
LIDS-P-1620

AN EFFICIENT MAXIMUM ENTROPY
TECHNIQUE FOR 2-D ISOTROPIC

RANDOM FIELDS

Ahmed H. Tewfik Bernard C. Levy
Alan S. Willsky

Laboratory for Information and Decision Systems and
The Departement of Electrical Engineering and Computer Science

Massachusetts Institute of Technology, Cambridge, MA 02139

November 30, 1986

Abstract

In this paper, we present a new linear MEM algorithm for 2-D isotropic
random fields. Our procedure differs from previous 2-D MEM algorithms
by the fact that we take maximal advantage of the symmetries implied
by isotropy, which is the natural generalization to several dimensions of
the l-D notion of stationarity. Unlike general 2-D covariances, isotropic
covariance functions which are positive definite on a disk are known to
be extendible. Here, we develop a computationally efficient procedure
for computing the MEM isotropic spectral estimate corresponding to an
isotropic covariance function which is given over a finite disk of radius 2R.
We show that the isotropic MEM problem has a linear solution and that
it is equivalent to the problem of constructing the optimal linear filter for
estimating the underlying isotropic field at a point on the boundary of
a disk of radius R given noisy measurements of the field inside the disk.
Our procedure is based on Fourier series expansions in both the space
and wave-number domains of the inverse of the MEM spectral estimate.
Furthermore, our method is guaranteed to yield a valid isotropic spectral
estimate and it is computationally efficient since it requires only O(BRL2 )
operations where L is the number of points used to discretize the interval
[0, R], and where B is the bandwidth in the wave-number plane of the
spectrum that we want to estimate. We also present examples to illustrate
the behavior of our algorithm and its high resolution property.
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12921 and by the Army Research Office under Grant No. DAAG-84-K-0005.



1 INTRODUCTION

The need for efficient power spectral estimation techniques arises in a
number of practical applications, such as speech processing [1], radar [2],
sonar [3], image processing [4] and seismic signal processing [5], to mention
a few. For one-dimensional signals, the maximum entropy spectral estima-
tion method (MEM) has become very popular due to the facts that it can
provide excellent frequency resolution, and that it can be implemented in a
computationally efficient way [6]. Because of the multidimensional nature
of the signals arising in many applications (e.g. in geophysical problems,
imaging, sonar, etc.) a number of maximum entropy algorithms have been
developed over the past ten years ([7]-[10]) for estimating two-dimensional
spectra. These algorithms are very general and do not attempt to exploit
any special structure of the power spectrum to be estimated. Since 2-D
polynomials do not possess in general a quarter-plane factorization [11],[12],
most of the known 2-D MEM algorithms involve solving a non-linear op-
timization problem that cannot be reduced to a linear prediction problem
as in the 1-D case [13]. Furthermore, 2-D covariance functions which are
positive definite on a subspace of the plane R 2 do not necessarily have a
positive-definite extension to the whole plane [10], [14]. Thus, for any given
set of stationary covariance data, the 2-D MEM problem is not guaranteed
in general to have a solution. This can constitute a major problem in prac-
tice, since the covariance values that are usually used as an input to the
direct 2-D MEM spectral estimation algorithms are estimates, rather than
exact values, of the true covariance values, and thus may not correspond to
an extendible positive-definite 2-D function. A good review of the various
2-D MEM algorithms and of the extendibility issue can be found in [13].

In this paper, by contrast, we present a new linear MEM algorithm
for 2-D isotropic random fields. Isotropic fields are characterized by the
fact that their mean value is a constant independent of position and their
autocovariance function is invariant under all rigid body motions, i.e. under
translations and rotations. In some sense, isotropy is the natural extension
of the notion of stationarity in one dimension. Isotropic fields arise in
a number of physical problems of interest among which we can mention
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the modeling of background noises in seismology [15] and ocean acoustics
[16], [17], the investigation of temperature and pressure distributions in
the atmosphere at a constant altitude [18], the analysis of turbulence in
statistical fluid mechanics [19] and the representation of rainfall structure
in hydrology [20].

An important property of isotropic covariance functions which are positive-
definite over a disk is that they always have positive-definite isotropic ex-
tensions to the whole plane [21]. Here, we develop a computationally effi-
cient linear procedure for computing the maximum entropy isotropic power
spectral estimate corresponding to a covariance function that is given over
a disk of radius 2R. The maximum entropy power spectral estimate is the
one that maximizes the entropy of the underlying random field. Our 2-D
isotropic MEM algorithm is similar in spirit to the 1-D MEM procedure
as will become clear from what follows. By using a nonsymmetric half
plane spectral factorization and the properties of radially symmetric func-
tions which are zero outside a disk in the space domain, we show that the
isotropic MEM problem is equivalent to the problem of constructing the
optimal linear filter for estimating the value of the underlying isotropic field
at a point on the boundary of a disk of radius R given noisy observations
of the field inside the disk. We then present a computationally efficient and
robust procedure for computing the isotropic MEM spectral estimate. Our
procedure is based on a Fourier expansion of the optimal linear estimation
filter in terms of the angle 0 in a polar representation of the underlying 2-D
space, and on the fast recursions that were derived in [22] for solving filter-
ing problems for isotropic random fields. These recursions are very similar
to the Levinson's equations of one-dimensional prediction. The computa-
tional complexity of our procedure is O(BRL2 ) where B is the bandwidth
in the wave-number plane of the spectrum that we want to estimate, and
where L is the number of points used to discretize the interval [0, R]. Note
that our results show that the isotropic MEM spectral estimation problem
has a linear solution. It was previously shown in the 2-D discrete space case
that the MEM spectral estimation problem has a linear solution whenever
the underlying field is Gauss-Markov [23]. However, there is no contradic-
tion between our results and those of [23], since the condition of [23] is only
sufficient but not necessary.
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This paper is organized as follows. In Section 2 we review some proper-
ties of isotropic random fields. In particular, we discuss Fourier expansions
of such fields in terms of the angular coordinate 0 in a polar representa-
tion of the underlying 2-D space. Such expansions will be later used to
develop an efficient procedure for constructing the MEM spectrul estimate.
In Section 3, we derive an expression for the isotropic MEM estimate. The
MEM spectral estimation problem is then related to the problem of finding
the best linear filter for estimating an isotropic field on the boundary of a
disk given noisy observations of the field inside the disk. By using Fourier
expansions of the optimal linear estimation filter and the efficient recur-
sions of [22], a fast and robust method for computing the MEM estimate is
developed in Section 4. The numerical implementation of our procedure is
described is Section 5. Particular attention is given in this section to the is-
sues of numerical stability and convergence of our implementation. Finally,
several examples are presented in Section 6 to illustrate the behavior of our
algorithm and particularly to demonstrate its high resolution property.
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2 FOURIER SERIES FOR ISOTROPIC FIELDS

In this section, we review some of the properties of isotropic random
fields. Specifically, we focus our attention on Fourier series representations
of such fields with respect to the angle 0 in a polar coordinate representation
of the underlying 2-D space.

The covariance function

K(?) = E[z(Vi)z(v + r)] (2.1)

of any zero-mean isotropic random field z(3) 1, is a function of r only, so
that, by abuse of notation we can write

K(r) = K(r). (2.2)

Since K(r) is a function of r only, it is straightforward to show that the
power spectrum S(X) of the field z(r), i.e. the 2-D Fourier transform of
K(f), is actually a function of A = IXI only [24], and with a slight abuse
of notation we will write this as S(A). Furthermore, it can be shown that
S(A) is 27r times the Hankel transform of K(r) viewed as a function of the
scalar r = IFr, i.e.

P00

S(A) = 27r o drrJo(Ar)K(r), (2.3)

where Jo(.) denotes the Bessel function of order 0. By using (2.3) and the
addition theorem for Bessel functions [25], we can write

00

K(lr- sl) = k,(r,s)e'i n( -0 ), (2.4)

where

k(r, s) = 2 0 J (Ar)Jn(As)S(A)A dA, (2.5)

and where r-= (r, 0) and - = (s, q). In (2.5) J,(.) is the Bessel function of
order n. Alternatively, k,n(r, s) can be computed from K(.) as

k, (r, s) = j K((r2 + s2 - 2rs cos 0)1/2) e - i n o dO. (2.6)

1Throughout this paper we use F to denote a point in 2-D Cartesian space. The polar
coordinates of this point are denoted by r and 0.
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Note that since K(.) is a real and even function of 0 then

kn(r, s) = kn(r, s). (2.7)

Alternatively, (2.7) can be derived by using (2.5) and the fact that

Jn(x) = (- 1) J-n(z). (2.8)

Equation (2.7) will prove useful in Section 4 where we develop an efficient
method for computing the MEM spectral estimate.

Observe that (2.4) is just an eigenfunction expansion of the positive-
definite symmetric function K(r' - sl) viewed as a function of the scalar
variables 0 and q. Hence, by using the Karhunen-Loeve theorem [26] we
can expand z(r) as [27]

oo

z = = z,(r) ejn (2.9)
n=-oo

zn(r) = 2 |o z(r)e-'n dO, (2.10)

where
E[zn(r) zm()] = kn(r, s)6nm, (2.11)

and where bn,m is a Kronecker delta function. Equation (2.9) is very inter-
esting since it can also be interpreted as a Fourier series expansion of the
field z(r- in terms of the coordinate angle 0. In particular, the relations
(2.9)-(2.10) indicate that the Fourier coefficient processes zn(r) in a Fourier
series expansion of z(r) in terms of the angle 0 are independent. This obser-
vation plays a key role in a number of works dealing with isotropic random
fields (e.g. [22],[27]) and we shall use it to relate the MEM spectral estima-
tion problem to the filtering problem considered in [22]. Finally, observe
that although z(r- is isotropic, the process z,(r) is not stationary since
kn(r, s) is not a function of r - s.
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3 ISOTROPIC MEM SPECTRAL ESTIMATE

Consider now the following spectral estimation problem. Suppose that
we are given the value of the covariance function Ky,(lr- ) = E[y(ry(s)],
of an isotropic random field y(F) for Ir- Kl < 2R, and suppose that we
wish to estimate the power spectrum of the "most random" isotropic field
y(.) whose covariance function is consistent with the set of known values of
Ky(r). Furthermore, assume that y(r) is given by

y(ri = z(r) + v(r), r E R2 (3.1)

where z(r) is an isotropic zero-mean Gaussian random field with a covari-
ance function K(Ilr- s) = E[z(rFz(sl], and where v(r) is a two-dimensional
white Gaussian noise of strength P which is uncorrelated with z(r).

Our problem is really that of extending a radial positive definite function
given its values inside a disk of radius 2R. It is well known [10], [14] that in
general, 2-D positive definite functions defined over some finite domain, do
not always have a positive definite extension on R 2 . However, it was shown
in [21] that every radial positive definite function K(r) defined over a disk
is extendable. Specifically, it is proved in [21] that for every radial positive
definite function K(r) defined on a disk of radius 2R there exists radially
symmetric positive definite functions K(r) on R 2 such that K(r) = K(r)
for r < 2R. Among all such extensions Ky(r) of Ky(r), we are looking here
for the one whose 2-D Fourier transform Sy(A) maximizes the entropy H
of the field y(.) where

H = I42 RdA lnS'y()

_ 2f AdA A InS,(A), (3.2)

and where we have used the fact that )Sv() = S,(A) since y(.) is an isotropic
random field (cf. (2.3)). The exact form of the power spectrum Sy(A) that
we seek is given in the following theorem.
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Theorem 3.1 The estimated power spectrum Sy(A) which maximizes H in
(3.2) subject to the positive definiteness constraint

~S(A) > O A > O (3.3)

and the correlation matching constraint

j SJ (A)(Jo(Ar) AdoA = k,(r)

= K,(r) for r <2R (3.4)

is given by
P

t(A) e= le-ijX0o - G(R,X) 12 (.5)

where G(R, A) is the 2-D Fourier transform of the function g(R, r) defined
by the integral equation

K.(IRo--l) = <R d Kz(Ir-uJ)g(R, ) + Pg(R,r'), r < R (3.6)

and where Ro = (R,O).

The proof of Theorem 3.1 is based on the Lagrange multiplier method for
solving constrained optimization problems [28], and on a non-symmetric
half plane (NSHP) factorization that we obtain for power spectra corre-
sponding to positive-definite radially symmetric functions that are zero
outside a disk of radius 2R in the space domain. However, unlike in the
2-D discrete space case [11], [29], the NSHP spectral factor that we find has
a bounded support in the space domain, and its spatial support is in fact
a disk of radius R. The details of the proof of Theorem 3.1 can be found
in Appendix A.

Several comments have to be made at this point. First, note that
even though e- i R °- G(R, A) in (3.5) is a function of A, its magnitude

I - X R'o - G(R,)X)l is by construction a function of A = IXI only, which is
consistent with the fact that S(,(A) is an isotropic power spectrum. (See
Appendix A for details.) Second, if we assume that K,(Ir- s-l) is square in-
tegrable then it can be shown that the solution of (3.6) exists and is unique
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[30]. Third, observe that g(R, r) is just the optimal linear filter for esti-
mating z(Ro) given the observations y(F) on the disk of radius R centered
at the origin. Given the observations y(F) of (3.1) for 0 < r < R, we can
express the linear least-squares estimate of z(Ro) as

A( ) = |<R du y(u)h() (3.7)

Using the orthogonality principle of linear least squares estimation [31], we
find that the optimal filter h(ut) satisfies the integral equation

K.(Ir- Rol) = f<R K.(lr-uZ)h(u) du + Ph(r) r < R. (3.8)

It then follows from the uniqueness of the solution to (3.6) that

h(l) = g(R, u). (3.9)

Hence, solving the 2-D isotropic MEM spectral estimation problem is equiv-
alent to solving a filtering problem for the underlying signal field. This is
analogous to the 1-D continuous time case where the MEM spectral estima-
tion problem is equivalent to a filtering problem for the underlying signal
process [32]. In contrast, the MEM spectral estimation problem is equiva-
lent to a prediction problem for the underlying signal process [6] in the 1-D
discrete time case. In the next section we use (3.9) to compute g(R, r-), and
hence Sy,(A), recursively as a function of R via the efficient recursions devel-
oped in [22] to solve a filtering problem for 2-D isotropic random fields. The
notation g(R, r- (as opposed to g(F) ) is used here to stress the dependence
of the filter g(R, r) on the radius 2R of the disk over which Ky(-) is given.
It is this dependence that will be exploited below to compute g(R, r) recur-
sively for increasing values of R. In this respect, our method is similar to
the 1-D MEM algorithms that use the Levinson equations of 1-D prediction
[6] to compute spectral estimates recursively as a function of the size of the
interval over which correlation lags are given. Observe also that the choice
of the point Rb in (3.6) is not restrictive. In fact, we can chose Ro to be any
point on the boundary of the disk of radius R centered at the origin. Specif-
ically, by using the fact that z(.) is an isotropic random field and the theory
of [24], it can be shown [30] that S(A) in (3.5) is invariant under rotations
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of the vector Ro. Finally, note that as mentioned earlier, it was previously
shown in the 2-D discrete space case that the MEM extension problem has
a linear solution whenever the underlying field is a Gauss-Markov random
field [23]. According to Theorem 1, the highly non-linear MEM covariance
extension problem has a linear solution whenever the underlying field is a
Gaussian isotropic random field regardless of whether it is Gauss-Markov
or not. This is not inconsistent with the results of [23], since the condition
of [23] is sufficient but not necessary. The existence of a linear solution
to the isotropic MEM covariance extension problem should not come as a
surprise given that the 1-D MEM stationary covariance extension problem
is known to have a linear solution and that isotropy in higher dimensions
is the natural extension of stationarity in 1-D. Finally, note that we have
so far assumed that Ky,(r) is known exactly for r < 2R. In practice, one
is given the observations y(-) over a finite disk, rather than exact values of
Ky(r) itself. However, Ky(r) can be estimated directly from the observed
data y(r) by using the procedure of [33] which is summarized in Appendix
A. The use of this procedure is illustrated in the second part of Example 6.1
where we compute MEM isotropic power spectral estimates starting from
the observations y(-).
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4 A FAST ALGORITHM FOR COMPUT-
ING Sy(A)

In order to use (3.5) to compute the MEM spectral estimate S (A), we
need to know the optimal linear estimation filter g(R, r) and the noise in-
tensity P. In the 1-D discrete time case where the MEM spectral estimation
problem is equivalent to a prediction problem, the constant P appearing in
the numerator of the MEM spectral estimate is equal to the variance of the
prediction error, and can be computed directly from the known lags of the
signal covariance function [6]. In contrast, in the continuous 2-D isotropic
case the constant P in (3.5) is equal to the intensity of the observation
white Gaussian noise process and cannot be reliably computed from the
known values of Ky (r).

A Estimation of the Noise Intensity P

Given the measurements y(r), the noise intensity P can be estimated by
passing y(r through a 2-D filter whose wave-number response is zero, or
almost zero, within the region of the wave-number plane that contains the
spectral support of z(). The noise intensity can then be computed from
the knowledge of the wave-number response of the filter and from the total
power of Pf of the filtered signal. Specifically, if F(A) is the wave-number
response of the filter then P can be estimated as

P Pf (4.1)
IR2 IF()12 d(4.1)

Note that this approach is analogous to estimating the intensity of a 1-D
additive white Gaussian noise process by passing the noisy measurements
of a signal of interest through a 1-D bandpass filter followed by an output
power measurement stage, with the bandpass filter specifically designed to
block the signal.

11



B Efficient Computation of g(R, )

Next, the filter g(R, r can obviously be computed by discretizing the
integral equation (3.6) using any of the rules outlined in ([34], Chapter 5)
and by solving the resulting linear equation. Such an approach has two
major drawbacks. The first is that it is computationally very expensive
since it requires O(M 3 N 3 ) operations, where M and N are the number of
discretization steps used to approximate the integral (3.6) in the angular
variable and the radial variable respectively. Secondly, the accumulation
of rounding errors and approximation errors made during the numerical
computation of g(R, r and of its 2-D Fourier transform G(R, ) can de-
stroy the circular symmetry of the quantity le- ji ' °- G(R,) 12, so that
the estimated power spectrum Sy(A) can turn out to be non-isotropic. Let
us now present a computationally efficient procedure for computing §S(A)
that has the additional feature of guaranteeing that S,(A) is an isotropic
power spectrum. As mentioned earlier, our procedure exploits the relation-
ship between the 2-D isotropic MEM problem and a filtering problem for
isotropic random fields to compute Sy(A) recursively as a function of the
radius 2R of the disk over which K, (r) is known, much in the same spirit as
the 1-D MEM algorithms that compute 1-D spectral estimates recursively
as a function of the number of the known covariance lags. Our approach is
based on a Fourier series expansion of g(R, r) in the space domain as

00

g(R,) F= E gn(R,r)ejin , (4.2)
n=-oo

and on a corresponding Fourier series expansion for e- jiX ' - G(R, A) in the
wave-number plane. In the remainder of this section we shall show how to
compute the coefficients g,(R, r) efficiently and then use the Hankel trans-
form of those coefficients to compute Sy((A) in a robust fashion.

B.1 Interpretation of the Fourier coefficients gn(R, r)

Substituting (4.2) and (2.4) into (3.6) and equating the Fourier coeffi-
cients on both sides of the resulting equation yields the countably infinite
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set of integral equations

kn(r,R) = 27r j kn(r, u) g udu+Pg�(,R,u) 0 < r < R. (4.3)

Equation (4.3) is quite interesting because it also arises in the context of
filtering for isotropic random fields [22]. In particular, the Fourier series
expansions (2.9) are used in [22] to convert the 2-D problem of estimat-
ing the value of z(R, 0) on the boundary of a disk of radius R given the
observations y(F) inside the disk, into a countably infinite number of 1-D
estimation problems where the objective is to estimate each of the signal
Fourier coefficient processes zn(R) given the corresponding observations
Fourier coefficient processes yn(r) on the interval 0 < r < R. By compar-
ing (4.3) with equation (2.21) of [22], it becomes clear that the coefficient
gn(R, r) is only a scaled version of the optimum linear filter for estimating
z,(R) given {y,(s): 0 < s < R}. Furthermore, it is shown in [22] that the
optimum linear filter for estimating zn(R) given {yn(s) : 0 < s < R} obeys
a quasilinear hyperbolic system [35], [36] of partial differential equations
which when properly scaled take the form

a n )gn(Rr) + a + (n + 1) )n+(R r) =
'OR R + r r

-Pn(R)gn(R,r) (4.4)

(9 -- )g n (R,r) + (-R + ( ))gn+(R,) =

Pn(R)gn(R,r), (4.5)

with

Pn(R) = - (gn(R, R) - gn+l(R, R)) (4.6)2ir

and with the initial conditions

-rgO(R,r)r,=o = 0, (4.7)

gn(R,O) = 0, fornO0. (4.8)

Note that as claimed earlier the coefficients g,(R, r), and hence the filter
g(R, Fr and the power spectral estimate S. (A), can be computed recursively

13



as a function of the radius 2R of the disk over which Ky,(r) is given via
(4.4)-(4.5). In this respect, equations (4.4)-(4.5) are similar to the Levin-
son recursions of 1-D prediction. Equations (4.4)-(4.5) can be derived by
exploiting the special structure of kn(r,s) as displayed by equation (2.5),
and by using the properties of Bessel function (see [22] for details). The
numerical computation of gn(R, r) via (4.3)-(4.5) has to be performed with
some care. In particular, one has to study carefully the stability and conver-
gence properties of any numerical method used to solve the coupled partial
differential equations (4.4)-(4.5) [35], [36]. In Section 5 we present a stable
and convergent numerical method for computing g,(R,r). Our method is
computationally very efficient and requires O(L2 ) operations where L is
the number of discretization points in the interval [0, R] where we want to
compute g,(R, r).

B.2 Fourier expansions in the wave-number plane

Next, we expand e- iX'R° - G(R, A) in terms of the angle q defined by
A = (A, - ) in a polar representation of the wave-number space. Then,
by using the theory of [24, Chapter 5] and the expansion

e,-jRo = E Jn(AR) e-jn (4.9)
n=-oo

we can write
00

e-jX.Ro - G(R, ) = > (Jn(AR) - 2rGn(R, A)) e (4.10)
n=-oo

In (4.10), Gn(R, A) is the nth- order Hankel transform of gn(R, r) [24], i.e.

Gn(R, A) = jo gn(R, r)Jn(Ar) r dr. (4.11)

Since the magnitude of e-ix' R °- G(R, A) is a function of A only, it follows
from (4.10) that

00

le- jiX' R - G(R,A)12 = E [JJ(AR) - 2rGn(R,A)12 . (4.12)
n=-oo
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Equation (4.12) is a little surprising at first sight because it claims that the
square magnitude of a function of the variable b is equal to the sum of the
square magnitudes of its Fourier coefficients in a Fourier expansion in terms
of q5. However, the functions that we consider here have a very special struc-
ture since their magnitude is not a function of 6 by construction. An exam-
ple of such functions is provided by the function A sin qS - j/A 2 cos 2 q$ + 1
whose squared magnitude A2 +1 depends on A only. Observe also that (4.12)
implies that e- jX Ro - G(R, A) is an "all-pass" function of the variable b.

A further simplification of (4.12) is possible by noting that (2.7) together
with the uniqueness of the solution of (4.3) [22] imply that

gn(R, r) = gn(R, r) (4.13)

Hence, it follows from the fact that

J-n(Ar) = (-1)"J,(Ar) (4.14)

that
G-n(R, A) = (-1)G(R, A). (4.15)

By combining (4.12) and (4.14)-(4.15) we can rewrite (4.12) as

Ie-jX' O - G(R,X)12 = IJo(AR) -27rGo(R,A)12

+ 2EIJn(AR) - 27rGn(R,A)12. (4.16)
n=l

In practice, of course, one would compute only a finite number N + 1 of
the coefficient functions Gn(R, A) and one would obtain an approximation
to the estimated power spectrum S, (A) as

e(Ae) CN(RA)2, (4.17)

where

IcN (R,x A)l = IJo(XR)-2 2rGo(R , X)) 12
N

+ 2 IJn (AR) - 2rGn (R,A)1 2. (4.18)
n=1
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The number N can be determined by noting that

J(x) 0 O for x > 1 and n > x. (4.19)

Hence, if we are interested in computing St(A) over the disk A < B in the
wave-number plane, we can take N = BR provided that BR > 1, and in
this case (4.17)-(4.18) give a very good approximation to Sy(A).

Let us now make a few comments. First, note that (4.17)-(4.18) guar-
antee that Sy,(A) is isotropic since (4.18) involves a sum of positive terms
that depend on A only. Second, observe that the nth-order Hankel trans-
forms in (4.11) can be implemented efficiently by using any of the existing
fast Hankel transform algorithms [37], [38], [39]. These techniques require
O(LlnL) operations, where L is the number of discretization points at
which gn(R,r) is available. Hence, our procedure for constructing Sy(A)
requires O(L2 ) per coefficient and its complexity in practice is O(BRL2 )
operations. Finally, note that in our procedure, the coefficients gn(R, r) are
computed recursively as a function of R via (4.4)-(4.5), so that the spectral
estimate S, (A) can be easily updated whenever new measurements become
available, i.e. as the disk radius R is increased.

C Summary

The procedure for computing Sy(A) approximately can therefore be
summarized as follows:

1. Estimate Ky(r) for 0 < r < 2R and kn(r,s) for 0 < r,s < R and for
Inl < N, from the given data using the procedure outlined in [28] and
summarized in Appendix B.

2. Use a stable and convergent numerical method, such as the one ap-
pearing in the next section, to compute gn(R, r) recursively from equa-
tions (4.3)-(4.5) for n < N and for a suitably chosen N.

3. Evaluate the nth-order Hankel transforms Gn(R,A) by using a fast
Hankel transform method.

4. Compute an approximation to 8y(A) via equations (4.17)-(4.18).
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5 NUMERICAL COMPUTATION OF THE
COEFFICIENTS gn(R, r)

Recall that the fast algorithm that we proposed in the last section for
computing Sy (A) involves the solution of the quasilinear hyperbolic system
of partial differential equations (4.4)-(4.5). It is quite possible to discretize
a system of partial differential equations in an apparently natural way and
yet obtain completely erroneous computational results. This is especially
true for propagation problems described by parabolic and hyperbolic equa-
tions. The reason for this numerical ill-behavior is that round-off and other
computational errors coupled with a bad choice of a discretization scheme
may lead to both numerical instability and convergence problems. In this
section, we present a stable and convergent method for computing gn(R, r)
via (4.3)-(4.5). Our approach is based on the method of characteristics for
solving hyperbolic partial differential equations [35], [36]. The basic idea
is to replace the original system of hyperbolic partial differential equations
with an equivalent system of differential equations each involving differen-
tiation in only one of the variables of an appropriate coordinate system.
The resulting system can then be solved in a well-behaved, stable and con-
vergent manner. Specifically, let us consider a new coordinate system a, 3
defined by

a = R+r (5.1)

,/ = R-r (5.2)

Equations (4.4)-(4.5) can now be rewritten in the new coordinate system
as

Od~ O~ ~ 4an a+/3
T gnn(a " ) + gn++l(a ') = (Pn- 2))gn(C )

)-- 4a(n + 1)
+ (Pn 2 )- 2 L- p1 -) + ( )

(5.3)
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a o, 4+n
ap9n(aCl) - a gn+1(a,0 ) - 2 - #2 + Pn( ))9n(Ca, ,)ap = ap+ P( 2

x+f 4](nr + 1)- (pn( ) + - )gn+l(ar- )2 a 2 - P2

(5.4)

Note that in the new coordinate system each partial differential equation in-
volves differentiation with respect to only one of the independent variables
a and 0. Refering to Fig. 1, we see that given the values of gn(R, r) and
gn+l(R, r) on the line AB we can compute gn(R, r) and g+l (R, r) within
the triangle ABC by integrating (5.3) and (5.4) along the characteristic
directions a = constant (for (5.4)) and , = constant (for (5.3)), or equiv-
alently along lines of slope ±45° in the (R,r) plane. Specifically, if the
values of gn(R,r) and gn+(R, r) have been computed inside the triangle
OAB (see Fig. 1), and in particular on the line AB, then by integrating
equation (5.3) along 3 = constant lines starting on AB, we can compute
the sum gM(R, r) + gn+(R, r) inside the parallelogram ABGF. Similarly,
by integrating (5.4) along a = constant directions starting on AB, we can
compute the difference gn(R, r) - g9n+1 (R, r) inside the region ABED. Thus,
gn(R, r) and gn+1 (R, r) can be uniquely determined within the triangle ABC
(the intersection of regions ABED and ABGF). The values of g.(R, r) and
g,+l(R, r) which are outside triangle ABC, will have to be computed using
the integral equation (4.3). Our numerical procedure is based on equations
(4.3) and (5.3)-(5.4). To compute gn(R*,r) and gn+l(R*,r) for 0 < r < R*,
we divide the interval [0, R*] into L subintervals of length A = R*/L. If
we denote by Gn(k,l) = gn(kA,lA), and if at stage k we assume that
G,(k,l) and Gn+l(k,1) have been computed for 0 < I < k (i.e. on the
line AB of Fig. 1), then Gn(k, ) and Gn+l(k + 1,1) can be evaluated for
O < I < k - 1 by integrating equations (5.3)-(5.4) along the characteristic
directions R = constant ± r. For I = k,k + 1 (i.e. outside of the triangle
ABC), Gn(k + 1, 1) and Gn+1 (k + 1, 1) can be computed by solving a two by
two linear system obtained by discretizing the integral equation (4.3) (see
Fig. 1). Specifically, if we use a simple Euler difference method to integrate
(5.3)-(5.4), and solving for Gn(k + 1,1) and Gn+l (k + 1,1), we obtain the
following recursions for 0 < I < k - 1,
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1 n n A
Gn(k + 1,1) 2= [- + + n --- _ - Pn (k)]G.(k,l - 1))

2 =k V2(1 - 1) 

1 n+l n+1 A
2 Vak Vq 1 ) + 1Pn (k)]Gn+l (k, 1-))2 [ /~ e · 2(I_1 + vq

+ f O+ k V( + A) -- p n (k)]Gn(k,l + 1))2 T~k_ - /r2v + 1) 1 T
1 n+1 nA-l A

[-- + k ( + 1) p (k)lGn+i (k,l + 1))2 Vfk V(2(1 + 1)

(5.5)
1 n n A

Gn+l(k + 1,1) = [- + + / 1- -- p(k)]Gn(k I-1))

2 a/ - ,e 1) + a=Pn(k)]Gn+(k-1))2 Vdk v2 (I- 1)+ [
1 n n A

+v v- )-- + ±-p.(k)]G+(k,1- 1))

1 n+1 nA+ A
+[2 Pn (k)]G,+l (k, I + 1))

2 .2k + 2(l-I 1) +

(5.6)

where

Pn(k) = -(Gn(k,k) - Gn+(k, k)). (5.7)
27r

Similarly, if we discretize equation (4.3) using the trapezoidal rule, we ob-
tain for I = k, k + 1

PGn(k+1,1) = kn((k + 1)A,lA) - 2r kn(IA,iA)Gn(k + 1i)iA 2

i=1

- 7rkn(1, (k + 1)A)Gn(k + 1,k + l)(k + 1)A2.

(5.8)

Other integration rules can be used as well, instead of the ones we have
chosen. Note that our algorithm involves only numerical integration of
ordinary differential equations and thus can be implemented in a well be-
haved, stable and convergent manner. Furthermore, it can be checked that
this approach requires O(L 2 ) operations per Fourier coefficient gn(R, r).
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6 EXAMPLES

In this section we present three examples to illustrate the behavior of
our 2-D isotropic MEM procedure. The first example is meant to illustrate
the high resolution property of our procedure using both exact and esti-
mated covariance data for the case of a signal power spectrum consisting of
two cylindrical impulses in an additive white Gaussian noise. In particular,
we use exact covariance values in the first part of this example to demon-
strate the high resolution property of our algorithm and to study the effect
of increasing the radius of the disk over which the covariance function is
given on the spectral estimates that we obtain. In the second part of this
example, we generate a random field with the desired covariance function
and use the procedure of Appendix A and the method of Sections 4 and
5 to compute MEM spectral estimates. The results that we obtain show
that our procedure does not seem to suffer from the spectral line splitting
problem observed in 1-D MEM spectral estimates ([6], Section 2.E). In the
second example we use exact covariance data corresponding to a smooth
signal spectrum to study the effect of varying the number N + 1 of terms
used in (4.17)-(4.18) to compute the 2-D isotropic MEM estimate. Finally,
the third example illustrates the behavior of our algorithm when dealing
with a signal that has a power spectrum consisting of both a smooth and
an impulsive component.

Example 6.1
To demonstrate the resolution capability of our algorithm let us con-

sider a signal power spectrum consisting of two cylindrical impulses which
are spaced closer than the classical Fourier resolution limit of 'r/R, where
2R is the radius of the disk over which the covariance function is given.
Specifically, consider the signal covariance function

K,(r) = 10J(O.2r) + 10Jo(O.4r) (6.1)

given over a disk of radius 20 meters. Covariance functions of the form
AKo(Br) are often used in seismology [15] and in ocean acoustics [16], [17]
to model some types of background noise fields. Note that K,(r) corre-
sponds to a power spectrum consisting of two cylindrical impulses at 0.2
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rad/m and 0.4 rad/m, i.e.

Sz(A) = 506(A - 0.2) + 256(A - 0.4). (6.2)

Observe also that the separation between the two cylindrical impulses
is smaller than the resolution limit of any classical spectral estimation
method, which is of the order of 0.3 rad/m in this case. Furthermore,
let us assume that the additive white noise intensity P is 3 Watt.m2 . Thus
the total noise power in the wave-number band [0,0.5] rad/m is 6.27 dB
lower than that of either impulses. The true power spectrum of the obser-
vations (i.e. of the signal plus noise field) is shown in Fig. 2. Fig. 3, 4 and
5 show the estimated power spectra that we obtain when the order N of the
highest Fourier coefficients that we use in (4.18) is 1, 5 and 10 respectively.
Note that even with N = 1 we can clearly see two peaks at the correct im-
pulse locations (Fig. 3). Note also that the power spectrum that we obtain
with N = 1 is more 'peaky' than those obtained with N = 5 and N = 10
(Figs. 4 and 5). In general, we have observed that when we used only two
terms in (4.18) the power spectra that we obtained were highly peaked and
that sometimes spurious peaks tended to appear (e.g. in Example 6.2).
Hence, even if one is interested in estimating a highly peaked spectrum
consisting of pure cylindrical impulses in an additive white Gaussian noise,
one should use a higher value of N to make sure that none of the peaks
that appear when N = 1 are spurious in nature. Next note that in Fig.
4 where we used N = 5, the amplitude of the peak around 0.4 rad/m is
larger than that of the peak around 0.2 rad/m. By looking at the form of
the true signal power spectrum (eq. (6.2)) one would expect the amplitude
of the peak at 0.2 rad/m to be twice as large as the one of the peak at 0.4
rad/m. As seen in Fig.5, this actually happens when we use a value of N
which is large enough to make the approximate spectrum that we compute
via (4.17)-(4.18) very close to the true MEM spectral estimate. Finally,
observe that the estimated spectrum of Fig. 5 is relatively smooth. This is
to be expected since the MEM power spectral estimate is the smoothest of
all possible spectra that satisfy the correlation matching constraint. While
MEM does a good job of resolving the peaks of the power spectrum of
this example, one might prefer to use the method of [33] if the spectra of
interest are exclusively of the impulsive form of (6.2). This corresponds to
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using Pisarenko's method [40] or the MUSIC method [41], [42] rather than
the MEM method in the 1-D case to estimate power spectra corresponding
to a sum of sinusoids in a white Gaussian noise.

Next to study the effect of the radius 2R of the disk over which the
covariance K, (r) is assumed to be given we double the value of 2R from
20 meters to 41 meters. The power spectrum that we obtain in this case
using 21 terms in (4.18) is plotted in Fig. 6. Note that this spectral estimate
is quite peaky and that the peak at 0.2 rad/m is twice as large as the one
at 0.4 rad/m. This improvement is quite natural and in fact as 2R tends to
infinity, one expects to be able to reconstruct the power spectrum exactly.

Finally, to study the behavior of our algorithm when data measure-
ments, rather than exact correlation measurements, are given, we synthe-
sized an isotropic random field with a power spectrum of the form (6.2)
using the method described in [43]. We then added to the resulting field
a white Gaussian noise field of intensity 3 Watt.m2 . Using the value of
the observations y(.) over disks of various radii, we obtained estimates of
the covariances Ky(r) and kn (r,s) using the spatial averaging procedure of
Appendix B. Particular attention was given in this step to the numerical
computation of an estimate of k,(r, s) via (B.3) to avoid the possible errors
that may have resulted from the highly oscillatory nature of the integrand.
In our experiments we used an integration rule based on Filon's procedure
[34j to implement (B.3) numerically. Fig. 7 is a plot of the power spectrum
that we obtain when we use the observations available over a disk of radius
100 m to estimate Ky(r) for 0 < r < 20 and k, (r,s) for 0 < r,s < 10
and for 0 < n < N = 5 and then feed those estimates as an input to our
algorithm. Note the small bias in the position of the spectral peaks which
are now located at 0.215 rad/m and 0.40 rad/m respectively. Fig. 8 shows
the power spectrum that we obtain when we use the observations available
over a disk of radius 30 m to estimate Ky(r) for 0 < r < 20 and k, (r, s) for
0 < r, s 10 and for 0 < n < N = 5. Observe that the peak at 0.4 rad/m
is now barely visible and that the peak at 0.2 rad/m is displaced to about
0.185 rad/m. This degradation in the quality of our spectral estimate is
not surprising since we are now using less accurate estimates of Ky(r) as
an input to our procedure.

We conclude this example by computing a power spectral estimate using
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the values of Ky(r) for 0 < r < 20 estimated from the observations inside
a disk of radius 30 when the noise intensity is only 0.0001 Watt.m2 instead
of 3 Watt.m2 . Note that the total noise power in the interval [0,0.5] rad/m
is now 51 dB lower than that of each of the two cylindrical impulses. The
spectrum that we obtain in this case is plotted in Fig. 9. Note the definite
presence of the two peaks which are now displaced to about 0.18 rad/m
and 0.408 rad/m respectively. However, no line splitting is observed. In
the 1-D case, MEM algorithms have been observed to yield two close peaks
where only one is present whenever the underlying signal is a pure sinusoid
with a weak additive noise component [6]. This phenomenon is called the
line splitting problem and is more pronounced when the initial phase of
the sinusoid is an odd multiple of ir/4 and when the signal-to-noise ratio
is high. In the 2-D isotropic case, there is no corresponding initial phase
effect. Furthermore, our procedure is based on the computation of the filters
gM(R, r) and thus conceptually involves minimizing the estimation error in
all possible directions. Hence, our procedure corresponds to the 1-D MEM
algorithms based on minimizing the forward and backward prediction errors
[6]. Such approaches are known to alleviate the line splitting problem in
the 1-D case.

Example 6.2

In this example we study the effect of varying the number of terms in
the series (4.18). Consider a signal covariance function of the form

K.(r) = 0.25rK (0.25r) (6.3)

where Kl(x) is a modified Bessel. function of first order [25], and assume
that the noise intensity is 1 Watt.m2 . Covariance functions of the form
ArK1 (Ar) have been used in hydrology to model the correlation structure
of rainfall [20]. The power spectrum corresponding to such covariance func-
tions is smooth and is given by

2A 2

S (A) = (A2 + A 2 )2 (6.4)
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The true power spectrum corresponding to the observations (i.e. the signal
plus noise fields) for this example is shown in Fig. 10.

To study the effect of N in (4.18) on the shape of the estimated power
spectrum we fixed 2R to be 20 meters. Fig. 11 shows the power spectrum
that we obtain when we pick N = 1. Note the presence of ripples in
this case. Such ripples can easily be mistaken for cylindrical impulses of
the type discussed in Example 6.1 . With N = 3 we obtain the power
spectrum of Fig. 12. Note that this estimate is quite smooth. However,
a spurious small and broad peak is still visible around 0.56 rad/m. If we
pick N = 10 we obtain the power spectrum shown in Fig. 13. Comparing
Fig. 10 and 13 we see that this estimate is good except around the origin
of the wave-number plane. Experimental results indicate that the quality
of our spectral estimates close to the origin improves with the number
of discretization points used. In this example we used 100 discretization
points and the quality of the spectral estimate that we obtained is good
for A > 0.1 rad/m. To get better spectral estimates close to the origin one
needs to use a very large number of discretization points. For example,
when we increased the number of discretization points from 100 to 150
we obtained only a slight improvement over the case that we show here.
Finally, note that in this case B = 1 and R = 10 so that N = BR = 10.

To conclude, one should compute 2-D isotropic MEM spectral estimates
via (4.17)-(4.18) by gradually increasing the number N + 1 of terms used
until the resulting estimates stop changing noticeably as N is increased.
In general, this requires computing roughly BR + 1 terms as mentioned in
Section 4.

Example 6.3

In this last example, we illustrate the behavior of our algorithm when
the signal power spectrum consists of both a smooth component and an im-
pulsive component. Assume that we are given the values of the observations
covariance function

Ky(r) = 0.25rKl(0.25r) + AJo(0.6r) + 6(r0) (6.5)

over the disk r < 20. Note that the noise intensity is equal to 1 Watt.m 2
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and that the signal power spectrum consists of both a smooth part of the
form (6.4) and a cylindrical impulse at 0.6 rad/m. The true power spectrum
of the observations is shown in Fig. 14.

With A = 1, i.e. with the total power in the smooth part of the signal
power spectrum equal to that of the impulsive part, we obtain the estimate
shown in Fig. 15 when we pick N = 10 in (4.18). Note that the presence
of the impulsive component around 0.6 rad/m is barely visible.

When A = 10, i.e. when the total power in the impulsive component of
the signal power spectrum is 10 dB higher than that of the smooth part,
we obtain the estimate plotted in Fig. 16 when we choose N = 10 in (4.18).
Observe that the presense of the impulsive component is now well marked.

In conclusion, these experimental results, and others we have obtained,
indicate that the spectral estimate computed via the technique that we
propose depends strongly on the size of the interval over which the ob-
servations covariance function K,(r) is known and on the accuracy of the
estimates of K. (r) that are used. The number of terms that have to be used
in (4.18) is on the order of BR + 1 where 2R is the radius of the disk over
which K (r), or its estimate is known, and where B is the bandwidth in the
wave-number plane of the spectrum that we want to estimate. Finally, our
procedure does not seem to suffer from the line splitting problem observed
with 1-D MEM algorithms
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7 CONCLUSION

In this paper, we have presented a new linear MEM algorithm for 2-D
isotropic random fields. Our procedure differs from previous 2-D MEM
algorithms by the fact that we take maximal advantage of the symmetries
implied by isotropy which is the natural generalization to several dimensions
of the 1-D notion of stationarity. Unlike general 2-D covariances, isotropic
covariance functions which are positive definite on a disk are known to be
extendible. Here, we have developed a computationally efficient procedure
for computing the MEM isotropic spectral estimate corresponding to an
isotropic covariance function which is given over a finite disk of radius 2R.
We have shown that the isotropic MEM problem has a linear solution which
can be obtained by constructing the optimal linear filter for estimating the
underlying isotropic field at a point on the boundary of a disk of radius
R given noisy measurements of the field inside the disk. Our procedure
is based on Fourier series expansions in both the space and wave-number
domains of the inverse of the MEM spectral estimate. Furthermore, our
method is guaranteed to yield a valid isotropic spectral estimate and it is
computationally efficient since it requires only O(BRL2 ) operations where
L is the number of points used to discretize the interval [0, R], and where
B is the bandwidth of the spectrum that we want to estimate. Finally, we
have presented examples to illustrate the behavior of our algorithm and its
high resolution property.

There are several directions in which one can try to generalize this work.
For example, 2-D covariance functions which are constant along ellipses
rather than along circles, arise in some cases of practical interest. Such co-
variance functions become radially symmetric under an appropriate scaling
and rotation of the underlying coordinate axes, and the techniques of this
paper can then be used to estimate a warped version of the power spectrum
of the underlying random field. A challenging problem here is to develop
an algorithm for finding the correct scaling and rotation operations to be
performed given limited measurements of the random field. More gener-
ally, another interesting problem is to extend some of the ideas that appear
throughout this paper to homogeneous, but not necessarily isotropic, co-
variance functions which are defined continuously over the plane. This will
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require a study of filtering problems for homogeneous fields aimed at de-
termining whether the homogeneity property can be exploited in higher
dimensional spaces to develop fast filtering algorithms.
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APPENDIX A

Proof of Theorem 3.1.

The problem that we consider in Section 3 is mathematically the prob-
lem of finding the S.()A) that maximizes the entropy H

H 2" J dl SlnSy(A), (A.1)

subject to the positive definiteness and correlation matching constraints

(i) sy(A) > 0 for A > O, (A.2)

(ii) 2f Sy(A) Jo(Ar) A dA = K.(r) for r < 2R. (A.3)

By using the approach outlined in [28] for solving optimization problems
with global pointwise inequality constraints, we find that the MEM power
spectral estimate S (A) is given by

= A(2R, A)

where

A(2R, A) = f a(2R, r) Jo(Ar) r dr, (A.5)

and where a(2R, r) is the Lagrange multiplier function associated with the
constraints (A.2)-(A.3). Observe that A(2R, A) can be interpreted as being
the zeroth-order Hankel transform of the function a(2R, r) which is zero
outside the disk r < 2R. Note also that

S, (A) = P + ;(A;) (A.6)

where Sp(A) is the estimated power spectrum of the process z(.). Hence, if
we assume that K,(0) is finite we must have

lim ;,.(A) = 0, (A.7)
A--2oo
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for otherwise the integral

fo Sz(A) A dA = Kz(0) (A.8)

would fail to converge. Taking (A.7) into account, we can rewrite (A.4) as

^ P
S () = 1- B(2R,A) (A.9)

where
lim B(2R, A) = 0, (A.10)

A-0*oo

and
B(2R, x) < 1 (A.11)

since Sj(A) is strictly positive for all A. Note that (A.4)-(A.5) and (A.9)
imply that B(2R, A) is the Hankel transform of a function b(2R, F) that is
zero outside the disk of radius 2R centered at the origin of the plane. Now
let A = (A1,A 2) in a Cartesian representation of the wave-number plane

and consider the function 1 - B(2R, Vi -+ A22) viewed as a function of A1

only (i.e. with A2 fixed). Then (A.11) implies that 1- B(2R, V/A2 + ,A) is
strictly positive for all values of Al1, so that we can use the results of [44] to
factor 1 - B(2R, A) as

(1 - B(2R, A)) = (1 - F(R, A1,A 2 ))(1 - F*(R, Ai, A2)) (A.12)

where F(R, A1, A2 ) is the 2-D Fourier transform of a real function f(R, F) 1
that is causal in the Cartesian coordinate rl, where F = (rl, r2 ), i.e. where

f(R, F = 0, for rl < O0. (A.13)

Substituting (A.12) into (A.9) we obtain

vS(t) =(1 - F(R, A1, A2))(1 - F*(R, A1, A2 )) (A.14)

1The reason for the notation f(R, F) as opposed to f(2R, F) will become clear in the
sequel.
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Equation (A.14) is the continuous space version of the well known result in
the discrete space case [11], [29] that any power spectral density function
S(eJi, ej u) which is strictly positive for all (u, v) E [-r, 7r]2 can be written
in factored form as

a 2

S(z,z 2 ) -A(z,z 2)A*(Z 2) (A.15)

where the filter A(zl, z2) has a nonsymmetric half plane support. In fact
(A.14) could have been derived by using (A.4), (A.15) and the transforma-
tions

Z1 = 1 +jA (A.16)

1 + jA 2
Z2 = 1-jA 2 (A.17)

where A1 and A2 are allowed to take complex values. The transformations
(A.16)-(A.17) are analogous to those which are used in the 1-D context to
map the continuous time case into the discrete time case and vice-versa.
However, unlike in the discrete space case [11], [29], where A(zl, z2) often
corresponds to a filter with an unbounded spatial support, the filter f(R, r
has a finite support in the spatial domain. According to Theorem 3.4.2 in
[45] and which is originally due to Plancherel and Polya [46], B(2R, Ifil)
where ji E C 2, must be an entire function of exponential type since it is
equal to the Fourier transform of a function that is zero outside the disk
of radius 2R in R 2 . Hence, F(R, i) must also be an entire function of
exponential type and must therefore be the Fourier transform of a function
that is zero outside a bounded domain by the above mentioned theorem.
Let us now study the spatial support D of the filter f(R, ). Equation
(A.12) implies that

b(2R,F ) = f(R, ) + f(R,-r)- f(R,ri)f(R,F + ri)dr'. (A.18)

Since b(2R, ) is zero for r > 2R, and since f(R, ) and f(R,-rF) appear
on the right hand side of (A.18), then P must lie inside the half disk
{F: r < 2R and - < 0 < 2}. Equation (A.18) implies also that
the convolution

| f (R,) f (R, r dr (A.19)
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has to be zero outside the disk {r : r < 2R}. Hence, the product
f(R, r')f(R, r + r') must vanish identically for all rF: r > 2R, except
maybe on a set of measure zero and on which it must remain finite. From
the above discussion, we conclude that D must satisfy the following two
constraints:

(i) Dc{(r: r<2R and 2 << 2<})

(ii) Dnf(: s+ r EP and r>2R} = .

A simple geometrical picture shows that the only subset of R 2 that satis-
fies the above two constraints is a disk of radius R centered at the point
Ro= (R,0), i.e.

D = {r: Ir- Rol < R}. (A.20)

Identity (A.20) can also be derived using the theory of [45, Chapter 3].
(See [30] for details.) Next denote by C the causal space of functions of
A which are the Fourier transforms of functions that are zero for rl < 0
in a Cartesian coordinate representation of the spatial domain (i.e. where
r = (rl, r2)), and denote by A the anticausal space of functions of A which
are the Fourier transforms of functions that are zero for rl > 0. Since
F*(R, X) is the Fourier transform of a function that is zero for rl > 0, then

D(X) = (1 - F*(R, )) -1 - 1 (A.21)

must also correpond to the Fourier transform of a function that is zero for
rl > 0. To see why this has to be true, factor D(A) as [47]

D(A) = Dc(A) + Da(A), (A.22)

where D(AX) and Da(A) belong respectively to C and A. Equations (A.21)-
(A.22) imply that

F*(R, ) = Dc(A) + Da,(X) - Dc()F*(R,X) - Da,()F*(R, ) (A.23)

and since F*(R, X) is the Fourier transform of a function that is zero for
rl > 0, we must have

Dc (A) = D, ()F*(R,.) (A.24)

31



or

Dc(,) = 0 (A.25)

which proves our assertion. Combining (A.21) with (A.14) we obtain

f S (X)(1 - F(R, X))eji1' dAl = PS(r1) for r > 0. (A.26)

Furthermore, if we take the inverse Fourier transform of (A.26) with respect
to A2 we get

f K(Ir- -)(6(S - f(R,)) ds= P6(r) for r > 0. (A.27)

To compute f(R, r) from the above integral equation, we note that (A.20)
implies that for any r E D and any s E P we have IrF- l < 2R, so that

K(I(lr- l) = K(Ir- -) Vr E D and Vs E P (A.28)

by the correlation matching constraint (A.3). Since K,(r) = P(r-) +K(tIFl)
is known by assumption for r < 2R then f(R, rF can be computed as the
solution of the following integral equation

K.(r) = D Kz(lr- )f(R,) d+ Pf(R,5-) FE D. (A.29)

Once f(R, r has been computed via (A.29), then (A.27) can be used to
extend K,(r) beyond the disk r < 2R. Finally, if we make the change of
variables

r' = Ro-r (A.30)

s' = Ro-s (A.31)

we obtain from (A.29)

K.z(Ro - rt) = j K.(jtI-slJ)g(R,)d+g(R,(R,) r' < R, (A.32)

where we defined
g(R, s) = f(R, Ro - s). (A.33)
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Note that (A.32) is just (3.6) with r and u replaced by r' and St respec-
tively.Furthermore, observe that (A.33) implies that

G(R, ) = F*(R, X))e- j x' R o (A.34)

where G(R, A) is the 2-D Fourier transform of g(R, r). Hence,

I1-F(R,X)12 = 11-F*(R,X)I2

=1 - G(R,X)ex R' 12

le-jiX' o - G(R, X) 2. (A.35)

Combining (A.14) with (A.35) we obtain

St, A>) = l ej oG(R, X);12 (A.36)s e-iJX-fo - a(R, 2I

which is equation (3.5).
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APPENDIX B

Estimation of the covariance functions

The algorithm that we presented in Sections 3 and 4 for computing $u(A)
is based on the knowledge of kn(ri, rj), the covariance function of the nth
order-Fourier coefficient process corresponding to the measurements y(r).
However in practice, one is given measurements of the field itself rather
than kn(ri, rj). In this appendix, we summarize a procedure developed in
[33] to compute an unbiased and consistent estimate of the non-stationary
covariance function kn(ri, rj) directly from the measurements. Let us start
by assuming that measurements of the field y(r) are available at all the
points inside the disk DR* = {r(: 0 < r < R*}. Then to estimate k (ri, rj),
we can use a two step procedure. In the first step we estimate K(r) using
the given data. In the second step we substitute our estimate of K(r) into
(2.6) to obtain kn(ri, rj).

K(r) can be estimated by using a simple extension of the 1-D tech-
niques that were developed to estimate the covariance function of ergodic
stationary processes. Observe that along any line ( = 0o in a tomographic
coordinate system', y(r) is stationary. Hence, given the measurements
{y(t, o): -R* < t < R*) along this line we can estimate K(r), using a
simple extension of the 1-D techniques, as

K(r: 'o) = R, 2 R. y(t, qo)y(r + t, (Po) Itl dt. (B.1)

Since measurements of y(i) are assumed to be available all over the disk
DR*, we can compute K(r': (o) for all 0o, 0 < (o0 < or, and take K(r) to be
the average of the K(r: (0) over all o0. In other words, we can estimate
K(r) as

K(r) = IR*2X ds ds y(s, O)y(r + s,o). (B.2)

Note that we have used the weight function w(t) = Itl in (B.1) to guarantee
that K(r) corresponds to a spatial average.

1A tomographic coordinate system (t, b) is a modified polar coordinate system where t
takes both positive and negative real values, and where b varies from 0 to Ir.
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Next, we can use K(r) to obtain an estimate of kn(ri, rj) by simply

substituting K(r) for K(r) into (2.6). Thus, we take as our estimate of
k,0 (ri, rj) the quatity

k,(r,,rj) = 2l | dO K((r2 + r2 - 2rircos)1 2 ) en. (B.3)

Note that according to (B.3) one needs to estimate K(r) for 0 < r < 2r* in
order to be able to estimate kn(ri, rj) for 0 < ri, rj < r*.

It is shown in [33] that k(r) is an unbiased estimate of K(r). Further-

more, since k, (ri, rj) and k,(ri,ri) are related linearly to K(r) and K(r)
respectively, then it follows immediately from the unbiasedness and con-
sistency properties of K(r) that kn(ri,rj) is an unbiased and consistent
estimate of k,(ri,rj). Thus, by using (B.2) and (B.3) we are able to ob-
tain an unbiased and consistent estimate of the non-stationary covariance
function kn(ri, rj).
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FIGURE CAPTIONS

Fig. 1 Discretization scheme and numerical implementation of the recur-
sions for g,(R,r).

Fig. 2 True observation power spectrum for Example 6.1.

Fig. 3 Plot of the estimated power spectrum in Example 6.1 when exact
covariance data is given over a disk of radius 20 m and with N = 1.

Fig. 4 Plot of the estimated power spectrum in Example 6.1 when exact
covariance data is given over a disk of radius 20 m and with N = 5.

Fig. 5 Plot of the estimated power spectrum in Example 6.1 when exact
covariance data is given over a disk of radius 20 m and with N = 10.

Fig. 6 Plot of the estimated power spectrum in Example 6.1 when exact
covariance data is given over a disk of radius 40 m and with N = 20.

Fig. 7 Plot of the estimated power spectrum in Example 6.1 when esti-
mates of the covariance function are computed over a disk of radius
20 m given the data over a disk of radius 100 m and with N = 5.

Fig. 8 Plot of the estimated power spectrum in Example 6.1 when esti-
mates of the covariance function are computed over a disk of radius
20 m given the data over a disk of radius 30 m and with N = 5.

Fig. 9 Plot of the estimated power spectrum in Example 6.1 when es-
timates of the covariance function are computed over a disk of ra-
dius 20 m given the data over a disk of radius 30 m and when
P = 0.0001 Watt.m2 and N = 5.

Fig. 10 True observation power spectrum for Example 6.2.

Fig. 11 Plot of the estimated power spectrum in Example 6.2 when exact
covariance data is given over a disk of radius 20 m and with N = 1.

41



Fig. 12 Plot of the estimated power spectrum in Example 6.2 when exact
covariance data is given over a disk of radius 20 m and with N = 3.

Fig. 13 Plot of the estimated power spectrum in Example 6.2 when exact
covariance data is given over a disk of radius 20 m and with N = 10.

Fig. 14 True observation power spectrum for Example 6.3.

Fig. 15 Plot of the estimated power spectrum in Example 6.3 when exact
covariance data is given over a disk of radius 20 m and with A = 1
and N = 10.

Fig. 16 Plot of the estimated power spectrum in Example 6.3 when exact
covariance data is given over a disk of radius 20 m and with A = 10
and N = 10.
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