth restart at I and the nth restart

at J, then there are virtual links in both directions between (I,m) and

(J,n). The converse need not hold; in fact a virtual link may never

have been Up at both ends simultaneously.

- To an inactive node maximal resynch set corresponds a subset of a

component of the virtual network, virtual links between nodes in the

subset come in pairs (one in each direction) and there is at most one

virtual node for each node (this follows directly from the definition of

inactivity). Such a subset, called the "exchange set", is thus

isomorphic to a connected subnetwork of a valid static network (with

unique node identities, and possibly "dangling edges" to nodes outside

the subset).

- If a node is strongly inactive its exchange set does not have

"dangling" adjacent edges to or from outside, and it is isomorphic to a

connected component of a valid network. This is the case in particular

for the last virtual network component if the topology stabilizes

(Theorem 1).

Page 16

2.5 Behavior of an algorithm used with the fail-safe layer

We now turn our attention to the original algorithm. From the previous

discussion one sees that messages received by a node executing a version

of the original algorithm must have originated in the exchange set. The

design of the fail-safe layer guarantees that the sequence of messages

received by the original algorithm on a virtual link is a prefix of the

sequence of messages sent over the link. We thus have the Theorem:

Theorem 2

a) The sequences of messages received by the nodes of an inactive

resynch set while they execute a version of the original algorithm is a

prefix of the sequences of messages that might have been sent by the

original algorithm executing in the corresponding static network.

b) Consequently their joint output is a prefix of the joint output that

might have been produced by the original algorithm running in a static

network

c) After a finite number of topological changes and spontaneous restarts

the original algorithm runs in a final network component exactly as in a

static network, as its exchange set is isomorphic to the final topology.

At this Juncture it is interesting to examine what would have happened

if the original algorithm had received a "GO signal" at each restart

instead of when the node becomes inactive in step Re_Inac. Statement c)

in Theorem 2 above would still hold, as in the final component it makes

no difference when a message is sent. However statements a) and b) need

not hold as the original algorithm could have received messages from

nodes outside its exchange set (but still in the virtual network).

Page 17

Nodes in this larger set need not have distinct identities. Thus the

reason why the original algorithm receives the "GO signal" in Re_Inac is

not to insure correctness of the fail-safe layer. We will see is

section 4 that it is related to its complexity.

The previous theory rests on rather sandy foundations: how is it

possible for a node to detect that it is inactive ? In the next section

we give and prove the correctness of an algorithm that does detects

strong inactivity.

3 DETECTING STRONG INACTIVITY

3.1 An algorithm to detect strong inactivity

It is not obvious at all that strong inactivity should be detectable.

Operating in a network with changing topology and where message

transmissions times are not bounded how could we ever hope that a node

should be able to detect that it belongs to a network component with all

links Up at both ends simultaneously ? The answer to the paradox is

that we will not detect that a node is strongly inactive NOW, only that

it has been (but at a well identifiable point in time, as was the case

for the problem of detecting that a link is Up at both ends in section

1).

There are various ways to detect inactivity. The procedure that we will

follow is built on an algorithm to find shortest paths in a network. We

refer to it has the Shortest Path part of the fail-safe layer

implementation. It is based on ideas from [Gal76] and [Hum78]. When

run on a network with static topology it allows each node to determine

the distance (in hops) to the other nodes in the same network component.

Page 18

When run as specified in figure 4 it allows a node to determine that it

is inactive and when it was strongly inactive. We first give a

narrative outline and then prove the main property.

The algorithm is reinitialized at each restart and given a "GO signal"

when all Up adjacent links become Marked (thus more often than an

original algorithm in section 3) and it runs continuously until it is

reinitialized at the next restart (this shortcoming will be repaired

later). It only transmits messages on Marked links and only processes

messages received on Marked links.

There are two sorts of messages: ID=Node_ID, where Node_ID is a node

identity, and DIST=n, where n is an integer. These messages are

broadcast by a node on all its adjacent links. A node broadcasts a

DIST=n message only after having sent ID=J messages for all nodes J at

distances not exceeding n hops.

Messages received on a Marked link are kept in a first-in-first-out

queue for that link; we assume that the message at the front of a queue

can be read without being removed from the queue.

A node I first sends ID=I, then DIST=O and it maintains a vector D().

Its Jth entry D(J) is meant to be the minimum distance (in hops) from I

to J. Node I also maintains a variable HOP with the property that the

D(J) of nodes J at distances not exceeding HOP have been set; it is

initially 0.

D(J) is set to HOP+1 and ID=J is sent on all links as soon as the first

ID=J message is processed. To insure that the D(J) are set correctly, a

node will not read ID=(.) messages from a link on which DIST=HOP has

Page 19

been received until a DIST=HOP message has been received on all links;

at that momemt HOP is also incremented and the new value of HOP is sent

in a DIST= message.

It is important to note that these distances will be measured in a

virtual network (and not in an exchange set) and we should accept the

possibility that many nodes with the same identity may be present in a

connected component of that network. If at some time no new node

identities are found at distance HOP+1 then one might think that all

nodes in the connected network component have been discovered and that

the radius of the network (as seen by I) is HOP; this would be correct

if all nodes had distinct identity (but see figure 5.a where R is set to

1 at 1). When no nodes are discovered at distance HOP + 1, a node

merely sets its variable R to HOP (i.e. what it assumes the radius to

be) and keeps running the algorithm. If HOP ever exceeds three times R

the node must be inactive! The proof that follows will make clear why

this is so.

We will consider the operation of the shortest path algorithm at a node

I during a time interval between executions of step Sp_Init, i.e. the

algorithm as it executes at a virtual node (I,n), assuming that a "dead"

virtual node maintains the latest value of the algorithm variables set

during its life. (I,n) can only receive a message from a node J if

there are virtual links in both directions between nodes (I,n) and (J,m)

(for some m), as J (resp. I) will only send (resp. receive) a message

on a Marked link. It follows from this that the algorithm behaves as if

it was operating in a network with fixed topology containing possibly

many nodes with the same ID, and where nodes can stop operating. Where

there is no ambiguity we will denote a virtual node (J,k) by J only.

Page 20

Theorem 3:

1.1 The values of HOP at adjacent nodes can differ by at most one.

1.2 If D(J) is set to a value d different from 00 at node I, there is a

node J closest to I at distance d from I.

1.3 For all d, if HOP ever reaches d at node I and there is a node J at

distance no more than d from I, then D(J) will be set as specified in

1.2.

1.4 If there is a node at distance d from I and all nodes at distance

less than d have a unique identity, then R cannot be set to a value less

than d.

2. If HOP exceeds 3 R at a node I, then

2.1 I is inactive.

2.2 at the time R was set to HOP, all nodes J with D(J) < 00 formed a

single network component with all links Up and Marked at both ends (i.e.

the resynch set was strongly inactive).

Statements in 1 can be easily verified by induction on HOP, e.g. as in

[Hum783; the reasoning is similar to [Gal76] or [Seg83]).

To prove 2.1, i.e. that HOP exceeds 3 R only at inactive nodes, we

consider the moment t (if ever) at the start of Step SpMain in the

shortest path algorithm in which R is set to the current value of HOP at

a virtual node (I,n) (i.e. the node will shortly discover that there is

no node with a new identity at distance R + 1 in the virtual network;

all links between nodes at distance no more than R + 1 from (I,n) have

been Marked). We distinguish between two cases:

Page 21

A) If there is a dead node (J,s) at distance R or less of (I,n) at time

t, we claim that (I,n) can never have HOP > 3 R. Assume to the contrary

that it is the first to meet this condition and consider the situation

at time t (figure 5.a, I=1, J=3).

By 1.1 HOP at (J,s) is within R at (I,n) of HOP at (I,n), i.e. not

greater than 2 R at (I,n); it will never change, insuring that at (I,n)

HOP will never exceed 3 R.

B) If all virtual nodes at distance R or less from (I,n) in the virtual

network are still alive then

a) the links between those live nodes must still be Marked

b) these nodes may have Marked links to virtual nodes at distance R + 1

from node (I,n) but those virtual nodes (if any) have the same ID as a

live node and are thus dead (figure 5.b, I=1, J=3).

Consequently those live nodes constitute an inactive resynch set.

This establishes part 2.1 of theorem 2; we now turn our attention to

part 2.2 and show that it held at time t if node HOP exceeds 3 R at

(I,n). In light of a) and b) above we only need to show that if HOP

exceeds 3 R there cannot be dead nodes at distance R + 1 .

If there is a dead node (J,s) at distance R + 1 from (I,n), there must

be another node (J,t) (with t > s) at distance not greater than R from

(I,n). Consider the moment when a path of length not exceeding 2 R + 1

first joined (J,t) and (J,s) (this must occur). Some node on such a

path had not executed step SP_Start in the shortest path algorithm and

thus its neighbor toward (J,s) still had HOP = 0. We can conclude that

HOP at (J,s) must have been less than 2 R at (I,n) and this would

prevent HOP at (I,n) from exceeding 3 R.

Page 22

3.2 Optimization of the algorithm

The main contributions of this paper are to identify the correct

circumstances where LEVEL can be reset (i.e. inactivity), introduce the

concept of virtual network and show how to detect strong inactivity

without requiring Down nodes to maintain their memory. We end this

section on a more routine note: optimizing the algorithm somewhat with

an eye to the complexity measures that will be introduced in the next

section.

There are two main problems: first LEVEL can be reset, but this does

not guarantee that it remains bounded (consider the situation described

in figure 6). Second the Shortest path algorithm runs "forever".

Building on a remark of [Fin79], boundedness of LEVEL can be insured by

not allowing links to come Up until all nodes in a resynch set have

reset LEVEL; the only way LEVEL could keep increasing is because links

fail, and thus it will remain bounded. To implement the idea we will

not allow LEVELs at adjacent nodes to differ by more than 1, insuring

that all nodes in a network component are active if LEVEL at a node

equals the number of nodes. We will also be careful about not letting

links come Up until all nodes have reset. To this end we will rely on

the following observations:

A node has detected that it is inactive when HOP > 3 R. Lemma 4 below

shows that if HOP , 7 R at some node in a resynch set, then HOP > 3 R at

all nodes. Similarly if HOP > 15 R at a node, HOP is greater than 7 R

at all nodes. Talking figuratively, a node that has HOP > 15 R knows

that all nodes know that all nodes know that they are inactive ! (This

method of detecting the status of other nodes is inefficient, but it

Page 23

avoids introducing new types of messages).

To implement these ideas we will modify the Reset and Shortest Path

parts of the fail-safe layer as specified in the Appendix. We will only

discuss here the essential new features of the algorithm.

a) The Reset part will only allow one NR in transit on a link by

delaying the sending of NR(LEVEL) while SENT_LEVEL > LINE_LEVEL. This

does not affect the validity of the algorithm, as the situation could

have happened before if the messages that caused the increase of LEVEL

past SENT_LEVEL had been delayed by the network.

b) We delay including in Up_set a link that just came Up, keeping it in

Wait_set instead. The failure of a link in Wait_set does not trigger a

restart. To insure that LEVEL remains bounded it is enough to wait

until HOP > 7R (this will be called the 7R option) to move all links

from Wait_set to Upset, and to send a WAKE message on them to invite

the remote nodes to initiate a resynch if they already have HOP > 7R

(i.e. when all nodes have reset LEVEL). If we receive a NR on a link

in Wait_set we reply with a WAIT message; this will cause the link to be

placed back into Wait_set at the remote end.

For reasons that will be made clear in section 4, we actually wait until

HOP > 15 R to move links from Wait_set to Up_set. We also make another

change: on receiving an NR on a link in Waitset, if the NR comes from

a node J with D(J) not 00, (i.e. we believe that the node is in the

same resynch set) and HOP , 7 R, then we place the link in Up_set and we

process the NR, instead of issuing a WAIT.

Page 24

Note that in both the 7R option and in the code described in the

Appendix LEVEL is still reset when HOP , 3R.

To solve the second problem (the Shortest path algorithm running

forever) we simply modify the shortest path algorithm to stop processing

messages when they are not needed, i.e. when HOP is greater than 15 R.

To insure that neighboring nodes, whose Rs differ by at most 1, can also

reach the point where HOP > 15 R, the node will send 15 DIST= messages

before stopping (again we use this method for its simplicity).

The main results of the modifications are captured in 3 Lemmas where V

denotes the number of nodes and E the number of links.

Lemma 4: For 0 < N <= 7, if HOP > (2 N + 1) R at I then HOP > N R at

all nodes J in I's resynch set. This Lemma follows from the facts that

R at J <= 2 R at I and that HOP at I and HOP at J differ by at most R at

I.

Lemma 5: Between the moments when (1) a node is in a strongly inactive

resynch set where all nodes have reset LEVEL and (2) the node next

becomes strongly inactive:

a) LEVEL cannot exceed SENT_LEVEL + 1 at the node

b) SENT_LEVEL - M at nodes M hops away cannot exceed SENT_LEVEL at the

node, for all M (defining a hop as a link that is Up and in Up_set at

both ends).

Proof: Assume the theorem does not hold for the first time at some node

I.

It cannot be because part a) failed. The increase in LEVEL cannot be

Page 25

due to a local restart, as in that case LEVEL is set to

MAX(LEVEL,SENT_LEVEL+1). It cannot be due to the reception of a NR on

some link (I,J) either because of part b).

Thus it must be because part b) failed. Consider M = 1 first, with

SENT_LEVEL at I larger than SENT_LEVEL - 1 at a neighbor J. It cannot

be because link (I,J) just came up, as it will be included in Up_set

only when SENT_LEVEL is 0. It cannot be because node J has reset its

SENT_LEVEL, as node J cannot reset until I becomes inactive. It cannot

be because SENTLEVEL increased too much at I: SENT_LEVEL at I cannot

increase if it is more than LINK_LEVEL(J), which does not exceed

SENT_LEVEL at J (because J has not reset) and part a) guarantees that

any increase is at most one.

The proof continues with an induction on M that we omit for the sake of

brevity.

Lemma 6: LEVEL cannot exceed V + 2 E.

Pf: The previous Lemma shows that if LEVEL reaches V at a node I then

either I has become strongly inactive since the last time it was in a

strongly inactive set where all nodes have reset LEVEL, or LEVEL is

greater than 0 at all connected nodes. In either case all connected

nodes have had 7 HOP <= R and none will add a link in Upset until all

connected nodes form a strongly inactive resynch set with LEVEL reset at

all nodes (i.e. HOP > 7 R at some node). LEVEL can only increase

because links included in some Upset go Down.

Page 26

4 COMPLEXITY ANALYSIS

In this section we examine the space, communication and time

complexities of our fail-safe layer. We assume that the algorithm

originates K times in a network with V nodes and E links (with E > V for

simplicity).

Space Complexity:

Space complexity is defined as the amount of memory (in bits) that is

required to hold the variables used by the fail-safe layer at each node.

One sees easily that at most O(V log(E)) bits are required. This can be

reduced to O(V) by not keeping track of LINK_LEVEL().

Communication Complexity

Denote by C(K,V,E) the maximum number of messages (of length O(log(V)))

that need to be exchanged by the original algorithm and the fail safe

layer if K originating events take place. Denote by Cs(V,E) the maximum

number of messages exchanged by the original algorithm operating in a

fixed topology of V nodes and E links. The communication complexity of

the fail-safe layer is then defined as Cf(V,E) = sup (over K) C(K,V,E) /

K - Cs(V,E). This definition follows [Awe87].

Cf can be computed as follows: between successive instants when a node

becomes strongly inactive its LEVEL can only increase, and increases

past V must result from a link failure. Thus the number of restarts per

originating event is no more than V.

Page 27

At each restart the Reset part generates at each node no more than O(V)

messages on each link. The sum over all links of such messages cannot

exceed O(V E) per restart, or 0((V**2) E) per originating event. The

original algorithm is reinitialized only when a node becomes strongly

inactive, thus it executes at most K times in a network isomorphic to a

static network and its total communication complexity is at most K

Cs(V,E). We conclude Cf = O(V**2 E).

Note that if the original algorithm is reinitialized at each restart (as

briefly considered in section 2) it may have to run O(K V) times.

Moreover its communication complexity is not necessarily bounded by

Cs(V,E) as it may operate in a network where nodes do not have distinct

identities. It becomes impossible to bound Cf by a function that

depends only on K, V and E.

One might also wonder how many times a node can restart due to a single

originating event (i.e. how many times a balloon can include the same

node). The answer is O(K) times; it is surprising in light of- the

previous complexity result.

Time complexity:

The time analysis is somewhat peculiar, as no clock is assumed and

message transmissions and the notifications of link failing or coming Up

are only required to take finite time. For the purpose of comparing the

running times of algorithms in an environment where message transmission

times dominate and are fairly linear with message length we will assume

that transmitting a message (of O(log(V)) bits) takes unit time, and

that processing is instantaneous. We will further assume that any

messages longer than O(V) bits (if any in the original algorithm) are

Page 28

divided in packets of O(V) bits and that we maintain a

firstinfirst_out queue of packets waiting to be transmitted. Whenever

Re_PROPAGATE issues a new set of NR messages, all packets are flushed

from the queue (they are obsolete anyway).

The time complexity of the fail-safe compiler is defined (following

(Gaf87J) as the time elapsed between the moment of the last notification

of a topological change and that when the original algorithm terminates

for the last time, minus the time complexity of the original algorithm.

After the last origination takes place (at time 0 say), the highest

LEVELs propagate through the network; this can take time O(V). The

shortest path algorithm then completes in time O(V), at the latest by

some time T = O(V).

The original algorithm starts by time T if there are no links in

Wait_sets, but the situation is more complicated when there are such

links. By time T all have carried WAKE messages in both directions.

Under the 7R option, if there are links in Wait_set at least one link

will eventually be in Upset at both ends, and a Resynch will start.

The subsequent NR receptions might cause WAIT messages to be issued,

keeping all other links in Wait_set, so that the running time of the

algorithm might be as high as O(E T).

The situation is different for the 15R option described in the Appendix,

as it insures that all links in Wait_set WHOSE END NODES ARE IN THE SAME

RESYNCH SET will be moved to Upset and stay there. This is so because

a NR sent from one end must find the other end with HOP > 7 R, causing

it to be moved to Up_set (if it not there already), instead of

generating a WAIT reply. The shortest path algorithm terminates by time

Page 29

2T, at that time links in Wait_set connect different resynch sets.

If at time 2T an inactive resynch set only has links in Wait_set going

to other resynch sets, then a restart must have started by time 3T and

propagate normally on at least one such link.

We can conclude that by time 4 T all resynch sets that still have links

in Wait_set will have at least two nodes. Repeating the argument by

time 4 N T all resynch sets with links in Wait_sets have at least 2**N

nodes. Thus in time O(V log V) the original algorithm must have started

for the last time at all nodes and that the time complexity of our

compiler is O(V log V).

The time complexity remains the same in a model where message

transmissions take unit time, no matter their lengths. This measure is

appropriate when there is much overhead associated with the transmission

of a message.

Page 30

REFERENCES

B. Awerbuch, "Fail-Safe Compilation of Protocols on Dynamic

Communication Networks", MIT-LCS, 1987

I. Cidon and R. Rom, "Protocol Extensions", Technical Report,

Technion, Haifa, November 1985

S.G. Finn, "Resynch Procedures and a Fail-Safe Network Protocol", IEEE

Trans. Commun., vol. COM-27, pp. 840-845, June 1979.

E. Gafni and A. ?,"Topology Resynchronization: A New Paradigm for

Fault Tolorant Distributed Algorithms",UCLA Technical Report 1987.

R.G. Gallager, P.A. Humblet, and P.M. Spira, "A Distributed Algorithm

for Minimum Weight Spanning Trees", ACM Trans. Program. Lang. Syst.,

vol. 5, pp. 66-77, Jan. 1983.

P.A. Humblet, "A Distributed Shortest Path Algorithm", Proceedings of

the International Telemetering Conference, ITC'78, Los Angeles, CA,

November 1978

P.A. Humblet, "A Distributed Algorithm for Minimum Weight Directed

Spanning Trees", IEEE. Trans. Commun., vol. COM-31, pp. 756-762,

June 1983.

P.A. Humblet, S.R. Soloway and B. Steinka, "Algorithms for Data

Communication Networks - Part 2", Submitted for publication, 1986.

J.M. McQuillan and D.C. Walden, "The ARPANET design decisions",

Comput. Networks, vol 1, Aug. 1977.

R. Perlman, "Fault-Tolerant Broadcast of Routing Information", Proc.

IEEE Infocom '83, San Diego, 1983.

A. Segall, "Distributed Network Protocols", IEEE Trans. on Info.

Theory, Vol. IT-29, no. 1, Jan. 1983.

J. Spinelli, "Broadcasting Topology and Routing Information in Computer

Page 31

Networks", submitted for publication.

Page 32

APPENDIX: The final fail-safe layer implementation

THE RESET PART AT NODE I

Re_Local On receiving a local signal {
If (signal = node coming Up) { LEVEL = SENT_LEVEL = 0

Upset = Wait_set = {}
call SP_INIT() }

If (signal = link L coming Up) {LINK_LEVEL(L) = 0
if (HOP > 15 R) {

Up_set = Up_set U {L}
send WAKE on link L }

else { Wait_set = Wait_set U {L} }
}

If (signal = link L coming Down) {If (L is in Upset) {
Up_set = Up_set \ {LI
LEVEL = MAX(LEVEL,SENT_LEVEL+l) }

If (L is in Wait_set) {
Wait_set = Wait_set \ {L} }

I
If (signal = restart for another reason) { LEVEL = MAX(LEVEL,SENT_LEVEL+l))

call Re_PROPAGATE()
}

procedure Re_PROPAGATE(){
if ((LEVEL > SENT_LEVEL) AND

(SENT_LEVEL <= LINK_LEVEL(K) for all K in Up_set) {
SENT_LEVEL = LEVEL
send NR(LEVEL) on all links in Up_set
reinitialize the original algorithm
call SP_Init() }

procedure Re_Awake(){ i Awake all links in Wait_set
Send WAKE on all links in Wait_set
Upset = Up_set U Wait_set
Wait_set = {}

}

Re_Wait) On receiving WAIT on link L : {
Upset = Upset \ {L}
Wait_set = Wait_set U {L}
if (LEVEL = LINK_LEVEL(K) for all K in Up_set) call SpStart() }

Re_Wake) On receiving WAKE on link L : {
if (HOP > 15 R) {

LEVEL = MAX(LEVEL,SENT_LEVEL+1)
call Re_PROPAGATE()
}

Re_NR) On receiving NR(NEW_LEVEL) on link L {
if (L is in Wait_set) {

if ((HOP <= 7 R) OR (D(L) = 00)) { send WAIT on link L }

Page 33

else {
Upset = Up_set U {L}
Wait_set = Wait_set \ {L} }

}
if (L is in Upset) {

if ((LEVEL = LINK_LEVEL(L)) AND (NEW_LEVEL <= LINK_LEVEL(L))) {
LEVEL = SENT_LEVEL = LINK_LEVEL(K) = 0 for all K in Up_set }

LINK_LEVEL(L) = NEW_LEVEL
LEVEL = MAX(LEVEL,NEWLEVEL)
call Re_PROPAGATE()
if (LEVEL = LINK_LEVEL(K) for all K in Upset) call SpStart()

Procedure ReInac() {
LEVEL = SENT_LEVEL = LINK_LEVEL(K) = 0 for all K in Upset
give a "GO signal" to the original algorithm }

Re_Pass) On receiving on link L a message for the original algorithm {
if (LINK_LEVEL(L) = LEVEL) pass it to the original algorithm }

SHORTEST PATH PART AT NODE I

Procedure Sp_Init() {
R = D(J) = 00, V J
HOP = D(I) = 0,
Flush the queues for all links
If (Upset = {}) {

HOP = 00
R = 0
call Re_Inac() }

Procedure SpStart() {
Send ID=I and DIST=0O on all links in Upset}

Sp_Main) When receiving a ID= or DIST= message on a Marked link L
with HOP <= 15 R {

Place it in the queue for L
Loop:

If (there is some J with an ID=J message at the front of a queue){
dequeue the message
if D(J) = 00, {

D(J) = HOP + 1
send ID=J on all links in Up_set I

oto Loop

If (there is DIST=HOP at the front of ALL queues J, J in Upset) {
dequeue one message from all queues
If (R = 00 and ({nodes J I D(J) = HOP+1 } = {}) { R = HOP I
HOP = HOP + 1
Send DIST=HOP on all links in Up_set
If (HOP = 3 R + 1) { call Re_Inac() }
If (HOP - 15 R + 1) {

call Re_Awake()

Page 34

send DIST=HOP+1, DIST=HOP+2,.. DIST=HOP+15 on all links in Upset)
Ioto Loop

I-· alr.

LUP X1 X2 X3 X4

At Y

LUP Y1 Y2 Y3 Y4 time

Figure 1

Link Up Period
Link Down
Successful transmission
Unsuccessful transmission

LUP's X1, X3 and X4 correspond to Y1,Y2 and Y4 respectively.
LUP's X2 and Y2 do not correspond to any other LUP
Note that the link was never down at both end between Y1 and Y2,
and that the corresponding LUP's X3 and Y3 do not overlap in time.

Figure 2: The Reset part of the fail-safe layer

Re_Local Originating a new restart on a local signal {
If (signal = node coming Up) {

LEVEL = SENT_LEVEL = 0
Up_set = {} }

If (signal - link L coming Up) {
Up_set = Upset U {L}
LINK_LEVEL(L) = 0
LEVEL = MAX(SENT_LEVEL+1,LEVEL) }

If (signal = link L coming Down) {
Up_set = Upset \ {L}
LEVEL = MAX(SENT_LEVEL+1,LEVEL) }

If (signal = restart for another reason) {
LEVEL = MAX(SENT_LEVEL+1,LEVEL) }

call Re_PROPAGATE()
}

procedure Re_PROPAGATE (){
if (LEVEL > SENTLEVEL) then {

SENT_LEVEL = LEVEL
send NR(LEVEL) on all links in Upset
reinitialize the embedded algorithm I

Re_NR) On receiving NR(NEW_LEVEL) on link L {
if ((LEVEL = LINE_LEVEL(L)) AND (NEW_LEVEL <= LINK_LEVEL(L))) then {

LEVEL = SENT_LEVEL = LINKELEVEL(K) = 0 for all links K in Upset }
LEVEL = MAX(LEVEL,NEW_LEVEL)
LINE_LEVEL(L) = NEW_LEVEL
call Re_PROPAGATE{}

Re_Inac) On a node detecting inactivity {
LEVEL = SENT_LEVEL = LINK_LEVEL(K) = 0 for all links K in Up_set
Give a "GO signal" to the embedded algorithm }

Re_Pass) On receiving on link L a message for the embedded algorithm {
if (LINK_LEVEL(L) = LEVEL) pass it to the embedded algorithm I

LEVEL=L

V w t

X I I I , time

X inactive

NR(L) NR(L)

Y inactive

y I I , time

q r St

LEVEL = L LEVEL = L (

Figure 3: illustration for Lemma 2

Figure 4:
Shortest Path part of the fail-safe layer at node I:

SpInit) whenever procedure Re_PROPAGATE() finds LEVEL > SENT_LEVEL:{
R = D(J) = 00, V J * I
HOP = D(I) = 0,
Flush the queues for all links
}

SpStart) When all Up adjacent links become Marked {
Send ID=I and DIST=O on all Links in Upset }

Sp_Main) When receiving a ID= or DIST= message on a Marked link L {
Place it in the queue for L
Loop:

If (there is a J with an ID=J message at the front of a queue){
dequeue the message
if D(J) = 00, {

D(J) = HOP + 1
send ID=J on all links in Up_set }¶oto Loop

if (there is DIST=HOP at the front of ALL queues J, J in Up_set) {
dequeue one message from each queue
If (R = 00 and ({nodes J I D(J) = HOP+1 } = {})

then { R = HOP }
HOP = HOP + 1
Send DIST=HOP on all links in Upset
If (HOP = 3 R + 1) signal inactivity
¶oto Loop

} -- -i--· r -

live node node 1's resynch set
dead node

Figure 5 a

Node 3 appears twice in the virtual network,
R(1) is set to 1
NR messages may still be in transit

to the right of node 4 so that the inactivity
of node 1 cannot be guaranteed in this
virtual network.

A,,live nodes

dead node

/4 node 1's resynch set

Figure 5 b

Node 3 appears twice in the virtual network,
R(1) is set to 1
nodes 1,2 and 3 may become inactive,
but not strongly inactive. HOP will not exceed 3R.

LEVEL: 1000 1000 1000 1 0
999 NR-_ 1 NR-

LEVEL: 1001 1001 1001 1 0

1 000 NR -_ 1 NR-

Figure 6

Example where LEVEL increases without bound because topological changes
occur faster than NR's travel.
The two leftmost nodes disconnect from the other nodes, become inactive, then
connect with the rightmost node, while the 999 NRs in transit between the middle
nodes are forwarded to the right. Subsequently 1000 NRs are in transit between
middle nodes. Repeating this scenario

