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CONVOLUTIONS OF MAXIMAL MONOTONE‘VMAPPINGS*

‘Abstract. Let X, Y be two real vector spaces, and let s, T: X

b4 . A .
2 . A new internal law of composition, the convolution of S and T, SUT,

ié introduced. It is shown that (SEE)—l = S_l + T-l, thus the commuta-
tive monoids.((ZY)X,D) and ((2X)Y,+) are isomorphic. The proximal map
of S with respect to T, P(S,T): X > 2X, is also introduced. A purely
algebraic generalizationof Moreau's Proximal Point Theorem is proved.
The convolution of subdifferential maps of extended real-valued func-
tions, and of monotone maps is studied. If f,g eéﬁg, fllg is their
infimal convolutién, and 9f denotes the subdifferential map of f, then
SfDBQ c 9(flk), and P(0f,dg) cpl(f,g): x > Arg min (£ + g(x - ¢)). When
f, g are proper convex, sufficient conditions for equality in the pre-

. ceding inclusions are given. The strict and strong monotonicity of s{r,
and the Lipschitz continuity of S T and P(S,T) are studied.. Several
generalizations of Moreau's Proximal Point Theorem are proved. These
include the known relation between the Yosida approximant and the re-
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solvent of a monotone mapping. , .
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1. Introduction. The object of this paper is a new internal law

of composition for point-to-set mappings between redl vector spaces.
This law was introduced in Luque (1984), which contains essentially
all. of the results reported here, and announced in Luque (1986). Let

Y .
X, Y be real vector spaces, and let 5, T: X - 2. The convolution of

S and T,  sUUT, is given by
(sr)x = u{su n T™v|u + v = x}.

Associated with it we have the proximal map of S with respect to T,

.P(s,T), defined by
P(s,T)x = {u. e X|v e X, u+ v=x, SunTv #gl.

Note that these definitions are valid when (X,+) is just a semigroup.
The contents of this paper are as follows. Section 2 introduces
"~ the definitions above and proves some general facts about them. It is
shown that [] is a commutative associative operation with unit. Thus
Y X : . . . . .
(27)7, the set of multivalued maps from X into Y, equipped with [], is
-1
an abelian monoid. For S: X - 2Y, let s be defined in the obvious
3
. ’ -1 -1 -1 .
manner. It is shown (theorem 2.3) that (sS[IT) = S + T ~, thus the
. . Y X XY . . .
commutative monoids ((27)  ,00), ({(27) ,+) are isomorphic. The section
ends with a generalization of Moreau's (1962) Proximal Points Theorem.
This generalization is purely algebraic in the sense that the only
concepts used are thode of addition.and convolution of multivalued maps,

and the notion of proximal mappings.

Section 3 quickly reviews some concepts of convex analysis. Its



main purpose is to introduce the notation to be used.

In section 4 we turn our attention to the convolution of monotone
‘and subdifferential maps. Let f,g € iﬁx , £l0g denote their inf-convo-
lution, and 9f, 3g their respective subdifferential‘maps. It is shown
thét 0f[13g C 3(£0g) in the sense of inclusion of graphs. The proximal
map of f with respect to g at x, p(f,g)x, is the set of optimal éolu&

tions of the minimization defining (f[Jg) (x) when it is < 4~ , and

empty otherwiée. It is also shown that P(3f,3g) C p(f,g), again in the

sense of inclusion of graphs.. When f,g are proper convex, sufficient
conditions_féf equality in the preceding inélusions are given. The
strict and strong monotonicity of sOT, énd the Lipschitz continuity
of ST and P(S,T) are also studied. -

Section 5 is devoted to proving several generalizations of
'Moreau‘s‘Proximal Points Theorem. These include the known relation
between the Yosida approximant and the resolvent of a monotone map ksee
Pascali and Sburlan 1978, p. 128).

| Several authors héve studied particular cases of the concepts
. R

introduced in this chapter. Moreau (1962) introduced the proximal map

of £ with respect to g, p(f,q), in the particular case in which f is a

»

2
’

- proper closed convex function on a real Hilbert space and g = %{o

being the Hilbert space norm. There he proved his Proximal Points’
Theorem which corresponds to our corollary 5.9 for a = b = 1. The
proximal map p(f,g) when £f,9 are defined on a real Banach space has
also been studied by Lescarret (1967) and Wexler (1972).

Rockafellar defined the convolution (inverse addition in his
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terminology) of sets (1970a,p. 21, 3), complete increasing curves in
R xR (1967a,p. 553,(2;21)), and monotone proc'esses"‘"from‘IRrl to R
(1967b,p. 43). " He also proved fo; these particular cases our theorem
2.3 (Rockafellar 1967a,p. 553,(2.22), and 1967b,p. 49, th. 5).
Gol'shtein (1975,p. 1146, §3) used a regularization of monotone
maps from R into Egl, which is equivalent to convolving them with tﬁe
gradient of a éonvex function. This gradient and its inverse map were
assumed to be strongly monotone.
Finally let us mention (éee section 5, after th?orem 5.4) that the
Yosida approximant and the resolvent of a monotone map T from a real

. . -1 - .
Banach space to its dual can be expressed as TOX 77 and P(T,A 1J) where

A > 0 and J is the normalized duality map of the norm of X.



2. Coénvolution of maps. Let X, Y be real vector spaces. Let us
Y . N -
consider a map S:X > 2 . 1Its effective domain is dom S = {x € X‘Sx # ¢,

its range, ran S =\~}{lex € x}, and its graph, gph $-= {(x,y) € xXxY|y €

Sx}. The set of all such maps will be denoted by (ZY)X. A map S € (2Y)X
is single valued iff for all x € X, Sx has at most one element. If S €

(2Y)X, its inverse pointQto-set map S—1 € (2X)Y is such that for all y €

Y, S 'y = {x e X[y € Sx}. It is elementary that dom S-—l = ran S, ran S_l

= dom S, and gph S_l = {(y,x) € YXX|y € sx}. The inversion operation

-1. Y X X. Y . Y .
S+ S8 :(27) = (27)", is a bijection. If S, T € (2»)X, we write S
!

o
=

iff sx C Tx for all x € X. Clearly s C T iff gph S C gph T iff S"1 -1.

no
H

X and Y will play completely symmetrical roles in what follows.

Therefore statements will only be made for one of the two possible cases.
Y X . . . . A
In (27) it is possible to define a law of composition by means of
- . Y X

‘the addition of images. Let S,T € (2°) , then for all x € X, (S + T)x =
{y + y'ly € 8x, y' € Tx}. From the group properties of addition in Y,
it follows that this operation is commutative, associative, and has a unit
E, such that for all x € X, Ex = {OY}, where 0, denotes the unit of addi-

: K
tion in Y. When there is no danger of confusion, we will simply Wwrite
0. A set in which an associative internal law of composition with unit

Y .

25 %

- is defined, is called a monoid. Therefore (( ,+) is an Abelian (com-

mutative) monoid.

Y. X .
Definition 2.1. For all S, T € (2°) , the convolution of 8 and T,

st € (ZY)X, is given by x +'kj{Su[\Tv1u + v = x}.

s Y X . g .
Proposition 2.2. ((27) ,[0) is an Abelian monoid.

Proof. Clearly [J is a commutative internal law of composition.

-5-



The unit is the map F € (2Y)X such that FO = Y, and for all x # 0, Fx =

#. Let R,S,T € (2Y)XJ x € X

(RO (SO x =\J{RuN\(SOTz|u + z = x} =

UlreN(UJisvN1wlv + w = 2 |u + 2 = x} =

UlkaAsvNIwlu + 2 = %, v + w = 2} =

LJ{R;f\SV/\Tw[u + v+ w=x}. ~ QFD

. . . . . Y :
Theorem 2.3. The inversion map is an isomorphism between ((27),)

¢

and ((2X)Y,+). In particular

¥vs,7e (20)%, (s[]T)'l g7t -1

I
n
+
H

¥ U,V e (2X)Y, (U + vr)-1 Loyt

i
!
O
<

Proof. As seen before the inversion is a bijection between (2Y)X
XY Y. X . . .
and (27)°. Let F € (27)" be, as above, the unit of the convolution in

(2Y)X, theﬁ F_l e (2X)Y is such that for all y € Y, Fﬂly = {OX}, thus Fﬂl

4
is the unit of ((25)¥+). Let 5,7 e (2%, and x € X, then -
(sOmx = {y € Y[y € Suf\TV, u+v=x}= .
{y e Ylu e sy, ve T"ly, utveExt= (st h QED

Y .
If s € (2Y)X_and a €R, as usual, asS € (2 )X is such that (aS)x =
a(sx) for all x € X. This is the left scalar multiplication. It is pos-

sible to define a dual (with respect to inversion) operation, theé right

scalar multiplication. The notation will follow the convention that gives

~ priority in the evaluation of expressions, to the external operations

- -



over the internal law of composition.

. . X
Definition 2.4. TFor all S € (2Y) , and for all a € R\{0}, (sa) €

(2Y)Xis the map x ~ S(a—lx) .

) Y. X
Proposition 2.5. Let S,T € (2°)" , and a,b € R\N0}, then

Il

(1) a({S+T) as+aT; ((8+T)a) (sa) + (Ta);

(2) a(sgm as[laT; ((sOT)a) (sa) O (Ta) 5
witﬁ equality in (1) (resp. (2)) if a,b > 0 and S
valued (i.e., for all x in X, Sx is convex).

Proof.

Ca(s[Imx = aU{SuﬂT(x—u)‘u e X} =

U{(aS)un(aT) (x-u)|u € X} = (asOaT)x.

" .Using theorem 2.3, we have

1 -1 -1 -1

(avt b)S g as + bs,
(s(a+b)) ¢ (sa)O(sb),

-1 .
(resp. S ) is convex-

(sOma) F = asOm L = as ™t et = as™t 4 art =
(sa)™ + (ra)”! = ((sa) O (Ta)) .
Also, ‘ .
(sta+b) ™ = (a+ms T eas T epsTh = (sa)h 4 (sp) T = ((sa)yd(sp)) T
-1 : -1 1 -1
If a,b > 0 and S is convex-valued, then (a+Db)S = aS ~+bS . QED

Y X . .
Let S, T € (27), it is clear that dom (S+ T)

= dom Sﬂdom T, and

that ran (S + T) C ran S + ran T. Theorem 2.3 yields the following

Proposition 2.6., For all S,T € (2Y)X, dom s[JT C dom S + dom T,

ran S[]T = ran Snran T.



When computing (S[]T)x, there may bé some points u € X such that
SunT(x - u) # . For each x € X, the set of theset‘points, for réasons
that will become clear below, will be called the set'of proximal points
of 8 to x, along T. The poiht—té—set map that assigns to each x € X the
set of ‘its proximal poirits,4 Qill be denoted by P(S,T), the proximal n}apv

of S with respect to T.

Defiriition.Z.?. For all S,T € (2Y)X, the proximal map of S with

respect to T, P(S,T) e (ZX)X,_ is given by x > {ue XlSuﬂ_T(x-—u) # @r.

We now turn to the relatibn between the convolution of two maps S,T,

and their corresponding proximal maps P(S,T), P(T,S). First, let us

1

note that if 5,7 € (29)%, then s, (5" M)t e (25% satisfy

vk € X, S ‘mx = {u e x|sufltx # ¢},

vk ex, (8m k= {zex|xes 'z} = {zex|sxN1z # @} = T tsx.

Proposition 2.8. Let I denote the identity map of X. Let S,T €
Y. X '

(27)", then -
(1) Pp(s,T) = I - P(T,S), ’
-1 -1
(2) Pp(s,T) =P(1,8 "T) = P(T "S,I),
='IDS”1T = (T”ls+1)'l',

(3) P(s,T)
' -1 . . . -1,
(4) SDTg SP(S,T), P(5,TY) &€ S (SOOT), with equality if S or S 1 is
single~valued, respectively.

Proof. Let x € X, then

u € P(s,T)x <=> sul)T(x-u) # @ <=>

tavex,(u =x - v, S(x—v)ﬂTv # @)} <=>x - u € P(T,S)x.

-8



This proves (l). Let u GVX
sullT(x - u) # @ <=>u € S—lT(x - u) <=> Iu(\s—lT(x - u) # @,

and P(S,T) = P(I,8 'T). Using (1)

P(S,T) = I - P(T,S) =1 - P(I,T"ls) = P(T_lS,I),

" which shows (2). With everything as above

Su(TT(x -u) #@ <= x~-ué€ T—lsu <=> u € (I + T_ls)ﬁlx.

¢

Therefore P(S,T) = (I + T—ls)—l, using theorem 2;3, P(S,T) = (I[]S—lT)m
From the definitions of SOT and P(S,T), it is clear that SOT C SP(S,T)

with equality if S is single-valued. On the other hand, using theorem 2.3

u e Pp(s,Tx <=> sullT(x - u) # ¢ <=>

.[BV'G Y, (u € S“lv, x € u + quvﬂ =>

-1 -1
[Avey, wes v, xe (s

+ T—l)vﬂ <=>
[Bve sOomx, ue sV & uwe s sOomx.

K

IfS—lissingle—valued, the reverse argument is also valid. ’ QED

Cos . Y. X
Proposition 2.9. Let S,T € (27) , then

(1) dom P(s,T)

dom P(T,8) = dom ST,

(2) ran P(S,T) = ran s"l(saT).

K

Proof. (1) follows readily from definitions 2.1, 2,7, and proposi=-

tion 2.8(1). From proposition 2.8(3) and elementary computations

" ran P(S,T) = dom" (I + T—ls) = dom Tﬂls = ran SﬁlT = S"l(ran T) =
S—l(ran S(]ran T) = Snl(ran sOT) = ran S—l(S[]T). QED-

_9_



The expression of P(S,T) as a convolution of two suitable maps in
proposition 2.8(3) has the disadvantage, that even i% S and T are mono-
tone maps (see the following seétipn for the definitions) S—lT does ﬁot
have to be so and the theory available for these maps cannot be used to
“study P(S,T) by means of the convolution operation. Therefofe it is of
interest to develop an alternative relation between the convolution oper-
ation and the induced proximal maps.

For any u € X let the map Du:x + X, be such that x > u - x. Clearly
DuDuiis the identity map of X'and thus Du = Du—l. A?a;ogous maps defined
in Y for v € Y wili be denoted by Dv' The space on which these maps are

acting will be clear from the context.

Proposition 2.10. Let S,T € (2Y)X, x € X, vy € Y. Then

(1) (sO0Tx = P(S—.:_L,DXT_lDy)y = p(”

1 -1
/DS Dy)y,

: P | -1 o -1 -1
(2) P(S,T)x = (s "O(DT Dy))y—Dx(’I‘ O (s Dy))y.

. Proof.
(SDﬂx==LJ%uﬂTm—uHuGX}={VGYHeSunTm—u),uEX}=
fvevlues ™, vex-17v} = fvey|sT v -1t # ).

But x -~ T—lv

-1 -1
DT D = -
« yDyV DxT Dy(y v), thus

(sdm=x 1 1

-1 - - - o
{vev|sTv(p T D(y—v)#QS}:P(Sl,DT D )y.
X Yy X Y
Using the commutativity of [J, (1) follows. To obtain (2), use (1) in
conjunction with proposition 2.8(1), i.e., P(S,T)x = D P(T,S)x for all
X

x € X. QED

Let us suppose that we are interested in finding some x € X such

~-10-



o Y X . .
that sx/\B # @ for some S € (27) and B C Y. The following proposition

shows how this problem is reduced to finding the fixed points, in the

obvious generalized sense, of the multivalued map P(S,T), for suitable

' . Y X
choices of T € (27) .

X

C e Y
Proposition 2.11. Let T € (27), ACX, B Y. Then

i

(1) TAZ B <=> ¥8 e 2H*, luexluer,mu+nlces B,

(2) TA 2B <=>¥S € (2Y)X, {uex|uepr(r,s)(u+nlt=s B.

In particular, setting A = {OX}, B = {OY}’

(3) 10, = {0} <= vs e 29%, {u e x|u € p(s,Tu} = s"loY.

Proof. First let us note that

weP(S,T)(u+a) <=> (Jven ueb(s,m@+v) <=

(Iv e A, sullTv # @) <=> u & sflTA.

This proves‘the forward direction of both (1) and (2). Let TA\B # ¢,

pick some x

1 1 11

X # Xy Slx = @¢. As ran SI{\B = g,

-1 -1

_ . -1 N _ -1
{xl} =5, (TA\B) = s, "TA =5, TA\§1 B # @.

This ends the proof of (1). Let B\TA # @, pick som'evx2 € X, let S €

(2Y)X be such that Szx2~= B\TA, and for all x = Xy 82x = @,
ran 52(1TA = @,
-1 -1 -1 -1
{x,} =5, "(B\1A) =5, "B =5, "B\s, "TA # &,

and the proof is concluded.

-11-
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Y
€ X, let 5. € (2 )x be such that S_x_. = TA\B, and for all

QED



Y. X . .
Theorem 2.12. For all 5, T € (27) , x, u€ X, y, v&y, (L) implies
(2)-(5). Furthermore, if all sets appearing in (2)-(5) are singletons,

then (1)-(5) are equivalent.

(1) verTx-u), ueT (y-v), ve€su,

e (s'lth"l)y, xeTly o+ T"l(y - V),

(2) ve (sOmx, u

(3) ve (sOMx, uwe (s 0T Yy, yETu+Tx-u,

(4) ueprs,mx, versTThy, xe Tl 4 2y - V),
(5) ue P(S,TJx; v € P(s"l,T-l)y, Yy € Tu + T(x - u).

.

Proof. u € S_lv and x € u + T“lv, imply x € (S_‘l + Tﬂl)v. Using

theérem 2.3, ve (sT)x. By definition 2.7, v € Su and v € T{x - u)

u € P(S,T)x. Finall?, y €E v + Tu and v € T(x —'u) imply v 6 Tu+ T(x~u).
This proves that (1) implies (2)-(5). Let us assume that all sets ap;
‘pearing in (3) are singletons (we will then use the same symbol to denote
bdth the set and its unique element). As u = P(S,T)x, there is some v'

€ Y such that v' € Su, v' =y - Tu = T(x - u). Thus vl € (sdT)x =A{v},
and (1) follows a£ on?e. Similarly, let us assume that all sets in (5)

are singletons. Then‘so are Tu and T(k - u), and u = P(S,T)x imﬁiies

vthat T(x — u) € Suor y - Tu € Su, from which y € (S’+ T)u, and via the-
orem 2.3, that u € (S—l[]T—l)y. Since v = P(S—l,Twl)y, uGES_lvf\T—l(y-Qv).

The remainder of (1) follows from v = Tu - y = T(x - u). QED

-12-



3. Convex analysis. This section is an outline of. some concepts of
convex énalysis. The presentation is informal, its thain purpose being
to introduée notétion and terminology. Some references are Asplund
(1969), Ekeland and Temam (1976), Holmes (1975), Moreau (1966), and
chkafellar (1970a, 1974).

Let X,Y be two real vector spaces in duality by means of a bilinear
form («,+):XxY a—ﬁm,vsatisfying
(1) For all x € X, x # 0, there is some y € Y, such that (x,y) # 0.

(2) For all y € Y, v # 0, there is some x € X, suc%ithat (x,y) # O.

Two real vector spacés X,Y paired as above will be denoted (X,Y). Uéualﬂ
‘ly ¥ will be a subspace'of the algebraic dual X! of X, and X, Y will be
canonicaily paired. By this we mean that (x,y) will be y(x), the value
of the linear functional y at x. This is the case if X is a topological
- vector space (e.g.; a Banach space) and Y is its (topological) dual X*,
If X is a Hilbert space or IRn, then X? can be identified with X via the
inner product which willvthen act as the bilinear fbrm\

A locally convex topology on X (resp. Y) is compatible with the

4
pairing (X,Y) iff the continuous linear functionals on X (resp., Y) are
precisely {x + (x,y)[y e Y} (resp. {y » (x,y)|x € X}). By (1) and (2),
such topologies are Hausdorff, and each continuous l;near functional has’
a unique representation.

Various topologies compatible with a given duality always exist and
can be generated systematically. The weak topology on X, w(X,Y), is the
coarsést topology on X compatible with the pairing (X,Y¥). The Mackey
“topology on X, m(X,YYi is the topology of uniform convergence on the

w(Y,X)~compact convex subsets of Y. It is the finest topology compatible

-13-




with the duality. The strong topology on X, s(X,Y), is the topology of
uniform convergence on the w{Y,X)-bounded subsets oF Y. s(X,Y) is finex
than m(X,Y), it is compatible with the duality iff s(X,Y) = m(x,Y).

In the reflexive case
s(X,¥) = n(X,Y), s(Y,X) = m(Y,X).

If X is a Banach space and Yv= X*, the norm and the weak, w(X,X*), topo~
logies on X, as well as the weak* topology én X*, w(X*,X), are compatiblé
with the Canonical pairing (X,X*).‘.The norm topolo?y on X* is compatible
iff X is refiexi&e. Further details can be found in Kelley, Namioka et
al. (1963).

Let 3§X denote the set of all functions defined on X with wvalues in

R = ]RL_J{—w,W}. The epigraph and strict epigraph of any f € iﬁx are

© respectively
epi £ = {(x,r) € Xx R|f(x) < r},
sep f = {(x,r) € X><:le(x) < r},

»

Its effective domain.is dom f = {x € X[f(x) < w}, Such a function £ is
proper iff it is not identically «, and never takes the value -, Thus
dom £ is noneﬁpty and f is finite there,

A function f € Eﬁx is convex iff its.(strict) epigraph is a convex

subset of XX IR. Assuming the computation rules
0 4 (—-OO) -_-OO' Qe =Oo(.-.00) = O'

it follows that £ is‘convex iff for all x,x' € X; t € [0,1]

~14-




E((L - t)x + tx') S (1 - ©)E(x) + tf(x").

Let X,Y be given topologies.compatible with thé.pairing (X,¥). The
continuous affine functiops on X are precisely those of the form x- (x,y)
-r, where y € Y, r € R. The poihtwise supremurm of any collection of such
affine functions is convex. Thé set of all such convex functions is de-
noted T(X,Y) (simply T'(X) if. it is clear what the pairing is), the set of
con&ex functions defined on X which are regular with respect to the pair-~
“ing (X,Y). Furthermore, £ 6 I'(X,Y) iff £ is{con&ex and lower'semicontin—‘
uwous (lsc) in.any topology compatible with the dualiEy (X,¥) (Moreau
1966, p 28, prop S.d). Let FO(X,Y) denote the set of functions I (X,Y)
less the two constant funptions QX Z o and —QX = -0, If £ e ['(X,Y) takes
" the value -», then it has no coﬁtinuous.affine minorants and £ Z =,
Thus FO(X,Y) is ﬁhe set of all proper lsc (in any topology éompatible
Qith (X;Y)) convex functions defined on X.

Given v € ¥, r € IR, the continuous affine function x -+ (x,y) - r,

minorizes £ € fﬂx iff

3

r i sup {(x,y) - £(x)|x € x} d £% (y) . .

The maximal elements (with respect to the usual partial ordering of ex-
tended real—Qalued functions) of the collection of continuous affine
minorants of f, are those of the form x - (x,y) = £*(y), such that £*(y)
is finite. The Fenchel transformation f - f£* defined abo&e, maps iﬁ
onto T (Y,X). Furtherﬁore,it.isa bijection between T'(X,Y) and T'(Y,X) .

Its inverse g » g*:I'(¥,X) - I'(X,Y), is defined by

g*(x) = sup {(x,y) -~ g(y)|y e v}.
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In fact f£** = (f*)* = £ iff £ € I'(X,Y) (see Asplund.1969, p 5, th 2.10),
Taking into account that wx* = —wy' and (—wx)* = wY, the Fenchel trans-
formation is also a bijection between FO(X,Y) and FO(Y,X), A pair of
functions £ € I'(X,Y), g € T'(Y,X) such that £ ; g*, or equivalently, g =
f*, are called (Fenchel) dual or conjugate.

A function f € 3§X is subdifferentiable at X € X iff there is a
continuous affine function.x ﬂ-(x,yo) N which minorizes f and is ex-
act (i.e., takes the same value as f) at X If a.function is subdif-
ferentiable at some point, it is proper as it can neyer take the wvalue
-~w, and it is finite wherevér it is subdifferentiable. The slope Yo is
a subgradient of f at X "The set of such subgradients is the subdif-

ferential of f at X af(xo), which can be expressed as
af(go) = {y € Y|Vx e X, £(x) p f(xo) + (x = xo,y)}.

Being the solution set of a system of continuous linear inequalities,
3f(x0) is a closed in any topology compatible with the pairing (X,Y).

Taking into account the definition of f*, 9f(x ) can be written
(@] .

Of (x ) = {y € Y|f(x ) + £*(y) = (x_.¥)}-

If gf(xo) # @, then f(xo).= f**(xo), and the above expression of af(xo)

implies
. : = 4 *.
v, € ?f(xo) > x_ € of (yo).
When £ € FO(X,Y); then f£** = f and
S * = * -
Y, g af(xo) > X € of (yo) <=> f(xo) + £ (yo) (xo,yo).
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f achieves a finite global minimum at X iff 0 € af(xo).
Let £,g € iﬁx, their inf-convolution £[Jg is given by (see Moreau

1966, p 15, ch 3)
(£09) (x) = inf {£(w) + g(v) |u + v =x},

“where the convention o + (~w) = o« remains in effect. The inf~convolution
is closely related to the con&oiution of multivalued maps X - 2Y intro-
duced in §2, as it will be seen in §4. f[Jg is exact at x iff the inf-
imum in its definition is actﬁally reached. This operation is commuta-

;
tive, associative and has as unit the function ¥ such -that Y(0) = 0, and

Y(x) = o whenever x # 0.

One can show that (ibid.)
dom £f[Jg = dom £ + dom g, sep f[Jg = sep f + sep g.

The inf-convolution of two convex functions is convex. However the inf-
convolution of two proper functions need not be proper, consider in X =
R two linear functions with different slopes, If f,g are proper and
f{1g is exact,then,itgfsproper. If £,g are weakly lsc and there is an a
€ Y where both f*,g*% are finite and.one of them is continuous, then f£{g
- is weakly lsc and exact. When: X is barrelled, i.é;,.each closed convex
balanced absorbing subset is a neighborhbod of 0 (which happens if X is
reflexive or a Banach space), £ € FO(X,Y) is continucus on int(dom £)
(Rockafellar 1966a, p 61, cor 7.C), Thus if f,g € FO(X,Y), Y is barrel~
led in the Mackey topology m(Y,X) and dom £*()int(dom g*) # @&, then fQg

€ FO(X,Y) and is exact.

—X . '
For all f,g € R, (£dg)* = £* + g*, if f,g never take the value
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~%,  Otherwise f[Jg Z o, If f,g are proper convex functions and both

_are finite at a point where one of them is continuous then (f + g)* =

£f*[Jg*, and the inf-convolution f£*[Jg* is exact. These properties clear-

ly resemble those proved in theorem 2.3 for the convolution in (2Y)X.

At each x € X, flg is defined via a minimization problem. The set
of solutions to such minimization is termed the set of proximal points
of £ to x along g. The multivalued map that assigns to each x € X the

. . . . X X .
set of its proximal points will be denoted p(f,g) € (2) , the proximal

map of £ along g,
.

plf,9)x = {u e X[f() + g(x - u) £ (£09) (x) < o},

When f£,g are convex, so is p(f,g)x. -If in addition f,g are lsc, then

. p(f,g) is closed. If (f[lg)(x) is finite, then

p(f,g)x = {u e X!O € 3(f + glx -~ *))(u}.

Proximal maps were intrdduced by Moreau (1962, p.2897) in the case
X =Y = H a real Hilbert>space, f e FO(H), and g:x - %{x|2. If £ is the
indicator function of%rmmemptyclosedconvexsubsetA, of X,.that is f is
equal to zero on the set‘ A, andlequal to © elsewhere, and g is as
above, (f£[1g)(x) = %d(x,A)z, where d(x,A) is the distance from x to A.

Let f be subdifferentiable. For any positive integer n, and any

n + 1 points in the graph of of
(Xi’yi) € gph 9f (1 =0,1,.4.,n),

one has
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vi,j e {0,1,...,n}, £(x.) > E(x,) + (x, = X,,v.),
J = 1 J 1 1

hence

> - - T - .
02 (xO xn,yn) + (xn xnnl.yn_l) + ..+ (><:1 ~Xo’yo)'

A map S € (2Y)Xsatisfying this inequality for e&ery set of n + 1 points
in its graph will be called monotone of degree n, n-monotone for short.
l-monotone maps are called monotone, A map is cyclically moﬁotone iff
it is n-monotone for e§ery positi§e integer n. The sets of n-monotone,
monotone, and cyclically monotone maps, will be respéétively denoted by
Mn(X,Y), M(X,Y), Mw(X(Y). We shall simply write Mn(X) et cetera, if the
-particular pairing in mind.is clear. If f € iﬁx, then 3f € Mm(X,Y), al~
though it is possible that 3f = @.

The sets of. maps Mn(X,Y), 1 i_n.: @, can be partially ordered by
means of the inciusion of graphs. Thus given S,T € Mn(X,Y), SCT iff
geh s C gph T, or equivalently, iff S—1 c T_l. The maximal elements of
- this partial order relation are called maximal n-monotone maps, maximal
monotone maps if n = 14 or méximal cyclically monotone maps if "nv= co, M

The sets of such maps will be denoted ﬂn(X,Y), 1 <n o, C(Clearly S €

A

= . -1 = .
Mn(X,Y) iff s e Mn(Y,X)f From Zorn's lemma it follows that every S €
' Mn(X,Y) can be extended to a T € ﬁn(X,Y) which contains it.
Amap S € (2 ) is contained in the subdifferential map df, of some
-X . ® oo
fe R, i.e., Sx C3f(x) for all x € X, iff s e M (X,Y). If seM (X,Y),
then S = 3f, and £ € FO(X,Y). When X is a (not necessarily reflexive)
real Banach space, the converse statement is true, i.e., if f € FO(X,X*),

-0
then 9f cM (X,X*)., This fails in more general spaces.
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4. Convolution of monotoné maps. The inf-convolution £[J]g of func-
tions f,g ei§x has some of the properties of of the ¢onvolution of maps
X > 2Y, especially when f, g are proper convex (see §3). There are two
cyclically monotone maps associated with f,q, théif respective subdif-
fefential maps of,dg € (ZY)X. Therefore one can compute the -inf~convolu~-
tioﬁ f[0g then find its subdifferential 3(f{Jlg), and also directly com—

pute the convolution of the subdifferential maps, 0f[]9dg.

Theorem 4.1. 1(1) Let f,g Giﬁx, then

P(3£,99) C p(f,9), 3f[dg C 3(£Og).

(2) - Sufficient conditions for P(9f,dg)x = p(f,g)x are as follows.
(a) a(f + g(x = *)) = 3f + 9g(x -~ *). (b) £, g are proper conveg and
there is a vector in X where both £, g(x - ¢) are finite, and one of them
is continuous. Equivalently, there is a vector in dom f(\(x ~ dom g)
(resp. (x - dom f)f\dom g) where f (resp. g) is continuous. (c¢) £f,g €
FO(X,Y), X is barrelled in the Mackey topology m(X,Y), and x Gvdom f +
int(dom g), or x € int¥(dom f) + dom g.
| (3) If f£,9 € FO(X,Y), then 8f[]8gA¥ o(£[0g) iff of* + ag* =
9(f* + g*), sSufficient conditions for these equalities are as follows.
(a) There is a vector in Y where both f*,g* are finite, and one of them
" is continuous. (b) Y is barrelled in the Mackey topolégy m(Y,X) and
dom £*[) int (dom é*) # @,

Proof. (1) Let x € X,

u € P(9f,9g)x <=»>3f () Ndg(x - u) # @ <=> 0 € 3f(u) - dg(x - u).
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The last inclusion implies O € 9(f + g(x - *))(u), and u € p(f,g)x. If
ye (3£[d9g) (x), there is an u € X such that y € Sf(ﬁwaag(x - u). Then,

for all x',u' € X

f(u') 2 £(u) + (u' -u,y), g{x'~u') 2 g(x-u) + (x'-u' - (x-u),y).

Adding both inequalities and taking the infimum over u' € X in the left

side, for all x' € X

(£09) (x') 2 f(u) +gx-u) + (x' -x,y) 2 (£09) (x) + (x' - x,y)
(mhmuyfuﬂ+gw—u)=(ngHxLlmmm%\JGPWfQWXEANﬂgm),

and y € 3(£00g) (x).

(2) The sufficiency of the condition is clear from the proof of the

_first half of (1). When f,g are proper convex one can apply a result of

‘Rockafellar (1966b, p 85, th 3(b)) to show that the sufficient condition

holds. Finally, Rockafellar (1966a, p 61, cor 7C) allows a further re-
finemnent.

‘(3) If £,9 € Toﬂx,Y), then

1 -1, -1

Bt rag™h ™ = GEr+ gyt

9f[d9g .

il

C (B(£* +g*))~

.

GEDN* ™ = 3(09g) .

1l

The first equality is from theorem 2.3, the inclusion is a well known
fact (see the proof of (1)), for the rest see Moreau (1966, p 38, 6.15

and p 60, 10.b). This proves the equivalence between 0f[d0dg = 3 (£q)

‘andiaf*i-ag* = 9(f*+g*). The . rest is as in (2). ; QED

This theorem has several conseguences. First, the convolution of
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two cyclically monotone maps is cyclically monotone, If S,TAG Mm(X,Y)
then there are f£,g € FO(X,Y) with S g of, T g dg (Rgékafellar 1966c, p
500, th 1), and ST c of[d9g g»a(fE]g).

Second, let X be a Banach space (thus barrelled), and f,g € TO(X,X*)
be such that x € dom £ + int(dom g), then P(9f,dg9)x = p(f,9)x, and
P(3f,099)x is a closed convex subset pf.X.

Third, let X be a reflexive Banach space. If f,g € TO(X,X*)L then
f*,g* € TO(X*,X) and their rgspective subdifferentials are all maximal
monotone. The céndition dom £*[Vint (dom g*) # @, implies that 9f[lodg =
d(f0ay, and also that f[dg € FO(X,X*) (Rockafellar 1966b, p 85, th 3(a)),
hence 9 (f[lg) € ﬁw(x,x*). Clearly dom af.E dom £, also (see Pascali and
Sburlan 1978, p 27, prop 2.6) int(dom g) g dom 3g, thus int(dom g) =
int(dom 3g). Hence dom af*Vint (dom d0g*) # ¢ implies that 3f[]9g €
M (X, X*)- |

The following theorem extends results to monotone maps.

Theorem 4.2. Let S € M (X,¥Y), T € M (X,Y), with m,n ez | J{=}.
' s ' .
Then ST € MP(X,Y) for some p > min{m,n}. -
Let X be a reflexive Banach space, and let S,T € ﬁ(x,x*)w If ran S

(]int(ran T) # @, then sOT € M(X,Y). If x 6 dom S + int(dom T), then

P(S,T)x is a closed convex subset of X.

Proof. . By theorem 2.3, (S[]T)'-1 = S“1 + Tfl. It is easy to show

e M (¥,%) and 1 e MY (¥,X), and that st & o7l is min {m,n}-

that S~
monotone, hence so is S[]T.

e ' . . -1
The condition on the ranges of S,T is equivalent to dom S NVint-

(dom T—l) # ¢, which implies (Rockafellar 1970b, p 76, th 1) that SF'l +
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T—1 = (SE[T)—l is maximal

The condition on the domains 6f S,T is equivalehE to dom S[\(x -
int(dom T)) # @#. For all y € ¥, x - int(dom T) = .int(dom DyTDx) (the
maps DX, Dy were introcduced in proposition 2.10), .and D TDX is clearly
maximal monotone. Thus the condition is equivalent‘to ran S-lf\int—
(ran DxTthy) # @, which by above guarantees the maximality of Swl[]
‘(DXT“lDy). Propositionv2.10(2) implies that for all vy € Y, P(S,T)x =
(S—ltj(DXTﬂlDy))y, as the image at any point of a maximal monotone map

is closed convex (Pascali and Sburlan 1978, p 105, 2.3), so is P(S,T)x.

14

QED

A monotone map S-is'strictly monotone iff for all y, € Sx, (i=1,2),

. i i ,

i - - > iti i - -
1f_xl # x, then (x1 X194 y2) 0. Contrapositively, if (x1 Xo1¥q

_y2) = 0, then X, = X, The inverse S"l, of a strictly monotone map S,

is single—Valued.' Otherwise there would exist x_,x

1%, € X, y €Y, satisfy-

ing'xl,x2 Glsfly, Xy # X0 but then (x1 R y) = 0 contradicting the
stfict monotonicity of S. The converse statement is true in X =R but

fails elsewhere. Consgider in X =IR2 the linear map S which rotates vec-
tors counterclockwise through an angle of w/2. Clearly both S, S_1 = =S,

are monotonevand single =~valued, but neither is striétly monotone.

Proposition 4.3. For all S,T 6 M(X,Y),

(1) 1I1f S“1 or T~1 is strictly monotone, then S[T is single-valued.

(2) If S or T is strictly monotone, then P(S,T) and P(T,S) are single-

‘valued.

(3). Statements (1) and (2) are dual, and their converse statements are

false.
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(4) If s and T are strictly monotone, so is S[T.
-1 -1 . . e =1
(5) If s and T are strictly monotone, so is (S+T) .
. . . ' -1 -1, .
(6) The strict monotonicity of either S or T (resp. S or T 7) is not
sufficient for the strict monotonicity. of S[T (resp. (S%-T)—l). Fur-
thermore, the statements converse to (4), and to (5), are false.
Proof. (1) Let Yq0¥y € (s[OT)x with Yy # Yye Then there are u,

u, € X such that y, € SuiﬂT(x - u) (1=1,2). BAs S,T € M(X,Y),

(ul - u2 Iyl - Yz)

v

-—u - (x- -v.) >
0, and (x uy (x _u2),y1 y2) 2 0,

K

: . -1 -1
- - = 0. ’ t ict-~
thus (ul u,ry, 22) As Yy # y,, nei her § nor T can be strict
1y monotone.
(2) Let u, fu, € P(S,T)x with uy # u,. Let Yy e Sui(]T(x-ui) (i =

1,2). One has

0 = wl— uyyl—yy +(x—u1—(x—uzhyl—y£.

S,T € M(X,Y), hence both terms in the sum vanish. As uy # u, neither S

nor T can be strictly monotone.
: .

(3) Let x,u_,u. ,z_,z € Y satisfy

17UyrZ 02, € X YV

RACTAS A

x=u, +z2,, . y=v, t+w, (i = 1,2).
The strict monotonocity of S is equivalent to

1 = ) => —_ - >
(wi e (DySDX)zi (i 1,2), zy # ZZ) (z1 Z,.W, w2) 0,

which holds iff E&SDX is strictly monotone. Mutatis mutandi one proves

that‘S—lis strictly monotone iff DXS"lDy is so. From proposition 2.10
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U R | Pt -1
(sOT)x = B(S DT D)y, P(S,Dx = (S 0o, vDy))y.

If S~lor 'I‘“l is strictlf monotone, then, respectively, S—l or DxTﬁlDy is
so. By (2) P(S’l,DxTnlDy)y is eitherra singleton or empty, and so is
(S[]T)x‘as (1) asserts. Similarly, if S or T is strictly monotone, thén,
respectively S or DySDx is so. By (1) S—l[j(DXT—lDy).is either a single-
ton or empty, and so is P(S,T)x as (2) asserts. Let X =332, and let S
rotété vectors counterclockwise through an angle of W/2. Then S and’S—l

are single-valued, and so ig S[S = (Sml+s'—1)“l = (S2). But neither S

noxr S—1 is strictly monotone. Also for all x GIRZ v

P(s,8)x = {u éiB?-Su = s(x-u)} = {Z-lx},

thus P(S,S) is single-valued whilst S is not strictly monotone.

(4) Let us suppose that S[JT is not strictly monotone, then there
are x ,x, € X, x, # Xy, and y, € (SOT)x, (1 = ;,2), such that (x; - X,
Yy - YZ) = 0. Let U su, € X be such that Ys € Sui T(x-—ui) (i=1,2),

then

.I
= - - - - - + .- - - -y .
0= (xg =%yryy =yy) = (ug = uy,yy =y,) + {xg =uy = x, —uy) vy, —y,)
Being S,T monotone, it follows that both terms in the right side vanish.
If S is strictly monotone, then ul = u2 and x1 - ul # x2 - u2, which
implies that T is not strictly monotone. If T is strictly monotone, .
then u1 - u2 = x1 - x2 # 0, and S is noﬁ strictly monotone,
, -1 -1 -1
(5) Apply (4) to s "OT = (S + T) .

(6) In X =1, consider I the identity map, and T given by
geh T = {(x,x)|x g o} J{(x,00}0 < x < 1} J{tx,x-1)|1 < x}.
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.. 2 .
Then for all x € {[0,1]1, (100T)x = {o}. Again in X =1 , consider the map
S introduced in (3) and the identity map I. An easyvcalculation . shows
-1 -1 -1 ~1 . .
that IT]S = (I + 8 ) = (I - 8S) = 2 (I + S) is strictly monotone

without S being so. ' : OED

Let X, Y be real normed spaces whose norms are both denoted

-

The bilinear form pairing X and Y, and the norms on both X and Y, are

related by the Cauchy-Buniakowsky inequality l(x,y)i S‘x

y], for all
X € X, vy € Y. Typically X will be a real Banach space and Y will be a

linear subspace of its dual X*, ' ‘

e . Y X
Deﬁlnltlon 4.4. Tet s € (27) . Let

As={Ae [0,%) [¥(x,y), (x',y') €gph S, |y-y'| <A|x-x'|},

- The modulus of Lipschitz continuity of S is AS = inf AS, where one sets
AS = @ if AS = @.

Definition 4.5. Let S € M(X,Y). Let

Ms = {11€ [0, [¥(x,y), (x',y') €gph S, plx-x'|*< x-x",y-y"}.

The modulus of strong monotonicity of S is US = sup MS.

2

For any set A, letlzﬂ denote its cardinal number. If Igph s| <1,

then AS

[0,9), MS = [0,®), and AS = 0, uS = ©. If |gph S| > 1 but

ldom S] = 1, then AS = ¢, MS = [0,®) and AS

i

HUS = o, Most results
proved below depend on the assumption that gph S contains more than one
point. Maps S € (ZY)X such that Igph S]‘S 1 will be called trivial.

These definitions of the Lipschitz continuity and strong monotonicity
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moduli have several advantages over the usual ones (see Dolezal 1979, p

345, (36),(37))

A's = sup{+§~§¥§;%l(x,y),(x',Y') € gph S, x # x'},
u's = inf{(X =Xy *2yl)|(x,y),(x‘,y‘) € gph S, x # xk}.

EREN

First, they allow the tratment of the case in which dom S is a singleton
in a more satisfactory manner. As the set in the definition of u'sS is
empty, U'S = ® which coincideé with the value of us as seen above. How-
ever, the set in the definition of A'S is also empty and there is no way
to assign to.A'S the value ©, which is the most natural, when ran S is
ﬁot a singleton and thus S is not single~valued. Second, the sets AS,
MS are defined as the solution sets to systems of linear inequalities,
‘thus they are closed and if not empty they contain AS, US respectively.

Third, they make the proof of the following propositions easier.

' Y. X - :
Proposition 4.6, (1) Let S € (27) be nontrivial, if AS < o,
then S is single-valu&d, thus |dom S| = |gph S| > 1, and AS = [AS,®).
If AS = 0, then |ran s| < 1.

>(2) Let S € M(X,Y)., If us > 0, then Snl is sihgle~valued. Also,
US < ® <=> |dom S| > 1 <=> Ms = [0,us].

(3) Let S € M(X,Y) be nontrivial, then us

[{IFaN

AS, and the bound is

reached.
Proof. (1) If y,y' € Sx and y # y', AS is empty and AS = ». ' Clear-

ly
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o > A >Aels = )\ e As,

and S is closed as seen above. Thus if ASs # &, whi;h happens if AS<o, ,
it contains its infimpm, and AS = [AS,»). Let AS = 0 < o, then 0 € AS"
and fof any pair.(x,y),(X‘,Y')~€ gph S one has |y-y'] §(3IX"X'|‘=OI
thus lran S[ < 1.

. . -1 .
(2) If us > 0, S is strictly monotone and S is .single-valued.

Also if y'e'Sx(]Sx‘, x # x', the only solution in [0,») to
12 ' ‘ ‘
uix - X l < &®-x"y,y~y) =0
is 4 = 0, thus MS = {0} and uS = 0. Clearly,

' < ueMs = u' 8 Ms,

@]
[1PAS

MS is closed as seen above, and if bounded from above it contains its

supremum, thus
PS = sup MS < © <=» MS = [0,us] C [0,»).

1f [dom SI < 1, then us = o, If ldom SI > 1, picking x # x' in dom S

-

and y € Sx, y' € sx', any U in MS has to satisfy

(x - x",vy ~y")
lx - x"z

=
A

thus us < .

(3) Assume AS < @, pick A € AS = [AS,®) # @ by (1), L € MS # & as
0 € MS always, and x # x' in dom S which is possible as S is single—v
~-valued by (1) aﬁd Idgm S[ = |gph S! > 1 by the hypothesis. If y € Sx,

2 - 2
y' € sx', lx—x‘{ i(x—xhy—y')§1ﬂx—xﬂ , and Y < A. Therefore
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US = sup MS < inf AS = AS. To prove that the bound is reached, let X =
Y = H a real inner product space with identity map I, select any S = al

with a > 0. ‘ ' QED

The objective is to find bounds fof A(SOT)Y, u(sT), AP(S,T). Thus

-1

we need bounds for Asﬂl, us 7, A(S + T), u(s + T), et cetera.

Proposition 4.7. Let S € M(X,Y) be nontrivial, then

1 s <asTh < ws) 7,

2 wss) 2 <us™t < e, '

where pso\s)"2 = w if US = AS = 0, and US(AS) "2 = 0 if uS = AS = . Fur-
thermore, the bounds are reached.
-1 -1 . -1
Proof. (1) If AS or AS = o, then (AS) < AS 7. Let AS < oo,

“then by proposition 4.6(1), AS 6 AS and [dom S] = |gph Sl > 1. Choose
(x,y),(x',¥y") € gph S, then ly = v'] < As|x - x'|. If AS =0, |ran s| =

-1 oo -1 -1 .
|dom S ] =1, as»ldom S' = ]ran S |‘> 1, s is not single-valued and

At = o (proposition 4.6(1)). If O < AS < « and as™t < o, s tenst.

U

As |dom S| > 1, pickihg x # x! above, yields [y—-y‘|~§ AS|x -x"| and

|x ~ x| < Xs—l‘y - y'|. From x # x' and AS > 0, it follows that (AS)¢1‘

~1 ) . oy
S AS 7. If us = 0 there is nothing to prove, so let us > 0. If uS = o,
' i -1 . - -
|dom S|.= lran S I = 1 (proposition 4.6(2)), thus AS 1 = [0,») and )AS 1
= 0, vaps < o, pick (x,y).(x',y"') € gph S. As uS € MS (proposition

.

4.6(2)), gs{x - x'|2 < X ~x'yy ~y"Y) < |x -~ x

y - y'i. In any case.
uSiX -x'| < |y ~y'|s and as us » 0, |x -~ x'| < (us)nlly - y'|, which
implies (uS) " € AS™™ and As™' = inf AS™T < (us)"T.

-1
(2) Igph S ] = ]gph S| > 1, applying proposition 4.6(3) and (1),
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-1 -1

us~T < As i(uS)_ 1

1. If AS = 0, |ran s| = |dom 8" | = 1 and by proposi-

tion 4.6(2), usql =oo, If 0 < AS < ®, S is single-valued, using !gph Sl
> 1, one shows ldom Sl > 1 and us < @ (proposition 4.6(1,2)). Select

(x,y),(x',v') € gph S, as AS € AS, US € MS, by proposition 4.6(1,2),

'uﬂx—xwz

A

(x -~ x'yy ~y"), (AS)-lly -y < lx - x'],

2

thus'uS(XS)—zfy y'] < (x - x',y -y') and LIS(?\S)'—2 € MS”1 which im-

plies us(xs)*z < sup MS—1 = uS~1. If US = ®©, by proposition 4.6(2),

|dom S] ='lran S*1| =1, as ]gph S] > 1, ks"l = 0. Also (proposition

-1 Zius—l. As us < As, us(ks)_2 5‘(As)"l==o,

4.6(3)) As > Us =, 0 = AS
To prove that the bounds are reached, it suffices to take in X =Y

= H, a real inner product space, S = aI, T = bI, where I is the identity

map of H and a,b > O. ) ' : QED

Proposition 4.8. For all S,T & (ZY)X, A(s + T) < As +# AT, For all

s, T € M(X,Y), u(s + T) > US + UT. Furthermore, the bounds are reached.
Proof. If Igph (s + T)l <1, then A(s + T) = 6 as seen above. If

Igph (s + T)I > 1 andJIdom (s + T)| = 1, either S or T is multivealued

on dom (s + T), and As + AT = ® by proposition 4.6(1). If |dom (S + T)]

> 1, assume AS + AT < «, pick (x,y),(x%,y') € gph S, (x,z),(x',z') €

gph T,

ly +z - (vy' +z29] < |y -vy'| + |z -2 f'(ks + AT) |x -~ x'].

Thus AS + AT € A(S + T) and the bound follows.
If |dom (S + T)! < 1 then U (6 + T) = ® as seen above. Otherwise

ldom SI, ldom T[ > 1 which by proposition 4,6(2) implies $S € MS, UT €
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MT, M(S+T) = [0,u(s+T)]. Select vectors x,x',y,y':,2,2' as above, then
) 1] 2 L] 1 ] r
(us + uT)tx - X l <x-x"y43y+z-(y'+tz )) .,

and US + UT € M(S + T) from which the bound follows.
To prove that the bounds are reached, proceed as in proposition 4.7.

QED

Theorem 4.9. Let S,T € M(X,Y) be such that S, T, ST are nontriv-

, ial. Then

< A(sOT < —— —
(us) = + (u7T) HS(AS) = + UT(AT)
-2 -2 '
us(XSil +-uT(Xfi _ < usOm < — 1 7 ,~2.
((us) + (uT) ) us (As) + UT (AT)

"To evaluate the bounds when one or more of the moduli is either zero or
infinite, replace every modulus equal to zero by r, every modulus equal

to infinite by rnl, and take the limit as r - 0. The bounds are tight.

" Proaf. - By theorem 2.3, S[T = (S—l + Twl)—l,‘and AsOm = )\(S”1
1,-1 10 -1
) . Being S T + T~ nontrivial, proposition 4.7(1) yields ~
- -1, -1 -1 -1, -1
o™t casaom < e o)

_ From propositions 4.7 and 4.8

<)t m T,

>
[
+
=3
| A
>
n
+
>
3
A

___uso\s)"2 + T "2,

=
4]
+
3
[v
T
n
+
—
=]
\Y

and the bounds on X(SEJT) follow.
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Using proposition 4.6(3) and the above upper bound on A(S({T)

WSOD < (SOD < Wss) ™% + prom 57

From proposition 4.7(2)

wsom = s+ TH ™ s us™t e o h o™+ o) 72

[4

the two factors in the last term can be transformed, as done above, to

obtain the final expression of the lower bound on u(S[IT).

The procedure for resolution of indeterminate expressions. works for
: f

both upper bounds by proposition 4.7(2). The lower bound of u(s(T),

o -2
see above, comes from an expression of the type uU(+*)(A(*)) ~. The above

' . -2
procedure is equivalent to evaluate [(*) > US(AS)

u(')(A('))—Z, by the rules of proposition 4.7(2).

+ uT(kT)—z, and then

Taking X = Y = H a real inner product space, S = al, T = bI, where
a,b > 0 and I is the identity map of H, it is easy to show that all

bounds are reached. ‘ . QED

Proposition 4.10; Let X,Y be normed spaces, and S,T € (2Y)X, Then

S C T implies As < AT.

Let X,Y,Z be normed spaces, S € (2Y)X and T € (éZ)Y. If TeS € (2Z)X

is nontrivial, then A(TeS) < AT*AS, where by convention, AT*AS = 0 when-
‘ever AT = 0, and AT*AS = © if . A\S = 0 and AT = . The bound is reached.
Proof. By definition 4.4, S_g Trimpiies AT g:AS, and AS = inf-AS <
inf AT = AT.
The proof of the{second part will be broken up into several cases.

If AT = 0 then ran T is a singleton by proposition 4.6(1), and ran TeS [}
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ran T is also a singieton.' Being TeS nontrivial, gph ToS| > 1, thus
dom ToSI > 1 and picking two different‘points in dom ToS, one gets AToS
= 0. If AT € (0,») and AS € [0,®), let Yy € Sxi, z, € Tyi (i=1,2).

By Proposition 4.6(1) AS € AS and AT € AT, thus

|z, - zzl f_XT]yl - yzl f_KT°KS]x1 - X

1 2"

hence AT*AS € AToS and AToS = inf ATaS _<_ AT=AS. TIf AS,AT>0 and max{s,
AT} = o, there is nothing to prer. Thé only case left is AS = 0, AT =
©, in which it is easy to construct examples with ATeS = ®@. Take S = {y}
on X with y€dom T, and T multi&alued at>y, theh for any x € X, ToSx =
Ty, and ATeS = o, To show that the bound is reached, let X =Y = Z, let

I be the identity map in X, S = aI, T = bI with a,b > O. ’ QED"

Theorem 4.11. Let S,T € M(X,Y) be such that s,T,s[]T,s"l(s[],T),‘

SeP(S,T) are nontrivial. Then

1 1

(s)~
Yeoam”

(us)~

< AP(s,T) < = =
US(AS) + UT(AT)

- 1 2 !
(us)

K

-

whenever the expressions giving the bounds are defined. If in addition
T is linear and T + S is nontrivial

AT

A Iy

whenever the right side is defined. All bounds are reached.
Proof. By proposition 2.8(1), P(S,T) C stosom, sOT C SoP(S,T).

If the right sides are nontrivial, the above proposition yields
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AP(S,T) iAs"l-A(sDT), A(sOm) f_?\S'XP(S,T)u.
If S is nontrivial and AS > 0, proposition 4.7(1) givés
(As)‘"l'x(svl:vlfr) i}\P(S,T) < us) reasom.
If ip addition T, St]T are nontri&ial, theprem 4.9 yields the bounds on

AP(S,T). By proposition 2.8(3) and the linearity of T

1 1

p(s,T) = (L + T 's)" ¢ (rhr + st = (1 + 5) o

By the above proposition, the nontriviality of T + §, and proposition 4.8

1 AT

AP(S,T) < AT*(u(S + T)) = < S + uT

.

To prove that the bounds are reached, take X = Y = H a real inner product

- space with identity map I, and § = aI, T = bI with a,b > 0, QED
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st o e ————— 450 s et ion e e

5. Duality theorems. Given two real vector spaces X, Y in duality,

rand f € PO(X,Y), the vectors u € X, v € Y are said té be conjugate with

respeét to £ iff f(u) + f£*(v) = (u,v). Moreau (1962 , p 2897) charac-
terized such pairs of points, when X = Y = H a real Hilbert space, by

proving that the following two statements are equivalent,

(1) £(u) + £*(v) = (u,v), x =u+ v,

(II) u = p(f,g)x, v = p(f¥*,q)x,

where g = %

-12. The object‘of this section is to prove generaliza-
tions in several directions of the above and related results (Wexler
1972, p 1328, th 2). . By using to the fullest extent theorem 2.12, we
are able to prove the résults in this section in an'elementafy and uni-~

fied fashion.

Theorem 5.1. Let S,T € M(X,Y), and let T,Tﬁl be strictly monotone.

Then (1)-(5) are equivalent.

1(y - V),' v € Su,

1

(1) v € T(x-u), u‘e T

2) ve (sOmx, uwe ¢ Or Ny, xeT N+ TNy -,

(3 ve (sODx, ue (0T Dy, ye€Tu+Tk=-u,

(4) u e P(s,T)x, vV € P(S—l,T—l)y, x €T rv+ T"l(y -v),

(5) u € P(S,T)x, V G'P(S—l,Tnl)y, vy € Tu + T(x - u),

Proof. As T, T = are strictily monotone both are univoque, and by

-1 - - -
proposition 4.3 so are ST, S 0OT l, P(s,T), P(S l,T l). Apply theo~

rem 2.12. . OED
-1 . . : 2
To assume that T, T are univoque 1s not enough. Let X =R , S
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rotate vectors counterclockwise by an angle of T/2, and T =8 = =S,

THen (1) and (2) of the theorem read

(1) v =8(x - u), u = Sy - v), v = Su,

(2) v e (sO(-8))x, ue ((-8)OS)y, x=8v+ Sy -v).

2
For any x € R

0 -s)x = | J{suN-sx-w|u e ®*} =
Kg if x = 0,
{sulsx =0, u e R’} = .
@ if x # 0, !
and analogously for ((-8)[S)y. The vectors x,y,u,v GJRZ satisfying (2)
are x = 0 = y; u,v Gimz, which do not necessarily satisfy (1) unless v =
Su.
A convex function is strictly- conQex iff for all x,x'€dom £, for
all t € (0,1), £((1 - £)x + tx') < (1 -t)£(x) + tf(x'). The relation
bétween the strict convexity of f and the strict monotonicity of 9f is

as follows,
.l

.

Lemma 5.2. Let £ eiﬁx be convex, If f is strictly convex, then 3f
is strictly monotone. If 3f is strictly monotone, then £ is strictly

convex on any convex subset of dom 9f.

Proof. Let y; € Bf(xi) (1. = 1,2) with X, # X, As f is convex and

finite at Xl'
vt € [0,1], f£(tlx, - x)) + x,) - f(xl) g_t(f(x2) - f(xl)).

The definition of subgradient implies
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E(E(x, = x;) + x) = £(x)) Ztlx, - leyl)'

t(f(x,) - f(xl)) Stlx, - oxay,) .

1£ (Xi - xz,yl - yz) = 0, f is not strictly convex on [xl,xz].
"Let f be not strictly convex on some convex subset of dom 9f. Then

there are x_,X

17%5 € dom 3f with Xy # X, such that [xl,x2] c dom of and

vt € [Q,l], £((1 - t;)x1 + tx2) = (1 = t)f(xl) + tf(xz).

Let Yy € 8f(xt), where X, = (1 - t)xl + tx2 € dom 9f, for some te€ [0,1],

v

then
— > - - » > -
f(x2) f(xt) . (x2 xt’yt)' f‘xl) f(xt) (X1 xt’yt)'

Replacing X by its expression as a convex combination of xl and X, and

using the fact that £ is not strictly convex on [x_,X ], one can easil
17%2 Y

obtain f(xl) - f(xz) = (x1 - xz,yt). With this equality, and substitut;

ing for x

e f(xt) their expressions as convex combinations of xl,xz, and

f(xl),f(xz), respectively, in

4

¥z € X, f(z) Z_f(xt) + (z ~ xt'yt)'
one gets

¥z € X, f(z) z_f(xi) + (z - Xi’yt) (i =1,2).

Thusvyt e Bf(xl)rwaf(x2), and it follows that 3f is not strictly mono-

tone. , QED

Theorem 5,3, Let X be a reflexive topological vectar space. Let g

€ TO(X,X*) be strictly convex with strictly convex dual g* € FO(X*,X).
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Then for all f € [ (X,Xx*), x € X, y € X* such that

dom £()int (dom g) # @, x € dom f + int(dom g),

dom f*(}int(dom g*) £ @, y € dom f* + int(dom g*),

where the interiors aré in the strong topologies, and any u € X, v € X%,

statements (1)-(5) are equivalent,.

(1) v € 3g(x - u), u € 9g*(y ; v), v € 3f (u),

(2) v e 3(flg) (x), ue€ dE*Qg*) (y), x € 3g*(v) + dg*(y - v),
(3) v edlfdg (x), ued(E*Og*)(y), v € dg(uw) '+ dg(x - u),
(4} u € p(f,9)x, v € p(f*,g*)y, x € dg¥(v) + 3g*(y - v),
(5) weplf,a)x, v €plEr,ghy, y € 3g(u) + dg(x ~ u).

Proof. That (1) implies (2)~(5) follows from definitions 2.1, 2.7
“and theorem 4.1.. To prove that any of (2)~(5) implies (1), one notices
the following facts. First, the conditions imposed on the domains of f,

g,f*,9% imply, by theorem 4,1, that

3(£0g) = AEMdg? . J(£*[g*)

of*[Jog*,

il
i

p(f,g)x = P(9f,09)x, p(f*,g*)y = P(3f*,0g%)y.

Second, by lemma 5.2, both 9g,dg* are strictly monotone. The result fol-.

lows from theorem 5.1. OED

Let X be a real Banach space with dual X*. The norms on X and X*

will be denoted

and . respectively. If confusion does not arise,

*

. . X
++ The normalized duality map of X, J:X + 2

we will write for

is given, for all x GHX, by
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JIx = {x* e X*l(x,x*) = Ix[2 - {x*lz}.

It is straightforward that J can be also defined as the subdifferential

of q = %[- 2 e FO(X,X*) (see Pascali and Sburlan 1978, p 109, §2.6),
Ix = {x* € x*|vy € X, qly) > a(x) + (y - x,x*)}.

A Banach space is locally uniformly convex if for any € € (0,2], x

It

€ X with le 1, there exists a § > 0 such that whenever y € X with [yl

=1, |x - y|

v

€ implies [x +-y‘

[[RAN

2(1 - §), Troyanski (1971, p 177, th
1) has proved that a reflexive'Banéch space can be rénormed so that X
and X* are locally uniformly convex. In what follows we will assume
that evefy reflexive Eahach space has been so renormed.

If X is reflexive, the normalized duality map of X*, J* has as

~expression for all x* € X*

. 2 2 7
J*x* = {x '€ Xl(x,x*) = lx*f = ]xl } =g l(x*).
. - 1 2 '
This also follows from the fact that J% =,8(5 *14)r and (Asplund 1969, p
1 2 1, o -1 .
15) g* = (3-' )* o= §f°|*. Hence J, J will have the same properties

and

whenever do so. The main facts about J (and J“l) are sum-~

*

marized in the following

Theorem 5.4. Let X be a reflexive real Banach space which is norm-

ed so that X and X* are both locally uniformly convex. Let J be the
normalized duality map of X. Then J (and J—l) has the following prop-
erties,

(1) J is a bounded homeomorphism between (X,

.

) and (X*,|+],).

(2) J is homogeneous of degree 1, i.e., ¥x€X, ¥r € R, J(rx) =rJ(x).
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(3) J is strictly monotone,
(4) J is coercive, i.e., there is a function Q:ZR+ - R, with lim .p(r)
. oo
= », such that for all x € X, . (x,Jx) > ]x]p(lxl). Take as p the
injection of ]R+ into IR,

Proof. See Pascali and Sburlan 1978, p 109, §2.6., QED

Let S € M(X,X*) and a > 0. The Yosida approximant and the resolvent

of S are, respectively,
s = (sOata), J°=p(s,ato).
a - a

Clearly Sa is monotone. Using theorem 2.3 and proposition 2.8(3) one

obtains the usual expressions

-1 -1.-1 s - -
5, = (s +al ) ,JZ = (a7 Yos + 1)

1

r

S

s -1
and the splitting, aJ oSa + Ja

€ I, where I is the‘idéntity map of X.

Theorem 5.5. Under the assumptions of theorem 5.4, let S & M (X, X*)

and a » 0. Then,

3

(1) s € M(X,X*) is single-valued, continuous (X, |+ o)+ with

) > (X*,

dom S = X and ran S = ran S.
a a

(2) Ji = is single-valued, continuous (X, °[) - (X,['{), with dom Ji =

X and ran Ji = dom S.

Proof. (1) J is maximal monotone with ran J = X*, thus theorem 4.2
implies that Sa is maximal monotone. As J = is strictly monotone, by
proposition 4.3, Sa is single-valued. By proposition 2.6, ran Sa = ran S.

. =1 - . -1 -1, -1 L
Since S e M(X*,X), dom Sa = X and Sa = (S + aJ ) » the continuity

of Sa'follows (see Pascali and Sburlan 1978, p 122, prop 2.11, note that
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a2 S e,

the conclusion of lemma 2.11 (ibid.) is actually xj * X in norm, see for

example Browder 1983, p 20, prop 8).

]

S S ' o
(2) By proposition 2.9, dom Ja X, ran Ja = dom S. By proposition

il

S
4.3, Jz is single-~valued. As dom Sa dom Ja = X, one actually has the

-1 S . . s
splitting I = aJ °Sa'+ Ja. Given this plus the continuities of Sa and

J, the continuity of Ji follows. ' ~ QED
Let f € FO(X,X*), then 3f € M(X,X*) and by theorem 4.1(3c)

(30 = 3EMa Yog = 3(e0a"tq) = of

.

where fa = f[]anlq. As Bfa is single—vaerd,_fa is Géteaux differenti-
able (Moreau 1966, p 66, prop 10.g9), as fa,is continuous, fa is actually

Fréchet differentiable (Pascali and Sburlan 1978, p 11) with differential
of

dfa. By theorem 4.1(2b) one can conclude that Ja = p(f,aalq).

If X is a Hilbert space, then J = I, Sa is Lipschitz continuous with

-1 S . . -~1_ .
constant a , and JS is nonexpansive. Just set T = a I in theorems 4.9,

4.11 to find (sOa 1) < a™*, p(s,a”l1) < 1 (see also Pascali and Sbur-

lan 1978, p 131). Using theorem 2.3, proposition 2.8 one can easily get

v

-1
s, =s0a "1=(s " +an =@ s e D @D =0°_ a7,
. a
Ji =P(S,a TT) = (aS+ 1) " = (S+a ‘1) Ye(aTtD) = (s7H __1o(a—lI),
a

as + JS e I,
a a

wheneVer S € M(H) and a > 0. If s € ﬁ(Hﬁ,.then there is = instead of €

in the last equality above, and
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I=as + (sH _e(a 1) =5 o(an) +a t(s™H
a ~1 a : el
a a
-1 -1
= a—lJSo(aI) + JS = Js + aJS o(aﬁ I)
a a—l a a*l

When S

1]

of with £ € FO(H), the above expressions become

dfa=p(f*,aq)o(a—lI) P df* o(a—‘lI) = P(f,aﬁlq) '

-1
a
—.1 "‘1

I = a*df + df* _o(a "I) = df o(al) + a ~*df* .
a -1 a =1

a . a
-1 -1 .

= a "p(f,a "g)o(al) + p(f*,aq)

=p<f,a—1q) + ap(f*,aq)o(a"ll).

Theorem 5.6. Let X be a reflexive real Banach space with normalized

duality map J. For all S € M(X,X*); x,u € X; y,v € X*; a,b € (0,o), (1)-

(5) are equivalent.

(1) v = a—lJ(x - u), u = b-lJ—l(y -v), v € Su,
() v=s.x,  uw=(H v, x=b 0y - v o+ asly,
(3) v = Sa(x)_, u = (Sml)b(y), y = aﬁlJ(x - u) + bJu,
s ‘ s'i -1_-1 -1
(4) u = Ja(x), v = Jb (y), x=Db J (y -v) + aJ v,
S g7t ~1_,
(5) u = Ja(x), v = Jb Ay), y =a J(x - u) + bJu.

Proof. The proof is essentially the same as that of theorem 2.12.
However there is a small subtlety associated with the fact that if ab#1,
- -1_ - - . . Cees
then (a "J) : # bJ l. Luckily this does not present any difficulty due

to the homogeneity of degree 1 of J (resp. Jnl), There is no difficulty,
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using definitions 2.1, 2.7 and the homogeneity of J, in proving that (1)
implies (2)-(5).

Assuming that (2) holds, one has for some u' € X, v' € X*,

- ~1 -1 -1
v = a 1J(x - u') € su', .u=bO 1J l(y -v') € 8 "v'.

From the first equality it follows that x = u' + aJ"1V which together

1

with the third equality of (2) yields u' = b~ J_l(y -~ Vv) € Sﬂlv. Hence

1 -1 1 b«l 1

u' e (s"lljb~ Iy, wvepr(s b I )y,

.

S -1 . ' » . '
Being J strictly monotone, these two sets have precisely one element u
and v' respectively, from which (1) follows easily.

Assuming that (4) holds, there are u' € X, v' 6 X*, such that

v' o= a—lJ(x - u) € Su, u' = bnlJ—l(y - v) € Sﬁlv‘

-1

From the second equality, it follows that u' = b Jﬂl(y ~ v), which to-

gether with the third equality of (4) yields V==a"1J(x-u')EESu'. Hence
-1 s -1
v = (8Ja "J)x, T u' € P(S,a "J)x.

Being J strictly monotone, these two sets have precisely one element, v'

and u tespectively. QED

Corollary 5.7. Let X, X*, J be as in the above theorem. For all f

e TO(X,X*); X,u 6 X; y,v € X*; a,b € (0,9, (1L)~(5) are equivalent.

= leJhl(y - Q), fu) + £*%(v)

]

(LY v a—lJ(x - u), '(u,v),

o]
|

, -1 -~ ’ -1
aef () x = b 3Ny - v) + arly,

I
Il

(2) v as x), T u
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(3) v=af Gy,  w=dfE), y = a *7(X ~ u) + bdu,

(4) u =,p(f,anlq)x, . v = p(f*,bﬂlq*)y, X = b“lJ"l(y - v) + aJﬁlv,
-1 -1, -1

(5) uw =p(f,a g)x, v o= p(f*,b a*)y, y =a J(X - u) + bJu.

Corollary 5.8. Let H be a real Hilbert space with identity map I.

For all s € M(H); x,y,u,v € H;y a,b € (0,°), (1)~(5) are equivalent.

(1) x - u = av, y - v = bx, v € Su,
-1, .. -1

(2) v=58 (x), u = (S )b(y), X =b (y - v) + av,
- -1

(3) v = Sa(x), u = (S )b(y), y =a (x - u) + bu,
S st -1

(4) u = Ja(X), v = Jb (y), x=Db "(y - v) + av,
S st -1

_(5) u = Ja(x), v = Jb (v), y =a (x - u) + bu.
If ab = 1, then (1') and (2') are equivalent

(1') x =u+ av, v € Su,
' s .
-1 .
. . .S _ ~1 _ .S _
(2') u=J(x) = (s ) (x/a), v =24 (x/a) = s_(x).
) a a—l a—l a

Corollary 5.9. Let H be a real Hilbert space with identity map I

For all f € TO(H); X,¥,u,v € H; a,b € (0,%), (1)-(5) are equivalent.

(1) x -~ u = av, y - v =bu, fu) + £%(v) = (u,v),
(@) v =at_ 6o, u o= AfE(y), x = b My ~v) + av,
(3) v = dfa(x), Su o= dfg(y), y = apl(x ~u) + bu
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Il

p(f,a %, v

i
[+
Il

i -1 -
p(f*,b "g*)y,  x =b l(y - V) + av,

By

-1 A
p(f*,b “g*)y, y =a (x - u) + bu.

]

O
o
I

p(f,a qx, v
. If ab = 1, then (1') and (2') are equivalent

(1) x =u+av, f) + £5(v) = (u,v),

. _ -1
(2') u = p(f,a qrx = df:_l(x/a), v = p(f*,aq) (x/a) = dfa(x).
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