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ABSTRACT

A polynomial approach for maximum likelihood estimation of superimposed
signals in time series problems and array processing was recently proposed
[1-3]. This technique was applied successfully to linear uniform arrays and
to uniformly sampled complex exponential signals. However, uniformly spaced
arrays are not optimal for minimum variance estimation of bearing, range or
position; and uniform sampling of signals is not always possible in
practice. In this communication we make use of the EM algorithm in order to
apply the polynomial approach to sublattice arrays and to missing samples in
time series problems.
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I. INTRODUCTION

The estimation of multiple superimposed exponential signals in noise is

of interest in time series analysis and in array processing. Recently an

effective technique for computing the maximum likelihood (ML) estimates of

the signals was introduced by Bresler and Macovski El] and Kumaresan-Scharf

and Shaw [2], [3]. We refer to this technique as the Npolynomial approach"

since it is based on expressing the ML criterion in terms of the prediction

polynomial of the noiseless signal. The polynomial approach relies on the

assumption that the array of sensors is uniformly spaced. It is well known

[4] that the optimal sensor configuration is not uniform under many

reasonable criterion. For example, minimum bearing variance is obtained by

placing half of the sensors (with a spacing of half of the design

wavelength) at each end of the given aperture; minimum range variance is

obtained by placing one fourth of the elements at each end and half in the

middle; and optimal position estimation is obtained by placing one third of

the sensors at each end and the middle. Furthermore, when operating long

uniform arrays, often some of the sensors do not function and their outputs

must be ignored, yielding in effect a sublattice array. In this paper we

present a method for extending the polynomial approach to sublattice arrays.

We treat the sublattice array output as an incomplete data observation.

Therefore the EM (Expectation-Maximization) algorithm is directly

applicable. This algorithm was only recently applied to array processing

problems by Feder and Weinstein [5]. However, in [5] the EM algorithm is

used to estimate one signal at a time, while here it is employed to enable

the use of the polynomial approach which estimates all the signals
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simultaneously. Since both the polynomial approach and the EM algorithm are

not widely known the basic principles of each of these techniques are

briefly reviewed here for clarity. Note that although we concentrate on the

array problem, all the results that we describe are equally applicable to

the corresponding time series problem discussed in [1], namely, the

estimation of superimposed complex exponential signals in noise.

This paper is organized as follows. The polynomial approach for

processing data collected over a uniform array is described in Section II.

In Section III it is shown how the EM algorithm can be used to adapt the

polynomial approach to the case of sublattice arrays. Several examples of

our procedure are presented in Section IV, and Section V contains some

conclusions.
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II. UNIFORM ARRAYS AND THE POLYNOMIAL APPROACH

Consider N narrowband radiating sources observed by a linear uniform

array composed of M sensors. The sources are assumed to be far enough from

the array, compared to the array length so that the signal wavefronts are

effectively planar over the array. The signal at the output of the m-th

sensor can be expressed by

N

xm(t) = ~ sn(t-(m-l)rn ) + v (t); m = 1,2,...,M; - T/2 < t < T/2, (1)

n=1

where (sn(t)}n=1 are the radiated signals, {vm(t))}= 1 are additive noise

processes, and T is the observation interval. The delay of the n-th

wavefront at the m-th sensor, relative to the first sensor, is given by

(m-l)rn. If d denotes the sensor spacing, c the propagation velocity, and

¥n the source bearing with respect to the array perpendicular, the parameter

~n can be expressed as

In = (d/c)sin(n) 

A convenient separation of the parameters {(n}=l to be estimated may

be obtained by using Fourier coefficients, defined by

X 2 x (t)e dt.
m T -T/2 m

Since we assume that the spectrum of the signals is concentrated around wo,
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with a bandwidth that is small compared to 2n/T, a single Fourier

coefficient is enough to completely describe the signals. Taking the

Fourier coefficients of (1) we obtain:

N -iw (m-1l)'

mX S e J n + V , m = 1,2,...,M (2)

n=l

where Sn and Vm are the Fourier coefficients of sn(t) and vm(t)

respectively. Equation (2) may be expressed using vector notation as

X = AS + V (3)

where

X= [X1 , X2 , xM]

S = [Sl S1 *, SN I

T
v = v, V2...' M ]

A [a, a2,...,aN],

2 M-1 T
-n l, n n n = 1,2,.,N

-jW0I=n
X = e
n

In general, the estimation procedure relies on more than one
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realization of equation (3), corresponding for example to several time

samples or observation intervals. In that case we use the index j to denote

the different realizations:

Xj = ASj + V j J = 1,2,...-,J. (4)

Instead of estimating {t n}I directly we concentrate on estimating {Xn}n=l.

Under the assumption that the vectors {Vj} =l are i.i.d. zero mean and

Gaussian with covariance caI, the maximum likelihood estimates are given by

J

nan=l = arg min ({R} R = Xj - AS (5)
X cUC
n j=1

where |'-11 denotes the Euclidean norm and UC stands for the unit circle

which is the parameter space, in this case.

The minimization required in (5) is not trivial since the vectors {Sj}

and the matrix A are not known to the observer. However, whenever A is

known, R is minimized by choosing

Sj = (AHA) 1AHX (6)
-j -3

as the estimate of Sj, for j=1,2,...,J, where ( )H represents the Hermitian-

transpose operation. Substituting (6) in (5) we obtain
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R I ixi - A(AHA) 1AHX 12 = XP (7)

j=l j=1

where

PB = I-A(AHA)- AH

The polynomial approach relies on the introduction of the polynomial b(z) =

b0zN + bz
N -l +...+ bN, whose zeros are the parameters of interest {n} N=l

Observe that by definition the M x (M-N) Toeplitz matrix B defined by

b b bN bN 1 . . . 0

BH = bN bN-lb b b 0
= N N-1. . . 0

0 bN bN- b

is orthogonal to A, i.e. BHA = 0 and hence PB = B(BHB)-1BH. Now the

minimization in (5) can be expressed in terms of the coefficients {bi}Ni= as

J

b = arg min X B(B B) HX (8)

be b j=1

where b = [bN, bNl,...,bo0T , and eb is the space of all the vectors whose

associated polynomials have zeros only on the unit circle. It can be shown

that since b(z) has its roots on the unit circle, its coefficient vector is



a-conjugate-symmetric! i.e. b a[b,bl,...,bN ] H where a is a constant of

unit modulus.

The algorithm for the minimization required in (8) is based on the

relation

BHX = Xb , (9)
- 3j-

where X; is the (M-N)x(N+1) matrix defined by:

X = [Xj(N+1:M), X (N:M-1),. .. ,X(1:M-N)],

and Xj(k:r) describes a subvector of Xj consisting of all of the components

from the k-th component to the r-th component. Substituting (9) in (8) we

obtain:

b = arg min b C b C (B B X (10)
bs9,

b j=1

This relation is used in the minimization algorithm [1]-[3]. The algorithm

starts with any initial estimate b( 0) of b and proceeds as follows:

(a) Initialization k=O, b =b

(b) Compute C(k) according to (10) using b(k) to construct the matrix

B(k).
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(c) Find b(k+l) = arg min bHC(k)b
bebe

(d) Find the roots of the polynomial b(z) whose coefficients are given

by b(k+l).

In [1] the relation b = a[bO,bl,...,bN ] was incorporated in step (c) to

yield a simple quadratic minimization problem. We now turn to the more

practical situation of nonuniform arrays.
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III. SUBLATTICE ARRAYS AND THE EM ALGORITHM

In this paper we are primarily interested in the problem where the

measurements are taken along a sublattice array of M' sensors. The

sublattice array may be described by a binary vector, 1, of length M. The

m-th component of 1 is 1 if the m-th sensor of the full array is part of the

subarray and it is zero if the sensor is missing. Equation (4) may be

converted to describe a sublattice array through a left-multiplication by a

transformation matrix G. The M' x M matrix G is constructed by eliminating

all the zero rows in diag(l). For example an array of three elements in

positions 1,2,5 is described by 1T = (1,1,0,0,1) and

G=[10 0 0 0j
G = I o o 

i o o 1

Multiplying equation (4) by G we obtain, for a given sublattice array, the

equation

Y. = GX = G(AS + Vj), j = 1,2,...,J. (11)
j 3 j -3

We refer to ({X} as the (unavailable) "complete data" and to {Yj} as the

observed data.

Let Y = Y, T YT,...,YTIT and X = [XT, XT,...,XT]T denote respectively

the observation vector, and the complete data vector. From (11) they are

related by



Y _FX (12)

where

'G

F =

is a block diagonal matrix with J blocks. The complete data vector X is

Gaussian with given covariance a2I and unknown mean e. The parameter vector

0 is defined by:

T T ]TT

where

= AS .
j -j

If fx(XI-) is the density of x given 0, we have therefore

ln{fx (XO ) } = -MJ ln(na2 ) - I X-e-112/ 2 (13)

and the maximum likelihood estimate of 0 given X is then easy to compute.

In fact, it requires the minimization of
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J

lx-_112 - I x - ASjl 12 , (14)

j=1

and it was shown in Section II how the polynomial approach could be used to

perform this minimization.

When we are only given the observation vector Y corresponding to an

incomplete data set, if fy(Ye_) denotes the density of y given 0, the

maximum likelihood estimate of e given Y is

e = arg max f (YJ1 ) = arg max ln{f (Ybe)) (15)

where e is the parameter space. However ln{fy(YI)} cannot be expressed as

simply as in (13)-(14), and the maximization of ln[fy(YOe) is therefore

more difficult to achieve.

The EM approach [6] to the maximum likelihood estimation problem

consists of estimating the complete data vector X from the given observation

vector y and then substituting the estimate X in (14) to perform the

minimization over the parameter space e. However, since X depends in

general on e as well as Y several iterations of the above procedure are

necessary in order for the parameter e to converge. A rigorous

justification of the EM algorithm is as follows. First from Bayes' rule

ln{f (Y 9e) = ln{f (XI))} - ln(fx (X IY,e) (16)

Taking the expectation of (14) over x given Y and under the assumption that
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the parameter vector is equal to e', we obtain

L(e) = ln {f (Y/e_ = = Q(f1') - H(ee'), (17)

where

Q(Ol') = E(ln{fx(Xlle) IY e_ '

H(ee') -E(1nf x _Y(XY _, _ Y,_ }

Using Jensen's inequality it is easy to verify that

H(ele,) < H(ele>). (18)

The EM algorithm may be described by the following sequence [6]:

(a) Initialization: set p=O, and e(P) = e0.

(b) E-step: Determine Q(eoe(P)).

(c) M-step: Choose e(p+1) to be the value of eee that maximizes

Q(ele(P)).

(d) Check the convergence of e . If no: p=p+1; go to (b); If yes:

stop.

In every cycle of the algorithm the likelihood function L(8) is increased,

since
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L( P+l) = Q(e(P+l)( ) _ H(e(P+1)(p )

> Q(e(P ) le(p)) - H(_(p) _e ( p ) ) = L(e(P ) )

where the inequality holds due to (16) and due to the M-step.

The application of this rather general algorithm to the problem at hand

requires only the determination of Q(_ l_'). From (13), and using the

expression

= E{XY, eF} = 9' + FH(FFH)-1(Y-Fe') (19)

for the conditional mean of x, we find that

Qae91') = K - III -_ 112/ 2 (20)

where K consists of terms independent of B. Thus, as was claimed above, the

maximization of Q(e1_') reduces to the minimization of

J

R1 I!la- 112 = !1 X-aj - ASjI 12 (21)R1= _JX-ejf 2 = ,JX -Asjf 2 , (21)
j=1

and the M-step of the EM algorithm may be performed by using the polynomial

approach to minimize (21).

The estimation step (19) of the EM algorithm can also be simplified

further by using the block diagonal structure of F and the relations GGH = I

and GHG = diag(l) to rewrite (19) as
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X = diag(l)O' + G (22)
-j -j -j

where 1 is the complement of 1 (zeros and ones are interchanged). The

parameter vector _0 is simply the estimate of ASj obtained in the previous

cycle and therefore (20) may be written also as:

(Pl) = diag(l){A(AHA)-Aj} ) + G

= diag(1) (I-B(BHB) - B )j} (P)+ G J,

using the notation of the polynomial approach. As one would expect equation

(20) states that the components of Xj that correspond to existing sensors

are always equal to the observed data, i.e., the corresponding components of

-j.

The proposed EM algorithm maybe summarized as follows:

(a) Initialization: Select initial values for Xn }N=j; find the

corresponding b(0)

Compute: A1 = GA; Sj = (AHA)1A- IA j;

X(0) = diag(1)AS + GUy. (see (22))

Set: p = 0

(b) Use the minimization algorithm for uniform arrays:

() ,,(P)
(b.1) Construct X EX (N +I :M ),. . .,X (i:M'N)];

3 -j j
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(o) (p )
set k=O, b1 b

(b.2) Construct B using b k).

J
n -H H -1-Compute C =X 3 (B)X

J=1

(b.3) Compute b(k+1) = arg min b Cb
-1 % -1 -1b

(b.4) Check convergence of b1. If no: k=k+l; go to (b.2).

If yes: b(P) = b(k+l), continue.

(c) Construct B using b(p )

Compute:

(p+) = diag(l)(I - B(BHB) lB H)(P) + GH
-j -j

(d) Check the convergence of Xj. NO: p = p+l, go to (b)

YES: continue.

(e) Find the roots of the polynomial b(p)(z) whose coefficients are

given by b
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IV. EXAMPLES

To illustrate the behavior of the algorithm, let use consider two

examples:

Example 1: Consider a uniform linear array of 6 sensors separated by

half a wavelength of the actual narrowband source signals. Now, assume that

the two middle sensors are missing (i.e., 1T = (1 1 0 0 1 1)); this is the

optimal configuration for bearing estimation when the given aperture is 2.5

wavelengths and the number of sensors is limited to 4.

The sources are two narrowband emitters located in the far field of the

array. One source is located at a bearing of 10 degree, and the second

source is located at a bearing of 25 degrees. We generated only 10

independent samples with a SNR of 30 dB. The initial guess was y(0) = 30,

4(0) = 170. The algorithm converged to within one degree of the right result

in 8 iterations, as shown in Table 1.

Example 2: Consider Example 1 where the array is reconfigured so that

1T (1 0 1 0 0 1). Note that only 3 sensors are used and they are

separated by one wavelength and 1.5 wavelengths. Nevertheless, the

algorithm converged to within one degree of the right result in only 7

iterations as shown in Table 2. The initial guess was y(0 ) = 3, y0() =

350.



V. SUMMARY

We have proposed a novel EM algorithm for the estimation of

superimposed signals observed by nonuniform arrays. The algorithm is

efficient and provides accurate results even when the number of samples is

samll and the sensors are separated by more than half a wavelength.

Note that convergence theorems exist for the EM method. However,

convergence theorems for the polynomial approach are not yet available and

therefore further investigation is required to prove the convergence of the

proposed technique. Finally, we would like to emphasize that the EM

algorithm is guaranteed to converge to a local maximum of the likelihood

function. Thus we would expect that the algorithm described here will

converge to the globally optimum result only if the initial estimates are

good enough. Fast initial estimates can be obtained by using simpler

methods such as the MLM, MEM or the MUSIC techniques (see [7] for a review

of these methods).
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Iterations r2

No. degrees degrees

0 3.00 17.0

1 6.15 19.38

2 7.29 20.49

3 8.16 21.47

4 8.78 22.30

5 9.23 22.95

6 9.55 23.46

7 9.77 23.83

8 9.93 24.12

9 10.04 24.31

10 10.12 24.47

Table 1: Evolution of the algorithm

for 1T = (1 0 0 1).
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Iterations 11 '2

No. degrees degrees

0 3.00 35.00

1 -0.01 18.13

2 3.46 18.27

3 7.18 20.16

4 8.74 21.90

5 9.39 23.01

6 9.68 23.69

7 9.84 24.10

8 9.92 24.35

9 9.96 24.51

10 9.99 24.61

Table 2: Evolution of the algorithm for 1T = (1 0 1 0 0 1)


