
JANUARY 1987 LIDS-P-1639

TIMED EVENT-GRAPH AND PERFORMANCE EVALUATION OF SYSTEMS*

by

Herve P. Hillion

Alexander H. Levis

ABSTRACT

Performance analysis of Timed Event-Graphs, including both

deterministic and random models, is considered. First, a bound to the

average firing rate in steady-state is given. This bound is computed using

the critical circuits of the net, for which the average cycle time is

maximal. The second result deals with an extended deterministic model, in

which the transition processing times are a function of the number of

firing repetitions. A fast and simple algorithm is described that

determines the earliest firing schedule.

*This work was carried out at the MIT Laboratory for Information and

Decision Systems with support provided by the Joint Directors of

Laboratories under Contract No. N00014-85-K-0782 and by the Office of Naval
Research under Contract No. N00014-84-K-0519.

**INRIA-LORRAINE, Chateau du Montet, rue du Doyen Roubault, 54500
Vandoeuvre, FRANCE, Tel: 83 55 44 98.

***Laboratory for Information and Decision Systems, Massachusetts Institute
of Technology, Cambridge, MA, 02139, USA, Tel: (617) 253-7262.

1. INTRODUCTION

Timed Petri Nets are used to analyse the dynamic behavior of systems

with asynchronous and concurrent processing. So far, two models of Timed

Petri Nets have been studied: deterministic models [1,2,3] in which the

transition firing times are assumed to be fixed, and probabilistic models

[4,5,6], where the firing times are specified by probabilistic distribution

functions, generally assumed to be exponential distributions. In both

cases, methods are developed to evaluate the steady-state performance. A

more general approach is proposed in this paper. The transition firing

times are considered to be dependent on the number of firing repetitions.

The method can handle a sequence of successive firing times for every

transition, assuming the firings to be repetitive over time. The only

other necessary assumption is that an average firing time exist for each

transition, regardless of any other assumption concerning the sequence of

repetitive firings which may be either deterministic or random. The

analysis is restricted, however, restricted to a special class of Petri

Nets, namely Event-Graphs [7] and is focused on obtaining performance

measures. The results presented in this paper have been used to evaluate

the performance of Decisionmaking Organizations modeled by Petri Nets [8].

This paper is divided in five sections. In Section 2, the assumptions

of the model, called Repetitive Timed Event-Graph, are presented. In

Section 3, an upper bound to the average firing rate is computed, that only

depends on the average firing times of the transitions. In Section 4, the

deterministic case is considered and a fast and simple algorithm that

determines the firing schedule is described. Finally, concluding remarks

are given in the last section.

2. REPETITIVE TIMED EVENT-GRAPH

Recall first that an Event Graph [7] (also known as Marked Graph [10])

is a Petri Net [9] such that each place has exactly one input and one

output transition. Given an initial distribution of tokens in the net

2

(i.e., an initial marking), it is shown in [10] that an Event-Graph is live

if and only if the number of tokens in every directed elementary circuit is

strictly positive. We assume here that this condition is satisfied so that

each transition can fire repeatedly any number of times.

In Timed Petri Nets, each transition t takes a wreal" time i(t) to

fire. When a transition t is enabled, a firing can be initiated by

removing one token from each of t's input places. The tokens remain in

transition t for the firing execution during the time i(t) and then the

firing terminates by adding one token in each of t's output places.

Different models of Timed Petri Nets have been studied; in

deterministic Timed Petri Nets [1.2] and Timed Event-Graphs [3], a positive

(rational) number is assigned to each transition t of the net, which

defines the firing time g(t). In stochastic Petri Nets [4,5], the firing

times are assumed to be random variables that are exponentially

distributed.

In this paper, the transition firing times are not fixed, but may be

different from one firing to the next. Therefore, a sequence of successive

firing times {pt(1),pt(2),...,Pt(k),...} (for any transition t) is

constructed according to the number of firing repetitions. There is no

assumption regarding this sequence, except that the following limit

n

2 Pt(k)

Lim k=lnt (1)
n -3)

must exist and be finite (for any transition t). The limit, denoted by it'

determines the average (or mean) firing time of transition t. Two cases

will be considered.

First, in the non-deterministic case, the sequence of successive

3

firing times can be regarded as possible outcomes of the random variable

Pt' with mean value jt (regardless of the probability distribution

function). For instance, Pt can be a discrete random variable that takes

on a finite set of possibles values {v1,v2,...,vj } according to a certain

probability distribution {¥y,...,yj). In that case:

j

It = Yk Vk
k=1

This assumption was used by the first author [81 to evaluate the

performance of Decisionmaking Organizations modeled by Event-Graphs. In

that model, the processing of a task can be performed by different

algorithms, each having a fixed execution time. At each occurence of the

task, an algorithm is selected, according to a fixed probability

distribution: such a decision rule is called a decision switch [11] in the

Petri Net model.

The second case is the deterministic case, when the sequence of

successive firing times is assumed to be fixed (for all transitions). In

Flexible Manufacturing Systems, for instance, transitions can model

machines [12]. If it is assumed that a machine can process different types

of jobs, according to a given sequencing of the jobs, then the sequence of

successive processing times is fixed.

In order to study the performance of Event-Graphs, it is assumed in

this paper that the Event-Graph model is strongly connected and live.

These assumptions ensure that the transition firings can be repeated any

number of times and that the net is bounded [13]. The following notation

will be used:

T = [tx1 ,t 2,.,tm} is the set of transitions

Pi(n) denotes the n-th firing time of transition ti
(i.e., when ti fires for the n-th time)

4

Si(n) denotes the instant at which the n-th firing
initiation of transition ti occurs.

The initial distribution of tokens (i.e., an initial marking) is given

at v = 0 and is denoted by MO. The dynamic behavior of the system will

be described by the sequence Si(n) for i=1,2,...,m and n=1,2,..., which

will also be called the firing schedule. Since it is assumed that

transitions fire as soon as they are enabled, the performance obtained is

the maximum performances (with respect to time) and the schedule is the

earliest firing schedule.

3. PERFORMANCE EVALUATION

In this section, an upper bound to the performance in steady-state is

obtained. The performance measure considered is the average period ni with

which any transition ti fires, i.e.,

n

\ (Si(k) - S i(k-1))1 1
k=!

n. = Lim 1 (2)1 n- n
n -b

Quite obviously, l/7i determines also the average firing rate of

transition ti. The average period ni can also be written as:

S.(n)
,. = Lim 1 (3)1 n

n -be

Since the Event-Graph is assumed to be strongly connected, the average

period is the same for all transitions of the net and will be denoted by n.

This is trivially deduced by the fact that the number of tokens in any

directed elementary circuits is invariant with any transition firing [10].

A directed elementary circuit is a directed path that goes from one node

(place or transition) back to itself and such that none of the nodes are

repeated.

5.

The average cycle time of any directed elementary dircuit p, denoted

by C(p), is defined as the sum of the average firing times of all

transitions belonging to the circuit divided by the number of tokens in the

circuit

C(p) = ip (4)

Let Cmax be the maximum over all directed elementary circuits of the

average cycle times. Cmax will be called the maximum average cycle time.

C = max (C(p)) (5)max
p

Then the following result holds:

Theorem: The maximum average cycle time is a lower bound of the

average period, i.e.,

>~ C (6)
max

This theorem generalizes the result obtained by Ramchandani [1]

in which all transition firing times are constant. In order to prove

this result, we consider any directed elementary circuit p and prove that

n > C(p).

Proof: Let p be any circuit of the net, that we denote, without loss

in generality, by p = (t1 P1 t2...tr Pr) Let M0 denote the initial

marking of place Pi. If we consider any two transitions (ti,ti+1)

connected by place Pi, then for any positive integer n, we know that (see

[1,3]).

Si+ (n+M }) > S(n) + pi(n) (7

This means that at the instant:

C = Si(n) + gi(n)

transition ti has nproduced' exactly n tokens in place Pi (since ti has

fired exactly n times since the initial instant). Since there were

initially M9 tokens in this place, the total number of tokens available in

Pi during the interval of time [O,zl, is precisely n + M2. Now, each time

that the firing of ti+1 was initiated, one token in Pi was "consumed".

Accordingly, the number of firing initiations of ti+! during the interval

[O,v] cannot be more than (n + Mi):

Si+l (n+M) > r = S (n) + i
1+ i 1

Suppose now that n is large enough so that n > M for i = 1,2,...,r.

Then (7) can be written as:

Si+ l(n) > S.(n-M?) + Wi(n-Mi) for i=1,2,...,r (8)

If we apply recursively (8) from i = r to i = 1, we obtain:

r

S(n) =S (n) = S(n-Nt) + I((n-M) (9)

i=l

where Nt denotes the total number of tokens in the circuit, as determined

by:

7

r

Nt = MO
i=l

Let us now write n in the form:

n = K Nt +s

O~s<N t0 < s < Nt

Then, we deduce from (9):

K r

0) (10)
S1 (n) > S(S) + li(KNt+s-M (10)

k=1 i=1

Applying (10) for s = 0,1,2,...,Nt-1 and summing the inequalities yields:

Nt-l Nt-1 Nt-i K r

S1(KN +s) > 1(s) + ((i +s-Mt))) (11)

s=0 s=0 s=0 k=1 i=1

Now:

Nt-1 K r r KNt-1

E (I (gi(kNt+S-M0))) = I (I i(q+Nt-M))

s=0 k=1 i=1 i=1 q=O

Finally, dividing (11) by KNt and taking the limit when K goes to

infinity, we obtain

8

Nt-1 Nt-1 S (KN +s)

(1) lim (S (KNt +S)) (lim 1 t =N
K - t 1 K- tKN t

s=O s=O
given (3)

Nt-1

0 1 t s (S)(S

(2) lim s = i r (li =
K - KNt N t K-

s=O

r KNt-1 r n-l

Kt i 2 (2 ii(q+Nt-M i))) = 2 (lim 1 (pi(q+Nt-MO)))
K -~ co KN i n- c n i

i=1 q=O i=i q=O

- =tii ~ given (2)

i=1

Hence:

r

Nt n > - i

i=l

which implies:

r

T ii

n > i=1 =C(p) Q.E.D.
Nt

The result obtained in Theorem 1 gives an upper bound to the average

firing rate, since (6) can be written:

9

! < 1 (12)
- C

max

This bound can be computed quite easily, once all circuits are

determined. A simple method for obtaining all circuits is described in

[8], using an algorithm that determines the invariants of a net [14]. It

is particularly interesting that the upper bound of the maximum performance

only depends of the transition mean firing times (given the initial

distribution of tokens), regardless of any other assumptions concerning the

firing times (which may be either deterministic or random variables with

any type of probability distribution). Recall that (12) is shown to be an

equality (i.e., n = Cmax) when the transition firing times are constant

[1], and that the steady-state is then K-periodic [3].

In computing Cmax, it is also interesting to determine the critical

circuits, i.e., those circuits p for which C(p) = Cmax. It turns out that

only these circuits bound the average firing rate in steady-state.

Accordingly, the critical circuits should be the ones to modify (in terms

of transition firing times or number of tokens in the circuit) so as to

improve the performance of a system.

We are now going to determine the firing schedule, assuming that the

sequences of successive firing times are known, i.e., the firing process is

deterministic.

4. DETERMINATION OF THE FIRING SCHEDULE

We present in this section a fast algorithm to compute the firing

schedule, i.e., the sequence (Si(n)) i=l,...,m ; m=1,2,..., when the system

is deterministic. An initial distribution of tokens is assumed to be given

at v = 0 and the sequence of successive firing times Hi(n) n=1,2,... is

assumed to be fixed for any transition ti. We first determine the order

with which transitions fire.

10

4.1 Partial Firing Order

Given the structure of the net and the initial distribution of tokens,

some transitions fire sequentially and other fire concurrently. In order

to psecify how the firings occur in the process, we proceed as follows. We

call marked places the places which contain one token. We first consider

the set P1 of places that contain at least one token, i.e., with an initial

marking strictly positive, and take this set as the initial set of marked

places. Then let T1 be the set of transitions that are enabled by the

places of P1. Assume that all transitions of T1 fire once and let P2 be

the new set of marked places. Let T2 be the set of transitions that are

enabled by the places of P2 and which do not have already fired (i.e., do

not belong to T1). Let P3 be the set of marked places once all transitions

of T2 have fired. In a similar way, we then consider the set T3 of

transitions that are enabled by P3 and which do not have already fired

(i.e., do not belong to TOUT2) and so on. We repeat this operation s times

until Ts+,=O. Because the net is a live Event-Graph, the sequence

TL,T2,...,Ts so constructed verifies:

T = T U T ...U T
1 2 S

where T denotes the set of all transitions of the net. This sequence

determines therefore the partial firing order between the transition

firings. In particular, the transitions belonging to Ti (i=l,...,s) are

transitions that fire concurrently at the i-th step. For that reason, the

sequence T,T 2,..., Ts will be called the sequence of concurrent

transitions. It should be clear that this sequence is fully determined by

the structure of the net, and the initial distribution of tokens.

4.2 Firing Schedule

For clarity, we now assume that the transitions are labeled according

to the sequence Tl,...,Ts, i.e.,

11

T1 = ftl ,t , .. tk }

T1 = f t,tkl}T = ft tk '+2 tk 2 }

Ts = {tks+"' --- tm

where m denotes the total number of transitions in the net. Note that the

order between the transitions belonging to Ti (i=l,...,s) does not matter,

since the transitions fire concurrently.

For any transition tj we now denote by Inp(tj) the set of all

transitions which are the input transitions of all input places of tj, as

shown on Figure 1; {pil'Pi2,...'Pir} are all input places of transition tj

and ({ti,ti2,...,tir} is the set of input transitions of each of these

places. If ti e Inp(tj), we also denote by Mij the initial marking of the

unique place Pij whose input transition is ti and output transition tj.

ti1

ti2 pi2

pir -

tir

Figure 1. Definition of Inp(tj)

For any transition tj and any transition ti 8 Inp(tj) we have:

Sj(n+Mi) > Si(n) + ~i(n) (13)

12

where n is any positive integer. The inequality follows directly from

(7)(see previous section). Suppose that n > M9 Then (13) can be written
1j3

as:

0 0
Sj(n) > Si(n-Mij) + gi(n-Mij) (14)

For simplicity, let us assume Si(k) = 0 and gi(k) = 0 if k < 0 (for

i=1,2,...,m), so that (14) is still satisfied if n MJ: this means that

there are still tokens left in the place Pij from the initial marking, so

that the firing initiations of tj do not depend on the firing terminations

of ti.

Given the assumption that the firings occur as soon as the transitions

are enabled, we deduce from (14) the following relation:

S (n) max (Si(n-Mii) + i(n-Mij)) (15)
t.ieInp(t.) j

Equation (15) can now be used to compute the firing schedule by iteration

on n, the number of firing repetitions. At the n-th iteration, we can

compute Sj(n) (j=1,2,...,m) once we know both Si(k) for i=1,2,...,m and

k=1,2,...,n-1 and Si(n) for i=1,2,...,j-1. Consider indeed any transition

t i e Inp(tj) If Mi > 0, we then know Si(n-M9 j) (computed at a previous

interation). Now if MOj =, it means that in the firing order ti should

necessarily fire before tj. Therefore if tj a T1 then, by the sequence

T1,T2,...,T s, it follows that i < j. Finally, if tj e T1 then, by

construction, MOj is always strictly positive whenever ti 8 Inp(tj)

The algorithm can now be described recursively in a very simple way:

13

(Initialization}

p = Max (Mij)

for k = -p to 0 set Si(k) = 0 and gi(k) = 0 {for i=l,...,m}

n=1

Repeat {main loop}

For j = 1 to m set

0 0
Sj(n) = max (Si(n-Mij) + Ii(n-Mij))

t.sInp(t.) i

End

until n = N (total number of firing repetitions).

Recall that there are two steps to complete in order to use the algorithm:

(1) Determine the firing order of the transitions, following the

method described in Section 4;

(2) Determine the set Inp(tj) for any transition tj (deduced from the

structure of the net).

This algorithm has been used to compute the firing schedule of

Decisionmaking Organizations, using a Timed Event-Graph model [8]. It

should be noted that, in this approach, we do not need to describe the

states of the system nor use graph theory (as is done in the algorithm

proposed in [3] for constant firing times).

5. CONCLUSION

We have developed in this paper some techniques for analyzing real-

time systems that can be modeled using Event-Graphs. The result presented

in Section 3 generalizes the result obtained in [1] for constant transition

firing times. It can be used for preliminary performance evaluation of a

14

general system for which only the average task execution times are known.

It holds, in particular, without the restrictive assumptions of the

probabilistic models studied so far. We have also extended the

deterministic case, allowing a different firing time at each repetition.

The algorithm described in section 4 provides a simple way to obtain the

precise firing schedule for this case without the need for simulation.

REFERENCES

[1] Ramchandani, C. (1974). "Analysis of asynchronous concurrent systems
by Timed Petri Nets", Technical Report No. 120, Laboratory for
Computer Science, MIT, Cambridge, MA.

[2] Sifakis, J. (1980). "Performance Evaluation of Systems using Nets",
Net Theory and Applications, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, FRG, pp. 307-319.

[3] Chretienne, P. and Carlier, J. (1984). "Modeling scheduling problems
with Timed Petri Nets," Advances in Petri Nets, 1984, Lecture Notes in
Computer Science, No. 188, Springer-Verlag, Berlin, FRG, pp. 62-82.

[4] Zuberek, V. M. (1985). "M-Timed Petri Nets, priorities, preemptions,
and performance evaluation of systems," Advances in Petri Nets, 1985,
Lecture Notes in Computer Science, No. 222, Springer-Verlag, Berlin,
FRG, pp. 478-498.

[5] Molloy, M.K., (1982). "Performance analysis using stochastic Petri
Nets," IEEE Trans. on Computers, Vol. 31, No. 9, pp. 913-917.

[6] Wiley, R.P. (1986). "Performance analysis of stochastic Timed Petri
Nets," Ph.D. Thesis, Report LIDS-TH-1525, Laboratory for Information
and Decision Systems, MIT, Cambridge, MA.

[7] Brams, G.V. (1983). Reseaux de Petri: theorie et pratique, Masson,
Paris, France.

[8] Hillion, H. P. (1986). "Performance evaluation of Decisionmaking
Organizations using Timed Petri Nets," M.S. Thesis, Report LIDS-TH-
1590, Laboratory for Information and Decision Systems, MIT, Cambridge,
MA.

[9] Peterson, J. L. (1981). Petri Net theory and the modeling of systems,
Prentie-Hall, Englewood Cliffs, NJ.

[10] Commoner, F., A. W. Holt, S. Even, and A. Pnueli, (1971). "Marked
Directed Graphs," Journal of Computer and System Sciences, Vol. 5, No.
5, pp. 511-523.

15

[11] Tabak, D. and A. H. Levis (1985). "Petri Net representation of
decision models," IEEE Trans. on Systems, Man and Cybernetics, Vol. 5,
SMC-15, No. 6, pp. 812-818.

[12] Cohen, G., D. Dubois, J.P. Quadrat and M. Viot (1985). "A linear-
system theoretic view of discrete event processes and its use for
performance evaluation in manufacturing," IEEE Trans. on Automatic
Control, Vol. Ac-30, No. 3, pp. 210-220.

[13] Sifakis, J. (1978). "Structural properties of Petri Nets,"
Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, No. 64, Springer-Verlag, Berlin, FRG, pp. 474-483.

[14] Martinez, J. and M. Silva (1980). "A simple and fast algorithm to
obtain all invariants of a generalized Petri Net," Lecture Notes in
Computer Science, No. 52, Springer-Verlag, Berlin, pp. 302-310.

16

