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Abstract

The problem of reconstructing the apparent velocity field (optical
flow) in a sequence of images is formulated as a linear estimation problem.
Estimation-based interpretations are provided for well-known formulations
and methods, allowing us to use the machinery of recursive estimation
theory to construct both new and efficient algorithms for these problems and
a flexible framework for the development of algorithms for modified or
related problems. The first problem we address is the estimation of the
velocity field along a moving contour given a stochastic model of this field
and measurements of the component of velocity normal to the contour. The
methods of 1-D linear smoothing theory provide recursive algorithms, in
contrast to the iterative method of Hildreth for the same problem. We then
consider the problem of estimating the optical flow inside a bounded domain,
given an estimate on the boundary and observations inside the domain,
which we formulate as an estimation problem for a 2-D boundary value
stochastic process. The resulting estimator is then obtained as the solution of
the same system of elliptic partial differential equations derived in a very
different way by Horn and Schunck. We then develop an efficient
implementation of this estimator using a recently developed local relaxation
method.
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I. INTRODUCTION

The objective of this paper is to develop a stochastic estimation-
theoretic framework for the reconstruction of the apparent velocity field, or
optical flow, in a sequence of images. Specifically the approach that we
follow is to construct a stochastic model for the optical flow, and then to use
this, together with 1-D and 2-D estimation techniques to estimate the optical
flow from available measurements. This method can be viewed as a model-
based implementation of the regularization techniques which have been
proposed recently [11 for ill-posed problems in computer vision. Indeed, as
we will see, two well-known reconstruction methods can be exactly
interpreted as stochastic estimation problems. Not only does this allow us to
use the machinery of recursive estimation to develop efficient new
algorithms, but it also provides us with a flexible framework in which a
variety of other problems and new algorithms can be readily addressed and
developed simply by modifying the model under consideration.

The problem of motion estimation has been a topic of interest in image
processing since the early seventies, motivated by applications such as target
tracking in the military domain, or motion compensation in television image
coding. Also, applications such as robot navigation have clear needs for
motion estimation, although often the interest is not directly in the velocity
fiels itself but in some other information (possibly derived from the optical
flow) such as depth, rigid body motion parameters, etc.

A main feature of motion estimation problems, in comparison with
other image processing problems such as edge detection or object
recognition, is that it requires explicitly the introduction of a physical model.
Indeed, unlike other applications, in motion estimation the data is not
produced by a single image, but from a sequence of images. It is therefore
important to use models to describe the relation existing between these
successive images or, in the case of rigid motion, to describe motion
parameters such as rotation and translation vectors.

The fundamental equation for motion estimation is the brightness
constraint, which relates the brightness function and the velocity at any
point in the image through the constraint that the brightness of a particular
moving point is constant in time. In an actual image sequence this imposes a
model constraint on a first order approximation of the brightness difference
in time. This single scalar equation does not allow the reconstruction of both
components of the optical flow, and most of the methods found in the
literature for solving this equation are regularization methods, which select a
particular solution by minimizing an error criterion containing a regularity
constraint for the reconstructed optical flow.

One of the first and most important reconstruction methods was
introduced by Horn and Schunck [21, and several extensions were developed
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thereafter by Cornelius and Kanade 131, Nagel 141 and others. According to
this technique, the optical flow is estimated by minimizing a criterion which
includes both the average error in satisfying the brightness constraint on the
whole surface of the image and a regularity constraint for the gradient of the
optical flow. Using the calculus of variations, Horn and Schunck [21 obtained a
solution satisfying a system of elliptic partial differential equations (more
precisely, a system of coupled Poisson equations). They used the Gauss-
Seidel method to solve this system iteratively, but more recently Glazer 161
and Terzopoulos [7] have implemented multilevel relaxation methods, which
are more efficient from a computational point of view.

Nevertheless, problems occur at discontinuities of the velocity field,
due to occluding boundaries for example, which need to be treated
beforehand. This has motivated researchers to develop estimation
techniques where the objective is only to reconstruct the optical flow along a
moving contour, instead of the whole domain, and where it is assumed that
the normal component of the velocity field along the contour can be
computed by local methods.

Hildreth [81 has implemented a regularization method based upon the
same criterion as in Horn and Schunck [2], but restricted to a contour, and
where the conjugate gradient method is used for minimizing this criterion.
Another method was introduced by Bouthemy [91, using a totally different
point of view: in a first step, moving edges and the corresponding
perpendicular velocity components are simultaneously locally detected and
estimated by hypothesis testing, avoiding the use of the brightness
constraint which is an approximate equation and is not valid across
discontinuities. Then, in a second step the complete velocity is recovered by
using a stochastic gradient algorithm along the detected contour in order to
minimize the error in the perpendicular velocity component.

Although the second of these methods is computationally superior,
both methods are iterative. In this paper, by modeling the velocity field
along the contour as a Brownian motion or Wiener stochastic process, it will
be shown that precisely the same reconstruction problem considered by
Hildreth can be formulated as a I -D smoothing problem, for which a number
of exact, recursive solutions are available (see Ljung and Kailath [10], [ 11 ).
The main advantage of these optimal estimation solutions is that they are
non-iterative techniques, and require therefore considerably less
computational effort than the two methods mentioned above.

Once the velocity field has been reconstructed along a closed contour,
the next step is to estimate the field inside the bounded domain defined by
this contour. In practice, this means that the detected edges have to be
linked together, in order to segment the image into bounded domains which
are homogeneous regions for the velocity. As was noted by Horn 151, the
image segmentation and velocity estimation problems are not independent,
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since in theory the image can be segmented only if the velocity field is
already known. However some segmentation methods can be implemented
without estimating explicitly the velocity beforehand (Bouthemy [121).

Concerning this second problem, the approach considered here relies
on the introduction of a 2-D internal stochastic model for the velocity field.
The velocity field is modeled as a 2-D Brownian motion process, and the
observations are given by the constraint relating the brightness function to
the velocity at any point in the image. It will be shown that this approach
generalizes the one considered for the contour problem.

This paper is organized as follows. In Section II we first investigate
the case of a moving contour, and give new interpretations of the problem
considered by Hildreth, first in terms of an optimal control problem and
then, equivalently in terms of a 1-D fixed-interval smoothing problem. This
allows us to use any of the variety of exact smoothing algorithms for this
reconstruction problem. In Section III, we consider the case of a bounded
domain defined by a closed contour on which the velocity field is given (or
previously estimated), and formulate this problem as a linear estimation
problem for a 2-D boundary value process. This leads us to a solution
satisfying the same elliptic partial differential equations obtained by Horn
and Schunck 121. In Section IV we give some experimental results, where we
vary the parameters of the I-D and 2-D stochastic models. Finally, Section V
contains some conclusions and some thoughts for further research.
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II. ESTIMATION OF THE VELOCITY FIELD ON A CONTOUR

In this section, we consider the case of a moving contour, whose
motion has been detected beforehand from a sequence of images, and on
which it is only possible to estimate locally the normal component of the
optical flow. The objective is to use this information to reconstruct the
complete optical flow along the contour. As indicated in the preceding
section, this problem has been addressed by Hildreth 181, and to begin we
review the essential elements of her formulation.

Specifically we assume that at time t we are given a contour C of
constant brightness in an image. Suppose that this contour is parametrized as

C = ( (x(s),y(s)), s E [0,L] })

where s denotes the arclength, and x(s), y(s) are the spatial coordinates in
the image plane. The apparent local velocity vector at point s on C and at
time t is defined by

V(s) = (u,v)T (2.1)

with

u = dx/dt , v = dy/dt (2.2)

Let the image brightness at point (xy) in the image plane at time t be
denoted by E(x,y,t). The brightness is assumed to be constant in time on the
contour C, so that, taking a first order approximation of its global differential
in time, we obtain the so called brightness constraint equation

Eu+Eyv+Et = 0

where the subscripts x, y and t denote the partial derivatives with respect to
x, y and t respectively. This equality can be rewritten as

(VE)T V = -Et (2.3)

where VE is the gradient of E(x,y,t) with respect to the spatial coordinates
(x,y), i.e. VE = (EX,Ey)T. Note that VE is perpendicular to the contour C, since
the brightness function is constant on C. Consequently, only the component of
V perpendicular to the contour C can be estimated by local methods, i.e.
methods based on local computations of approximations to Ex, Ey and Et and
the subsequent use of (2.3) to estimate the normal component of V at a point
on the contour. Therefore some type of global computation is needed to allow
complete reconstruction.



Let us introduce some notation. Specifically, let z(s) denote the normal
component of the velocity field on the contour. This can be expressed as

n(s)TV(s) = z(s) (2.4)

where n(s) denotes the unit vector perpendicular to the contour, and where
from (2.3) we note that

z(s) = - Et / 1 VE 11 (2.5a)

and

n(s) = (Ex,Ey )T / 1 VE . (2.5b)

In order to perform the required reconstruction we need to impose
an additional constraint or an optimization criterion. One method proposed
by Hildreth [81 is to use a criterion which includes a tradeoff between the
accuracy with which the reconstructed field V(s) matches the measurements
(2.4) (i.e. how accurately we match the brightness constraint) and the
smoothness of the velocity estimate. Specifically, Hildreth addresses the
problem of determining V(s) to minimize

= 1/2 Jc ( a )1 e(s) 2 + 11 dV/s ) ds 2 ) ds 2.6)

where

e(s) = z(s) - n(s)T V(s) , (2.7)

and a is a weighting factor, controlling the relative importance of the two
terms in the criterion'.

As a first observation, let us note that the problem we have just posed
is what is known in optimal control theory as an optimal tracking problem.
Specifically, if we define the "control variable" U(s) by

dV/ds = U(s) (2.8)

and the tracking error by (2.7), we see that (2.6) is a weighted sum of
squared tracking error and control energy 11 U(s) 112. A variety of forms of the
solution to this problem can be found in the control literature (see, for
example, [131). In particular, one algorithm yielding the optimal

iThe subscript C here indicates integration along the contour, from s = 0 to
s =L.
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reconstruction is the following. We first solve the Riccati matrix differential
equation

dO/ds = 9(s) 2 - a n(s)n(s)T (2.9)

backward from s = L to s = 0, using the final condition O(L) = 0. Here e(s) is a
2x2 matrix (which in fact is symmetric and positive semi-definite).
Simultaneously we solve the linear differential equation

dq/ds -= (s)q(s) - a z(s)n(s) (2.10)

backward from the final condition q(L) = 0. Here q(s) is a 2-dimensional
vector. The optimal reconstruction of the optical flow is then obtained by the
forward integration of the linear differential equation

dV/ds = - 9(s)V(s) + q(s) (2.1 la)

starting from the initial condition

V(0) - (0)- 1q() . (2.1 lb)

It is also possible to give this same problem and the resulting
algorithms an estimation-theoretic interpretation which we will find useful
in the sequel. In particular, as shown by Mayne [151 and Bryson and Frazier
[141, the problem of minimizing (2.6) is equivalent to a I-D fixed interval
smoothing problem. Specifically, consider the following stochastic model of
V(s)

dV/ds = U(s) (2.12)

where U(s) is a white noise process of unit intensity, i.e.

E [ U(s) U(s')T ] = I 6(S-S') (2.13)

where I is the 2x2 identity matrix. Also, suppose we model our
measurements as

z(s) = n(s)T V(s)+e(s) , 0< s<L (2.14)

where e(s) is also a white noise process, uncorrelated with V(s), with

E e(s) e(s')T ] = l/a 6(s-s') . (2.15)
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The objective is to compute the linear least-squares estimate of V(s) given
the data z(s), 0< s< L, i.e. to compute

Vs(s) = E ( V(s) I z(r), 0O'4 L . (2.16)

As shown in 1141, 1151, this estimate is identical to the reconstructed velocity
V(s) obtained from the algorithm (2.9)-(2. 1).

Having established this relationship between the formulation in 181
and optimal smoothing, we are in a position to make a number of additional
observations. First of all, note that the model (2.12)-(2.15) provides us with
a stochastic interpretation of the criterion (2.6). Specifically the observation
equation (2.14) is nothing other than the brightness constraint with some
allowance for error in our measurement of the normal component of V(s).
More precisely, the first term in (2.6) corresponds to the measurement
equation (2.14), (2.15) with the error e(s) modeled as white noise with
intensity equal to the reciprocal of the weighting factor a. Next, consider the
model (2.12) for V(s). Here we see that the second term in (2.12)
corresponds to modeling V(s) as an independent increment or random walk
process: the change in velocity V(s2)-V(s l) with sl<s 2 is independent of
V(sl).

An important feature of this estimation-based framework is that it is
based on such explicit models. This allows one to critique model assumptions
and make modifications which directly lead to changes in the estimation
algorithm that affect the details of the equations to be implemented but not
the form or the complexity of the algorithm. For example, suppose that one
wished to use a spatially-varying weighting factor a(s) in (2.6). This might
arise if there were differing contrasts at different points along the contour,
leading to varying accuracies in the measurement of the normal component
of V(s). In our estimation framework this would correspond to replacing a
with a(s) in the model (2.15) and in the two differential equations (2.9),
(2.10) that form the backward sweep of the algorithm. Similarly, suppose we
wished to modify (2.12). For example, suppose that we wished to introduce
an "oriented smoothness constraint" such as introduced by Nagel [41, [241, i.e.
we replace the second term in (2.6) by

( dV/ds )T W(s) ( dV/ds ) (2.17)

where W(s) is a (possibly spatially-varying) 2x2 weighting matrix. What this
corresponds to in our model is a modification of (2.13) where

E [ (s)U( (s')T] I W(s)-I 6(s-s') . (2.18)

The algorithm (2.9), (2.10) in this case becomes
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dO/ds = 3(s)W(s)-10(s) - a n(s)n(s)T (2.19)

dq/ds = e(s)W(s)-lq(s) - a z(s)n(s) (2.20)

both integrated backward from O(L) = 0 and q(L) = 0, respectively, and

dV/ds = - W(s)-l0(s)V(s) + W(s)-Iq(s) (2.21)

integrated forward from the initial condition (2.1 lb).
Another potentially useful modification to the dynamics involves

building in a different correlation structure for V(s). Specifically, the
independent increment property of (2.12) is an idealization that may or may
not be accurate enough for its intended purpose. Note, for example, that V(s)
as defined in (2.12) is non-stationary with a growing variance. As an
alternative, one might prefer a model admitting finite-variance stationary
statistics such as

dV/ds = - b V(s) + U(s) (2.22)

Here 1/b has an interpretation as a correlation length, i.e. one expects high
correlation between values of V at points less than 1/b apart along the
contour. The optimal reconstruction algorithm for this model (i.e. (2.22) and
(2.13)-(2.15)) is

dO/ds = - 2 b ((s) + ((s)2 - a n(s)n(s)T (2.23)

dq/ds = [ 8(s) - b I 1 q(s) - a z(s)n(s) (2.24)

again integrated backward from final values of 0 at s = L, and
A A

dV/ds = [ b I - 8(s) 1 V(s) + q(s) (2.25)

integrated forward from (2.1 lb) at s = 0.
Another aspect of our estimation formulation is that it immediately

makes available to us a number of methods of implementation. In particular
(2.9)-(2.11 ) can be identified as (a spatially reversed version of) the Rauch-
Tung-Streibel 117] form of the optimal smoother. This form has a "two-
sweep" structure, i.e. we process the data in one direction and then sweep
back in the other. There are other implementations such as two filter
formulas and the innovations form that have different algorithmic structures
(see 1 01, [11 1], 15], [161). For example, the two filter form allows a parallel
implementation: as before, we solve (2.9), (2.10) backward from final values
of 0 at s = L; however simultaneously we solve
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dqJ/ds = - (s)2 + a n(s)n(s)T (2.26)

and

dr/ds = - I(s) r(s) + a z(s)n(s) (2.27)

forward from initial values t(O) = 0, r(O) = 0 at s = 0. We can then compute
the reconstructed estimate as

V(s) = P(s) [ q(s) + r(s) 1 (2.28)

where

P(s) = [ O(S)+ (s) 1-1 . (2.29)

Note that the initial values on IY(O) and r(0) correspond to an assumption
that we have no a priori information on the velocity field. Typically we may
have some information, such as knowledge of the maximum possible
velocity. This can be translated into an assumption that V(O) has some mean
m0 and covariance 0o. In this case, the initial conditions for (2.26), (2.27)
would be _p(0) =- lo-l, r(O) = To-lm o.

The various quantities in this form of the smoother have important
interpretations. Specifically p'(s)-lr(s) is the optimal estimate of V(s) given
the data z(cr) for 0O<c s, while e(s)-lq(s) is the corresponding estimate
based on z(ur), for s<cr< L. Also T(s)-l and e(s)-1 are the corresponding error
covariances for these estimates. Thus (2.28) can be viewed as a weighted
average of these two estimates, and P(s) is the estimation error covariance in
estimating V(s) based on all of the available data. Note that this quantity
provides us with a precise measure of how well we can estimate V(s). In
fact, this is closely connected with Brockett's recent paper 1251 relating
estimation of optical flow to the concept of observability that has proven
useful in the analysis of models such as those we have discussed. For
example, consider the special case in which V(s) is constant, corresponding to
rigid translational motion. This would correspond to our model (2.12), (2.18)
with W(s) - l = 0 (so that dV/ds = 0 ), and a simple computation (assuming
(0Q) = 0) shows that in this case

(s)- = p- = a Ic n(s)n(s)T ds (2.30)

The integral on the right-hand side of (2.30) is precisely Brockett's
"observability grammian", which provides a quantitative way to measure the
effect the shape of an object has on one's ability to estimate optical flow. For
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example, if the contour is a straight line, p-1 is obviously singular indicative
of the fact that it is impossible in this case to estimate the tangential velocity
component. While such a simple grammian interpretation isn't available in
the general case (with dV/ds 0 O ), P(s) still provides a precise measure of
how well we can estimate V(s). Also, one can draw some intuition. For
example, if V(s) is given by the model (2.22), accurate estimation of V would
require a normal n(s) that changes direction significantly over distances
along the curve on the order of 1 /b.

Finally, it is worth noting that none of the formulations we have
described, from (2.6) on, make use of the fact that the contour under
consideration is closed or not. Indeed our stochastic interpretation clearly
shows that the reconstructed estimate will not have V(0) = I(L) even if the
curve is closed. In order to address this problem we can use the recently-
developed results of Adams, et al. [181 on estimation for boundary value
models. In particular, consider the model (2.12)-(2.15) with one additional
constraint, namely

V() = V(L) . (2.31)

The results in [181 provide one form of the optimal reconstruction
algorithm for this problem. This solution, which is similar to but somewhat
more complex than the two filter algorithm (2.9), (2.10), (2.26)-(2.28) for
reconstruction without the constraint (2.31), is presented in Appendix A.



III. ESTIMATION OF THE VELOCITY FIELD IN A BOUNDED DOMAIN

We now investigate the problem of reconstructing the velocity field in
a bounded region in an image given the value or an estimate of the value of
the velocity on the boundary. As in the preceding section we will adopt an
estimation-theoretic formulation of this problem, in this case building on the
work of Adams et al. [181 on estimation for boundary-value models in one
and several dimensions. The result of this development is a generalization of
the formulation and methods of Horn and Schunck 121.

We assume that we are given a bounded, simply connected region D of
the image plane at some time t, with a smooth boundary C. The objective is
to reconstruct the velocity field V inside D based on the observed brightness
changes within the region and possibly some knowledge of V on C. This last
point deserves some comment. The region D may correspond to an identified
object in the field of view, obtained for example by some edge detection and
image segmentation scheme, or it may be a more-or-less arbitrarily specified
patch in the image. In the former case, C is the object boundary and the
assumption of constant brightness along C is reasonable. Consequently, in
this case one can apply the method of Section II to obtain estimates of V
along C before applying the method described in this section. If D is an
arbitrary region, such prior estimates along C may not be available (indeed
this is the case considered by Horn and Schunck). Our formulation will
capture both of these cases.

The stochastic model we use in this section is the direct 2-D
counterpart of the model (2.12)-(2.15) introduced in the preceding section.
Specifically, let V denote the gradient operator, i.e.

Vf = (fx,fy)T . (3.1)

The gradient of the vector V in (2.1), (2.2) is defined to be the composite
vector consisting of the gradients of the components of V, i.e. we define the
operator L as

LV= U, UX , X, Vy)T . (3.2)
LVv

The differential operator L can be formally expressed as

L = (Is V) (3.3)

where ® denotes the Kronecker product, which indicates that the gradient
operates on each component of V. The model for V is then given by
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LV(x,y) = U(x,y) (3.4)

where U(x,y) is a 2-D stochastic process. The specific model we use here for
U(x,y) is

U(x,y) = LB(x,y) (3.5a)

where B(x,y) is a 2-vector whose components Bl(x,y) and B2(x,y) are
independent 2-D Brownian motions [26]. The covariance structure of Bi(x,y)
is given by

E I Bi(XlYl)Bi(X2,y 2) ] = (x 1
2+y12)1 /2 + (X22+y22) 1/2

- [ (xl-x2)2 +(yly2)2 2 /2 3.5b)

It is straightforward to check that VBi(x,y) is a 1-D white noise process of
unit intensity along straight lines.

The boundary condition associated with (3.4) corresponds to our prior
knowledge of V on C, i.e.

V(x,y) = V(x,y) , (x,y) E C (3.6)

where V c is a Gaussian white noise process on C with mean Vc and intensity
matrix Pc. The form of this condition allows us to accomodate a variety of
situations. In particular, at one extreme Pc = 0 corresponds to perfect
knowledge of V c, while Pc = oo implies no prior information about Vc. In
some cases, such as when some boundaries are occluded or a set of
disconnected edges are linked to form a closed contour, there may be
portions of C along which V c can be estimated and others where it can't. This
can be captured by using a spatially-varying Pc.

As in the previous section, the brightness constraint (2.3) provides us
with our measurements. Specifically, we have available observations of
E,(x,y), the time rate of change of intensity at points throughout D. If we let
z(x,y) = - Et(x,y), the brightness constraint yields the measurement equation

z(x,y) = H(x,y)V(x,y) + e(x,y) (3.7)

where

H = (E, E) (3.8)
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and e(x,y) is a 2-D white noise process of intensity 1/a included as before to
model the presence of brightness variations as well as errors in calculating
Ex, Ey, and Et.

Our problem, then is to estimate the process V specified by (3.4)-(3.6)
given the measurements (3.7). This problem is precisely of the type
investigated by Adams, et al. [181. In Appendix B we briefly review the
elements of their method for constructing the equations satisfied by the
optimal estimator for boundary-value processes and apply it to the present
problem. The result is that the optimal estimates u, v satisfy the following
system of partial differential equations

Aii - a Ex ( Et + Exu + Eyv ) (3.9)

A '= a ,(E, + . (3.10)

with the boundary condition

+Pc =Vc onC (3.11)

where A is the laplacian, i.e.

Af = a 2f/ax2+ a 2f/ay2 (3.12)

and where Va/Tn and ?a/an denote the normal derivatives of u and v,
respectively.

These equations deserve some comment. First note that (3.9), (3.10)
are precisely the same PDE's as those obtained by Horn and Schunck [21 who
derived them using the calculus of variations applied to the minimization of
the quadratic criterion

J = 1/2 ID ( a I z(x,y) - H(x,y)V(x,y) 12 + 11 LV(xy) 112 ) dx dy . (3.13)

Note also that the boundary condition (3.11 ) is in general of a mixed type. At
one extreme, is the case Pc = 0, i.e. when Vc is assumed to be known
perfectly. In this case (3.11 ) is simply a Dirichlet type condition

A A

V = V c (3.14)

At the other extreme is the case Pc = oo, corresponding to no information
about V on the boundary. In this case (3.1 1) is a Neumann type condition
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aV/an = 0 onC . (3.15)

This is the condition used by Horn and Schunck in their study. The condition
(3.1 1) generalizes these cases to accomodate prior but imperfect information
on the boundary.

Equations (3.9), (3.10) are coupled Poisson equations. In Horn and
Schunck [21, the Gauss-Seidel method was used to solve this system of
equations. However, one can expect that faster methods such as
overrelaxation or multigrid methods might provide greater efficiency.
Although the use of such sophisticated PDE solvers may appear
inappropriate in image processing, where fast solutions are usually desired,
it is useful to keep in mind the fact that the solutions that we seek do not
have severe accuracy requirements, i.e. the number of significant digits
required is much smaller than in typical PDE applications, and if we use very
efficient overrelaxation or multigrid PDE solvers, only a few iterations will be
needed to obtain a good estimate of the optical flow. In addition, both
overrelaxation and multigrid methods may be implemented in parallel on
special purpose computers, so that speed is unlikely to limit the applicability
of the optical flow estimation procedure described above. A method of this
type is described and used in the next section.

Note that, as in the previous section, the introduction of a stochastic
model-based approach to optical flow estimation provides a flexible
framework for considering modifications to the problem formulation by
modifying the model and for constructing the resulting estimation
algorithms. For example, one can readily derive the modifications to (3.9)-
(3.11) that would result from the introduction of an oriented smoothness
constraint (which would enter as a spatially-varying intensity for the
process U in (3.4)) or from the use of a different model for V that yields
stationary statistics and an identifiable correlation length for the optical flow
(much as (2.22) did in the previous section).

Finally, it is interesting to note that the 2-D model (3.4), (3.5) used in
this section is consistent with the 1-D model (2.12), used in the previous
section, with the exception that the intensity of the white noise process in
(2.12) that is obtained by restricting (3.4), (3.5) to C is spatially-varying in
intensity, with an "oriented intensity" determined by the curve C.
Specifically, along the contour we have the following relation

dV/ds = ( ux dx/ds + uy dy/ds , v x dx/ds + vy dy/ds )T

= ( t(S)T VU, t(S)T VV )T

= ( I t(s)T) VY (3.16)
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where t(s) denotes the unit tangent to the contour C, i.e.

t(s) - ( dx/ds, dy/ds )T . (3.17)

Using (2.12) and (3.4), (3.5) we have

U(s) = ( I ® t(s)T) LB . (3.18)
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IV. EXPERIMENTAL RESULTS

IV.. Contour case

In this section we present several examples illustrating the
reconstruction of the optical flow along a contour. In these examples we used
two different polygonal contours and consider the reconstruction of optical
flow for both translational and rotational rigid body motions. In Figures 1
and 2 we illustrate the case of pure translation. Part (a) of each figure
depicts the true velocity fields along the contours, while the exact normal
components are illustrated in part (b). In these figures we have depicted all
of the points along the curves at which velocity values were sampled and
reconstructed, so that the optical flow is more densely sampled in Figure 1
than in Figure 2. Part (c) of these figures illustrates the reconstructed
velocity estimates when the normal components are measured perfectly. The
algorithm used in this case is that given in (2.9)-(2.11). In this case the
reconstructed estimates are perfect for any nonzero value of a. In Figure 3
we illustrate the effect that random errors in measuring the normal
component have on the reconstruction of the velocity field in Figure 2a. In
this case the value of a (which we interpret as the reciprocal of the noise
intensity), controls the amount of smoothing and noise rejection that is done
(larger values of a correspond to less smoothing). As one would expect,
increased noise intensity leads to degraded performance but the smoothing
performed by the estimator minimizes this degradation.

Figures 4 and 5 illustrate the case of rotational motion. In all of the
experiments represented in this figure noise-free measurements of the
normal component were used. Note that in practice this does not mean that
the measurement z(s) is perfect, since there is the error introduced by the
(first-order) approximation to the brightness constraint used to specify the
measurements at the discrete sampling points in space and time. In each of
these figures we illustrate the effect of using different values of a. In
particular, Figures 4c and 4d depict the estimated velocity and the error
when a = 0.95, while Figures 4e and 4f correspond to the value a = 0.1.
Typically in examples such as this we have found a value of a between 0.5
and 1.0 yields to the best results. Note, however, that the estimates in Figure
4, while quite good, are not perfect even with perfect measurements. This is
even more pronounced in Figure 5. The reasons for this behavior are several.
First there is the brightness constraint approximation mentioned previously.
A second, more fundamental reason relates to the model (2.12). Note that if
we take (unconditional) expected values in this model we obtain

dV/ds = 0 (4.1)
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(where V = E [VI), i.e. an interpretation of (2.12) is as a random walk about a
constant mean velocity. The perfect performance of the smoother in the case
of translational motion can be traced to the fact that the actual velocity field
satisfies (4.1). On the other hand, this is not true for rotation, so the
smoothing and interpolation performed by optimal estimator do well but not
perfectly.

Finally, we recall that all of the estimates up to this point have been
computed using the algorithm (2.9)-(2.1 1). This algorithm, which minimizes
the criterion used by Hildreth, does not account for the periodicity in the
velocity field. In Figure 6 we illustrate the application of the estimator
described in Appendix A that constrains V(0) to be equal to V(L). By
comparing Figures 5 and 6, we see that the estimator with the periodicity
constraint distributes more evenly the estimation errors along the contour C.

IV.2 Velocity estimation in a bounded region

In this section we present several examples of velocity reconstruction
inside a bounded set which is taken to be either a rectangle or a convex
polygon (see, for example, Figure 7). In each example two successive images
are generated and noise is added to the intensity gradient and its time
derivative which are computed numerically from the two images. To solve
the Poisson equations (3.9), (3.10), a local relaxation procedure developed by
Kuo, Levy and Musicus [191 was implemented. The main feature of this
method is that it allows the optimal relaxation parameter to be space-
dependent, and it is therefore very convenient for space-variant PDEs such
as (3.9), (3.10). To implement this method, the domain and its boundary
were discretized on a uniform grid with a grid spacing equal to h (for clarity
in the figures we depict only one point in 10 (rectangle) or one point in 5
(polygon) in each direction). Then, the local relaxation procedure, which is
based on a red/black or checkerboard partition of the domain, can be
expressed as follows.

For each iteration n:

- Red points (i+j is even):

Uij(n+) ( I -Wi ) Ui(n) (4.2)

+ wi j di j- ( Ui-l,j(n ) + ui+lj(n) + uijl (f n) + uij+l( n)

- a h2 Ex ( E vi,j(n) + Et ) )

vi.j(n+ 1 = ( - w'i, j ) vij(n) (4.3)



18

+ W'ijj d'ij-I ( Vij (n) + Vil ,j(n) + vi,jl ( ) + vi,j+i(n)

- a h 2 Ey ( Ex Uij(n+) + Et ) )

- Black points (i+j is odd):

uiJ(n+l) = ( - Wi,j ) uij(n) (4.4)

+ wi j difj-1 ( Ui-l,j(n+l) + ui+,j(n+l) + ui,ji(n+l) + uij+l(n+)

- a h 2 Ex ( Ey Vi,j(n) + Et ) )

vi,(n+) = ( - 'ij ) i,j(n) (4.5)

+ w'i j d'ij-1 ( Vilj(n++ vi,lj(n+l) + vij i(ndl ) + vij l(n+1)

- ah2 E( Exuii(n) + Et) )

In the above equations the coefficients di,j and d'i,j are given by

di j = 4 + a h 2 Ex2 (4.6)

d'i ji = 4+ah 2Eyz 2 (4.7)

Here wij, and w'i,j are the local relaxation parameters, the optimal value of
which depend on the region and on the precise nature of the boundary
conditions. In particular, for the case of Dirichlet conditions these parameters
are given by

wi~j = 2( I + /1I rIj2 )-1 (4.8)

W'i =j = 2 ( I + /V1 -r'ij2 )- I (4.9)

where in the rectangle case, corresponding to N=KxL points, the optimal
choice for the parameters ri,j and r'i,j is the following

ri,j = 2 di,j-l (cos(T/(K+l)) + cos(rr/(L+l)) (4.10)

r'i j = 2 d'i,j-1 (cos(T-/(K+l)) + cos(rr/(L+l)) ) (4.11)

and in the polygon case we have chosen

ri j = 4 dii- 1 cos(n/6) (4.12)
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r'ij = 4 d'ij- cos(Or/6) (4.13)

where 6 is the diameter of the domain considered, measured as the number
of sample points. The theoretical study made in Kuo et al. [191 shows that
this iterative method converges for a number of iterations proportional to
the square root of the number of points N in the domain, instead of N for the
Gauss-Seidel method.

In Figures 7-10 we depict a number of examples of reconstruction of
rigid body translational (Figs. 7-8) and rotational motion (Figs. 9-10). In
Figures 7 and 9 the intensity variation within the regions was taken to be
linear in both directions, i.e.

E(x,y,t) - Eo + El x + E2y (4.14)

while in Figures 8 and 10, the variation is one period of a sinusoid, i.e.

E(x,y,t) = Eo + El cos(2Tr x/K ) cos(21T y/L ) (4. 1)

where K, L are the dimensions of the moving object (K = 50 and L = 80 for
the rectangle, K = 35 and L = 45 for the polygon), Eo = 100 and El, E2 are
constants such as E(x,y,t) varies from 80 to 120.

In all of these examples we used the Dirichlet conditions, i.e. the
estimator assumes it has perfect knowledge of the velocity on the boundary.
For the rectangular region we provided the estimator with these exact
values; however for the polygonal example we used estimated values along
the boundary obtained by an application of method developed in Section II.
The results obtained in all cases are quite satisfactory. For the case of the
rectangle a good estimate is obtained after only 25 iterations for almost
4000 points. For the polygon we obtained a good estimate after only 15 or
20 iterations for 1 121 points.

In Table 1 we present the relative errors corresponding to the results
shown in Figs. 7-10 for the case of linear intensity variation, and, for
comparison, we also present those obtained with the same number of
iterations but with a weighting factor a equal to zero. Note that a= 0
corresponds to completely ignoring the measurements. That is, with a = 0,
(3.9), (3.10) reduce to

Au = 0 (4.16a)

vA- = 0 (4.16b)

so that the estimator is simply extrapolating inward from the specified
boundary condition using Laplace's equation. If the values on the boundary
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are known perfectly and if the spatial variation of the velocity is linear or
nearly so, the reconstruction using a = 0 should be quite good. Table 1
verifies this. Note, however, that in the case of translational motion of the
rectangle the estimation error should be zero since the values on the
boundary are available without error and the velocity field is constant. The
nonzero value in the table results from using only a finite number of
iterations. Intuitively, if all of the information to be used comes from the
boundary, it will take a significant number of iterations before this
information propagates to the center of the region. By using a nonzero value
of a, we allow the estimator to use local information which is available
immediately. Thus we see that an additional benefit of setting a t 0 (beyond
its use in controlling smoothing and noise rejection) is faster convergence.

As the preceding discussion indicates, linear or nearly linear
variations in the velocity field are well-approximated by (4.16) and
therefore can be accurately reconstructed from knowledge of the velocity
field on the boundary. In Figure I 1 we present an example in which the
velocity field varies in a non linear fashion corresponding to a distortion of
the interior of the rectangle. In particular, the velocity field in Figure 11 a is
given by

5 [( max ( 21x1/K,21yI/L ))- -1 1 (4.17)

where K - 50, L = 80 are the dimensions of the rectangle and a = 0.2. Note
that in this case the velocity field is exactly zero on the boundary, so that the
a = 0 reconstruction is useless. On the other hand, the reconstruction using
a = 0.3 is quite good.

Finally in Figure 12 we reconsider the estimation of the velocity field
of Figure 9. However in this case we take as boundary values the estimates
produced using the method of Section II. Also, in this case, we use the mixed
boundary conditions in (3.11), reflecting the fact that these estimates are
imperfect. In this case optimization of the local relaxation parameters is
somewhat more complicated. In a recent paper 1191 Kuo et al. have
investigated this case and we have applied their method. If we assume that
Pc is a constant diagonal matrix, the optimal local relaxation parameters are
given by (4,8), (4.9) with the following choice for the parameters ri j and r'i.i

ri j = 2 dij -l (cos(fl/(K+ )) + cos(f 2/(L+1)) ) (4.18)

r'ij = 2 d'i,j- (cos/(K+lcos(f /(K+I))+ cos(f2 /(L+l)) ) (4.19)



21

where, if pi and P2 denote respectively the constant diagonal values of Pc
along the vertical and horizontal edges of the rectangle, the frequencies f1
and f 2 are determined by

tg(fj) = - 2 pj fj ( I - pj2 fj2 )-1 (4.20)

for j = 1,2. In the figure we present two results corresponding to two
different values of Pc in (3.11) and therefore reflecting different levels of
reliance on the boundary estimates. The specific values of Pc used in these
tests were Pc = I and Pc = 0.01 I. These represent simplified approximations
to the covariance resulting from the algorithm in Section II in that, while the
actual Pc is diagonal for the rectangle case, it is not necessarily a constant
multiple of the identity. The results in Figure 12 display the expected
behavior: for large values of Pc one relies less on the boundary values (by
using a larger value of a, in this case 0.006 vs 0.003). Associated with this is
a predictable degradation in performance with increasing Pc due to the
reduced quality and use of the information on the boundary.
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V. CONCLUSION

In this paper we have developed an estimation-based approach to the
reconstruction of optical flow in image sequences. We have considered the
reconstruction of the velocity field both on a contour and inside a bounded
region. Our results have several purposes. The first is that they provide
stochastic model-based interpretation of the formulations studied by
Hildreth [81 and Horn and Schunck [21, and a second is that we have been
able to use our estimation-based perspective to develop new algorithms. In
particular, the interpretation of Hildreth's formulation as an estimation
problem immediately provides us with a number of recursive, non-iterative
algorithms for reconstructing the optical flow along a contour involving in
general two "sweeps" over the contour in opposite directions. This should be
contrasted with the iterative conjugate gradient or adaptive stochastic
gradient techniques of Hildreth [81 and Bouthemy [9] in which the contour
needs to be scanned a number of times. Also, in the case of reconstruction
within a region we have been able to use optimized iterative local relaxation
methods to obtain efficient solution to the PDE's that must be solved.

While the development of these specific algorithms is not without
interest, a more important point of this paper is the flexibility of the
stochastic, model-based approach we have described. As we illustrated in
Section II, it is quite simple in this framework to modify the models to
incorporate additional information about the optical flow or about object
motion and to modify the reconstruction algorithm in a similar manner. In
addition, we also have at our disposal the full set of estimation-theoretic
results and concepts that can allow us to develop procedures for related
problems. For example, in Section II and Appendix A we have shown how
the constraint of periodicity in the optical flow around a closed contour can
be accommodated by applying recently-developed results on estimation of
noncausal processes. It is also possible to use methods of adaptive estimation
to identify parameters of our model (such as a spatially varying
measurement noise parameter a(s) or an oriented-smoothness-like intensity
W-l(s) for the white noise driving our model for the velocity field) directly
from the data and then to use these optimized parameters in the
reconstruction algorithm. In addition, it should be possible to use recent
results [27] on the updating of smoothed estimates to develop efficient
algorithms for tracking the velocity field over time as well as space (indeed
the algorithm in [271 would suggest that tracking over time could be
accomplished with a relatively modest increase in complexity as compared to
independent velocity reconstruction at each point in time).

Finally, since the stochastic estimation approach that we have
developed here can be viewed as a model-based regularization technique, it
should be applicable to a number of other problems in computer vision to
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which regularization methods have been applied in the past, such as robot
navigation 1201, shape from shading [21, 1221], stereo vision [231, etc... Again a
potential benefit of this approach is the extreme flexibility which exists in
generating both the required multidimensional stochastic models and the
corresponding reconstruction algorithms.
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APPENDIX A

In this appendix we present an algorithm for the optimal estimation of
the optical flow V(s) along a closed contour given the model (2.12)-(2.16)
together with the constraint (2.31). The method used is the one developed in
1181.

As in the two filter algorithm (2.19), (2.10), (2.26)-(2.28), the
algorithm in this case consists of separate forward and backward sweeps
followed by computations to combine the results of these sweeps.
Specifically in the backward sweep we again solve (2.9), (2.10) backward
from final values @(L) = 0, q(L) = 0 at s = L, and at the same time we also
solve the backward 2x2 matrix equation

d(Ib/ds - (s)I)b(s) (A.1 a)

(Db(L) = I . (A.lb)

In the forward direction we solve (2.26), (2.27) from initial values I(0) = 0,
r(O) = 0 at s = 0, and at the same time we solve the forward 2x2 matrix
equation

d(Df/ds = - (s)()f(s) (A.2a)

rf (O) = I (A.2b)

Following these computations, V(s) is constructed as

V(s) = P(s) [ q(s) + r(s) + (s) ] (A.3)

(compare to (2.28)), where P(s) is given in (2.29) and the correction term
v(s), which adjusts the estimates to account for the constraint that V(0) =
Y(L), is given by

V(s) = [ If(S) - 4b(s) I R [ 4v(L)-r(L) - e(0)-lq(0) I (A.4)

where

R = { (O)-I I - 4 )b(0) ] + (L)-l [I - If(L) ] )- . (A.5)
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APPENDIX B

In this appendix we briefly review and then apply the methodology
developed in [181. Specifically consider a stochastic process x on a region D
and implicitly defined by the equations

Lx = B (B. 1)

Vxb = v . (B.2)

Here L is a differential or difference operator in one or more dimensions, and
u is a white noise process with intensity matrix Q. Also (B.2) represents the
boundary conditions associated with (B. 1). Here xb is defined on the
boundary C of D and consists of quantities such as the value of x and its
normal derivative on C. The variable v is a white noise process on C with
intensity matrix [n,. Suppose that we observe

y = Cx + r (B.3)

inside D, where r is white noise with intensity matrix R, and

Yb = Wxb + rb (B.4)

on C, where rb is white noise with intensity H'b. The objective is to estimate x
based on knowledge of y and Yb.

The approach in 1181 is based on the concept of complementary
models. Specifically, as an intermediate step we construct a second process X
and associated observations z and Zb so that z and zb are independent and
complete the observations y and Yb in the sense that knowledge of (Z, Zb, Y,
Yb) is equivalent to the complete specification of all the processes (u, v, r, r b)
that enter in determining x, y, and Yb. With this complementary model in
hand, one can eliminate (u, v, r, r b} from the model equations, expressing x
and 7k completely in terms of (Z, b, Y, Yb)}. The equations specifying the
optimal estimator are then obtained simply by setting z and zb equal to
zero i.

The key to the construction of the complementary model and thus to
the construction of the estimator is a generalized Green's identity

IThe validity of this step can be seen as follows. The optimal estimate is
obtained by conditioning on y and Yb. However, z and Zb are independent of
the y's.



26

< Lx, X >D = < x,L? >D + < Xb, Eb >C (B.5)

where < .,. > denotes inner products of vector functions on D or C. The two
key quantities in (B.5) are the operators Lt and E. Having these, we can write
down the so-called Hamiltonian form of the optimal estimator

L - QB| X °
(B.6)

W'-W + -y . (B.7b
(WTb-IW + V'fIvIV I E) ^ = Wlbl-lYb (B.7)

Xb

Let us apply these results to the model (3.3)-(3.7). In this case we can
make use of the classical Green's identity. Specifically, if f is a scalar function
on D and if g is any 2-vector of such functions, then

JD [Vf(x,y)]T g(xy) dx dy

= o f(x,y) 1-V- g(x,y)l dx dy + Ic f(x(s),y(s)) [n(s)Tg(x(s),y(s))1 ds .(B.8)

Here V- is the divergence operator, i.e. if g(x,y)T = Ig (xy),g2(x,y)], then

7- g(xy) = a/ax g(x,y) + a/ay g 2(x,y) . (B.9)

Also in the last integral on the right-hand side of (B.8), s parametrizes
distance along the contour C, (x(s),y(s)) is the corresponding point on the
curve, and n(s) is the normal to the curve.

Consider then the operator L in (3.3). It is a simple exercise to check
that the Green's identity in this case is

JDI [Lf(x,y)JT g(xy) dx dy

= ID f(x,y)T [Ltg(x,y)] dx dy + Ic f(x(s),y(s))T N(s)g(x(s),y(s)) ds (B. 10)

where f is a 2-vector, g is a 4-vector, and
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LI = -(I o V-) (B. 11)

N(s) = I 0 n(s)T (B. 12)

i.e., if g(x,y) = [gjT(Xy),g 2T(x,y)] T with g 1, g 2 each 2-vectors, then

L tg = [ V-g1 , V-g 2 T (B. 13)

and
N(s)g = [n(s)Tgl,n(s)Tg 2] . (B. 14)

Applying (B.6) to this problem (with appropriate changes in notation)
we obtain the following system of equations

A /%

LV = W (B.15)

a HTH V + L tW - a HTZ (B. 16)

(where W corresponds to X in (B.6)). Using (B. 15) to eliminate W we obtain
the equation

A A

L tLY =a HT(z - H) . (B. 17)

Note that

Lt L = - ( I ;7- ) (I® 7 )

= -(I® V/-NV) = -(I® A) (B. 18)

where A is the Laplacian. Equations (3.9), (3.10) then follow from (B.17),
(B. 18), and (3.8).

Similarly, the boundary condition (B.7) in this case becomes

Pc-l[V-Vcl + N(s)W = 0 onC . (B.19)

Rearranging and again using (B. 15) to eliminate W, this condition becomes

V = Vc- PcN(s) L V onC . (B.20)

Equation (3.1 1) then follows from the definition (B.12) and (B.20).
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CAPTION FOR TABLE 1

Table 1: Relative error in function of the parameter a for the case of linear
intensity variation considered in Figs. 7 and 9, and when a translational or
rotational motion is applied to a rectangular or polygonal domain.



Rectangle Polygon

Translation Rotation Translation Rotation

a 0 0.008 0 0.003 0 0.0015 0 0.0007

relative
e 18% 9 % 12% 10 % 8.9% 6.9 % 8.2% 8 %

error

Table 1



FIGURE CAPTIONS

Figure 1: Estimated velocities obtained from noiseless observations of the
perpendicular component of the optical flow, when a translational motion is
applied to a piecewise horizontal and vertical polygon.

Figure 2: Estimated velocities obtained from noiseless observations, when a
translational motion is applied to a general polygon.

Figure 3: Estimated velocities and errors obtained from noisy observations,
with the noise intensity equal to 0.01 or 0.1, for a translational motion
applied to the polygon of Fig. 2.

Figure 4: Estimated velocities and errors obtained from noiseless
measurements, with the parameter a set equal to 0.95 or 0.1, for a rotational
motion applied to the polygon of Fig. 1.

Figre 5:i Estimated velocities and errors obtained from noiseless
measurements, with the parameter a set equal to 0.7 or 0.1, for a rotational
motion applied to the polygon of Fig. 2.

Figure 6: Estimated velocities and errors obtained by the algorithm with
periodicity constraint of Appendix A for the measurements of Figure 5, and
with a equal to 0.7 or 0.1 .

Figure 7: Estimated velocities and errors inside rectangular and polygonal
domains, for linear intensity variations and a translational motion.

Figure 8: Estimated velocities and errors inside rectangular and polygonal
domains, for sinusoidal intensity variations and a translational motion.

Figure 9: Estimated velocities and errors inside rectangular and polygonal
domains, for linear intensity variations and a rotational motion.

Figure 10: Estimated velocities and errors inside rectangular and polygonal
domains, for sinusoidal intensity variations and a rotational motion.

Figure 1 1: Estimated velocities and errors inside a rectangular domain, when
the exact velocity field given by (4.17) corresponds to a non-rigid motion.

Figure 12: Estimated velocities and errors inside a rectangular domain for
linear intensity variations and a rotational motion, given some estimates of
the velocity field on the boundary with error variance PC = I or PC = 0.01 .



Figurel.a: Truevelocity Figure2.a: Truevelocity
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Figure l.b: Perpendicular component Figure 2.b: Perpendicular component
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Figure 3.a; Observations, var- 0.01 Figure 3.d: Observations, var- 0.1

Figure 3.b: Estimated velocity Figure 3.e: Estimated velocity

FiguJre 3c: Estimation error Figure 3.f: Estimation errorFigure 3.c: Estimation error Figure 3.f: Estimation error



Figure 4.a: True velocity Figure 4.b: Perpendicular component
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Figure 4.e: Estimated velocity, a- 0.1 Fiaure 41: Estimation error, a- 0.1



Figure S.a: True velocity Figure 5.b: Perpendicular component
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Figure 6.a: True velocity Figure 6.b: Perpendicular component

Figure 6.c: Estimated velocity, a=0.7 Figure 6.d: Estimation error, a-0.7

Fiure 6.e Estimated velocity, a-0.i

Figure 6.e: Estimated velocity, a=O.1 Figure 6.f: Estimation error, a=O.l
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Fig. 7.a: True velocity Fig. 7.b: Estimated velocity Fig. 7.c: Estimation error
25 iterations, a= 0.008
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Fig. 7.da: True velocity Fig. 7.e: Estimated velocity Fig. 7f: Estimation error
15 iterations, a- 0.0015



25 iterations, a- 0.025
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Fig. 8.d: True velocity Fig. 8.e: Estimated velocity Fig. 8f: Estimation error
15 iterations, a= 0.004
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Fig. 9.a: True velocity Fig. 9.b: Estimated velocity Fig. 9.c: Estimation error
25 iterations, a= 0.003
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Fig. 9.d: True velocity Fig. 9.e: Estimated velocity Fig. 9.f: Estimation error
20 iterations, a- 0.007
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Fi. 1 0.a: True velocity Fig. 10.b: Estimated velocity Fig. 10.c: Estimation error
25 iterations, a= 0.001
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Fig. IO.d: True velocity Fig. 10.e: Estimated velocity Ag.. I: Estimation error
20 iterations, a- 0.00 I



/ I s I x . ' ·U

I I I I I

Fig. 1 la: True velocity Fig. I l.b: Estimated velocity Fig. .I .c: Estimation error
25 iterations, a= 0.3
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Fig. 12.a: True velocity Fig. 12.b: Estimated velocity Fig. 12.c: Estimation error
P = 0.01 I, a- 0.003

._= 10.

. I I

Fig. 12.d: Estimated velocity Fig. 12.e: Estimation error
P - I, a- 0.006


