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CONVOLUTIONS OF MAXIMAL MONOTONE MAPPINGS*

Abstract. Let X, Y be two real vector spaces, and let S, T: X +

2Y . A new internal law of composition, the convolution of S and T, STr,

is introduced. It is shown that (ST) S + T-1 thus the commuta

tive monoids ((2 ) ,0) and ((2 X)Y +) are isomorphic. The proximal map

of S with respect to T, P(S,T): X -+ 2 , is also introduced. A purely

algebraic generalizationof Moreau's Proximal Point Theorem is proved.

The convolution of subdifferential maps of extended real-valued func-

-X
tions, and of monotone maps is studied. If f,g E R , fL· is their

infimal convolution, and af denotes the subdifferential map of f, then

af Eg c a(fLD), and P(Df, g) c p(f,g): x + Arg min (f + g(x - *)). When

f, g are proper convex, sufficient conditions for equality in the pre-

ceding inclusions are given. The strict and strong monotonicity of SCr,

and the Lipschitz continuity of S T and P(S,T) are studied. Several

generalizations of Moreau's Proximal Point Theorem are proved. These

include the known relation between the Yosida approximant and the re-

solvent of a monotone mapping.
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1. Introduction. The object of this paper is a new internal law

of composition for point-to-set mappings between real vector spaces.

This law was introduced in Luque (1984), which contains essentially

all of the results reported here, and announced in Luque (1986). Let

X, Y be real vector spaces, and let S., T: X + 2 The convolution of

S and T, SIT, is given by

(SDT)x = u{su n Tvlu + v = x}.

Associated with it we have the proximal map of S with respect to T,

P(S,T), defined by

P(S,T)x = {u E Xlv E X, u + v = x, Su n Tv / 0}.

Note that these definitions are valid when (X,+) is just a semigroup.

The contents of this paper are as follows. Section 2 introduces

the definitions above and proves some general facts about them. It is

shown that l is a commutative associative operation with unit. Thus

(2Y) X , the set of multivalued maps from X into Y, equipped with A, is

Y -1
an abelian monoid. For S: X -* 2 , let S be defined in the obvious

manner. It is shown (theorem 2.3) that (SIT) = S + T , thus the

commutative monoids ((2 Y)X ,), ((2X ) ,+) are isomorphic. The section

ends with a generalization of Moreau's (1962) Proximal Points Theorem.

This generalization is purely algebraic in the sense that the only

concepts used are those of addition and convolution of multivalued maps,

and the notion of proximal mappings.

Section 3 quickly reviews some concepts of convex analysis. Its
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main purpose is to introduce the notation to be used.

In section 4 we turn our attention to the convolution of monotone

-X
and subdifferential maps. Let f,g G I , f[]g denote their inf-convo-

lution, and af, ag their respective subdifferential maps. It is shown

that afElag C a(f[ag) in the sense of inclusion of graphs. The proximal

map of f with respect to g at x, p(f,g)x, is the set of optimal solu-

tions of the minimization defining (f[Dg) (x) when it is < +~ , and

empty otherwise. It is also shown that P(af,ag) C p(f,g), again in the

sense of inclusion of graphs. When f,g are proper convex, sufficient

conditions for equality in the preceding inclusions are given. The

strict and strong monotonicity of S OT, and the Lipschitz continuity

of S[OT and P(S,T) are also studied.

Section 5 is devoted to proving several generalizations of

Moreau's Proximal Points Theorem. These include the known relation

between the Yosida approximant and the resolvent of a monotone map (see

Pascali and Sburlan 1978, p. 128).

Several authors have studied particular cases of the concepts

introduced in this chapter. Moreau (1962) introduced the proximal map

of f with respect to g, p(f,g), in the particular case in which f is a

proper closed convex function on a real Hilbert space and g = -2|' ,

HI1 being the Hilbert space norm. There he proved his Proximal Points

Theorem which corresponds to our corollary 5.9 for a = b = 1. The

proximal map p(f,g) when f,g are defined on a real Banach space has

also been studied by Lescarret (1967) and Wexler (1972).

Rockafellar defined the convolution (inverse addition in his
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terminology) of sets (1970a,p. 21, 3), complete increasing curves in

R x ER (1967a,p. 553, (2.21)), and monotone processes 'from En to Rm

(1967b,p. 43). He also proved for these particular cases our theorem

2.3 (Rockafellar 1967a,p. 553,(2.22), and 1967b,p. 49, th. 5).

Gol'shtein (1975,p. 1146, §3) used a regularization of monotone

maps from En into En , which is equivalent to convolving them with the

gradient of a convex function. This gradient and its inverse map were

assumed to be strongly monotone.

Finally let us mention (see section 5, after theorem 5.4) that the

Yosida approximant and the resolvent of a monotone map T from a real

Banach space to its dual can be expressed as T I-X J and P(T,X J) where

X > 0 and J is the normalized duality map of the norm of X.
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2. C6nvolution of maps. Let X, Y be real vector spaces. Let us

consider a map S:X - 2 . Its effective domain is ddro S = {x e X Sx 0} ,

its range, ran S =U{Sxlx e X}, and its graph, gph S = {(x,y) e XXyly e

Sx}. The set of all such maps will be denoted by (2Y) X . A map S e (2Y) X

is single valued iff for all x e X, Sx has at most one element. If S e

(2 ) , its inverse point-to-set map S e (2 ) is such that for all y e

-1 -1
Y, s y = {x e X y e Sx}. It is elementary that dom S = ran S, ran S

= dom S, and gph S = {(y,x) e YXXly e Sx}. The inversion operation

S + S :(2 ) X (2 ) , is a bijection. If S, T C (2Y) , we write S C T

iff Sx C Tx for all x e X. Clearly S C T iff gph S C gph T iff S C T

X and Y will play completely symmetrical roles in what follows.

Therefore statements will only be made for one of the two possible cases.

In (2Y)X it is possible to define a law of composition by means of

the addition of images. Let S,T e (2Y) X , then for all x e X, (S + T)x =

{Y + y' y C Sx, y' e Tx}. From the group properties of addition in Y,

it follows that this operation is commutative, associative, and has a unit

E, such that for all x e X, Ex = {Oy}, where 0y denotes the unit of addi-

tion in Y. When there is no danger of confusion, we will simply write

0. A set in which an associative internal law of composition with unit

is defined, is called a monoid. Therefore ((2 ) ,+) is an Abelian (com-

mutative) monoid.

Definition 2.1. For all S,T e (2 Y)X , the convolution of S and T,

SULT e (2Y)X , is given by x + V{SunTvlu + v = x}.

Proposition 2.2. ((2Y)X ,) is an Abelian monoid.

Proof. Clearly 0 is a commutative internal law of composition.
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The unit is the map F C (2 )X such that FO Y, and for all x # 0, Fx =

0. Let R,S,T e (2Y)X , x e x

(RLn (S [T))x = U (Run(SL T)zfu + z = x} =

U{Run(\J{Svf Twlv + w = z}) lu + z = x} =

U{Ru\SV fTwIu + z = x, v + w = z} =

U{RufSv fTwlu + v + w = x}. QED

Y
Theorem 2.3. The inversion map is an isomorphism between ((2 ),U)

and ((2X) ,+). In particular

YX -1 -1 -1
V S,T e (2 (S C]T) S + T

V U,V e (2X) Y (U + V) - 1 V

Proof. As seen before the inversion is a bijection between (2 Y)X

and (2X)Y Let F e (2Y) X be, as above, the unit of the convolution in

(2Y) , then F e (2) Y is such that for all y e Y, F y - 1 } thus F 1

is the unit of ((2 ) ,+). Let S,T e (2 Y)X and.x e X, then

(SOT)x = {y e Yly e SuAnTv, u + v = xi =

{y e Y[Ul -l -l 1 -1-) X1
{y e Ylu e S y, v e T y, u + v x} = (S + T- x. QED

If S e (2Y)X and a CeR, as usual, aS e (2 )X is such that (aS)x

a(Sx) for all x C X. This is the left scalar multiplication. It is pos-

sible to define a dual (with respect to inversion) operation, the right

scalar multiplication. The notation will follow the convention that gives

priority in the evaluation of expressions, to the external operations
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over the internal law of composition.

Definition 2.4. For all S e (2Y)X , and for all a e R\{O},. (Sa) e

(2 Y)Xis the map x + S(a -x).

Proposition 2.5. Let S,T C (2)X , and a,b 6 IR\0}, then

(1) a(S + T) = aS + aT; ((S + T)a) = (Sa) + (Ta); (a'+ b)S C aS + bS,

(2) a(S JT) = aS aT; ((S IT)a) = (Sa)[] (Ta); (S(a+ b)) C (Sa) l] (Sb),

with equality in (1) (resp. (2)) if a,b > 0 and S (resp. S- ) is convex-

valued (i.e., for all x in X, Sx is convex).

Proof.

a(S[]T)x = aU{SunT(x-u)lu G X} =

U{ (aS)un (aT) (x -u)u e x} = (aS aT)x.

Using theorem 2.3, we have

-l -l -1 -1 -1 -1
((S T)a) = a(S T) = a(S + ) = aS + aT

-1 -1 -l
(Sa) + (Ta) ((Sa) (Ta))

Also,

(S(a+ b))- (a+ b)SS C aS + bS (Sa)- + (S)- =((Sa) (Sb))

If a,b > 0 and S is convex-valued, then (a+b)S = aS + bS . QED

Let S,T e (2) , it is clear that dom (S+ T) = dom S dom T, and

that ran (S + T) C ran S + ran T. Theorem 2.3 yields the following

Proposition 2.6., For all S,T C (2Y)X dom S[QT C dom S + dom T,

ran S[]T = ran Sniran T.



When computing (SEJT)x, there may be some points u e X such that

Su nT(x - u) i 0. For each x e X, the set of these'points, for reasons

that will become clear below, will be called the set of proximal points

of S to x, along T. The poin-t-to-set map that assigns to each x e X the

set of its proximal points, will be denoted by P(S,T), the proximal map

of S with respect to T.

Definition 2.7. For all S,T g (2Y)X the proximal map of S with

respect to T, P(S,T) e (2X)X , is given by x - {u e XISunT(x-u) L 0}.

We now turn to the relation between the convolution of two maps S,T,

and their corresponding proximal maps P(S,T), P(T,S). First, let us

X -l -l - X X
note that if S,T e (2Y) , then S T, (S T) e (2 ) satisfy

Vx8X, e S-Tx = {u e T x ),

.V x e x, (S- T) xz} = {zXlx{ze TXISxnTz i 0} = T-sx.

Proposition 2.8. Let I denote the identity map of X. Let S,T e

(2 ) X then

(1) P(S,T) = I - P(T,S),

-1 -1
(2) P(S,T) = P(I,S T) = P(T S,I),

=I-lS--1
(3) P(S,T) = I(S-T T (T- I)

(4) SO T C SP(S,T), P(S,T) C S (S'[T), with equality if S or S is

single-valued, respectively.

Proof. Let x e X, then

u e P(S,T)x <=> SunT(x- u) $ 0 <=>

ave x,(u = x - v, S(x-v) nTv $ 0) <=> x - u e P(T,S)x.
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This proves (1). Let u C X

SunT(x - u) j 0 <=> u g S T(x - u) <=> Iu S-1 T(x - u) $ 0,

-1
and P(S,T) = P(I,S T). Using (1)

P(S,T) = I - P(T,S) = I - P(I,T 1S) = P(T- S,I),

which shows (2). With everything as above

SuN T(x - u) $ 0 <=> x u T-1 Su <=> u G (I + T-1 S) x.-1

Therefore P(S,T) = (I + T S) , using theorem 2.3, P(S,T) = (IOS T).

From the definitions of SOT and P(S,T), it is clear that S[]T C SP(S,T)

with equality if S is single-valued. On the other hand, using theorem 2.3

u e P(S,T)x <=> SufT(x - u) # 0 <=>

[v C Y, (u e S-v, x e u + T-v =>

[3v e Y, (u e s - v, x e (S1 + T )v <=>

v e (SOT)x, u e S v <=> u e S- (SOT)x.

If S issingle-valued, the reverse argument is also valid. QED

Proposition 2.9. Let S,T C (2Y)X , then

(1) dom P(S,T) = dom P(T,S) = dom SQOT,

-1
(2) ran P(S,T) = ran S (SO T).

Proof. (1) follows readily from definitions 2.1, 2,7, and proposi-

tion 2.8(1). From proposition 2.8(3) and elementary computations

-1 -1 -1 -1
ran P(S,T) = dom'(I + T S) = dom T S = ran S T = S (ran T) =

-l '-1 -l
S (ran S ran T) =S (ran SOQT) = ran S (SO T). QED'
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The expression of P(S,T) as a convolution of two suitable maps in

proposition 2.8(3) has the disadvantage, that even if S and T are mono-

tone maps (see the following section for the definitions) S T does not

have to be so and the theory available for these maps cannot be used to

study P(S,T) by means of the convolution operation. Therefore it is of

interest to develop an alternative relation between the convolution oper-

ation and the induced proximal maps.

For any u e X let the map D :X -+ X, be such that x + u - x. Clearly

-1
D D is the identity map of X and thus D = D . Analogous maps defined
uu u u

in Y for v e Y will be denoted by D . The space on which these maps are

acting will be clear from the context.

Proposition 2.10. Let S,T 6 (2Y)X , x e X, y 6 Y. Then

-l -1 -l -l
(1) (SE[T)x = P(S -1 DT D )y = P(T ,D S D )y,

x y x y

(2) P(S,T)x = (S -1 (D T-1D ))y = D (T (D S-1D ))y.

Proof.

(SE T)x = U{Su T(x - u) u e x} = {v Yv e suT(x - u), uex} =

{veYlues- 1 v, uex-T 1v} = {v6 YIS-lvN(x-T-lv) # 0}.

But x - T v =D T D D T D (y - V), thus
x yy x y

(SDT)x = {v g YS lvfD T1D (y - ) 0 = P(S - ,D T D )y.
x y ' x y

Using the commutativity of [], (1) follows, To obtain (2), use (1) in

conjunction with proposition 2.8(1), i.e., P(S,T)x = D P(T,S)x for all

x e x. QED

Let us suppose that we are interested in finding some x e X such
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that Sx nB Z 0 for some S e (2Y)X and B C Y. The following proposition

shows how this problem is reduced to finding the fixed points, in the

obvious generalized sense, of the multivalued map P(S,T), for suitable

choices of T C (2Y) X

Proposition 2.11. Let T e (2 ) , AC X, BC Y. Then.

X , -l X, BC Y Then~
(1) TA C B <=> VS C (2) X , {u e Xju e P(S,T)(u + A)} c S B,

(2) TA'D B <=> VS e (2Y)X, {u e Xlu e P(T,S)(u + A)}) S B.

In particular, setting A = {OX}, B = {Oy},

X Y1
(3) TOX = {0 } <=> VS e (2Y) X , {u e Xju c P(S,T)u} '= S-Oy

Proof. First let us note that

u C P(S,T)(u + A) <=> (3v e A, u G P(S,T) (u + v)) <=>

(3v e A, Sun Tv $ 0) <=> u 6 S- TA.

This proves the forward direction of both (1> and (2). Let TA\B # 0,

pick some x1 e X, let S1 (2Y)X be such that SX 1 = TA\B, and for all

x X1 S lX= 0. As ran S nB = 0,

{x = S (TA\B) = S TA = S TA\S B # 0.

This ends the proof of (1). Let B\TA # 0, pick some x2 X, let S2 

(2 ) be such that S2x2 = B\TA, and for all x = x2, S2x = 0. As

ran S2 nTA = 0,

-1 -l -1 -1
{x2 } = S2 (B\TA) = S B = S2 B\S TA 0 ,
2 2 2 2 2

and the proof is concluded. QED



Theorem 2.12. For all S,T e (2 ) , x, u 3 X, y, v e Y, (1) implies

(2)-(5). Furthermore, if all sets appearing in (2)-(5) are singletons,

then (1)-(5) are equivalent.

-1.
(1) v e T(x - u), u T (y - v), v G Su,

(2) v' (S OT)x, u (S- T- )y, x e T- v + T-l (y - v),

(3) v e (SaT)x, u e (S- OT-)y, y e Tu + T(x -u),

(4) u e P(S,T)x, v e P(S ,T )y, x -1 -v + T-(y -v),

(5) u e P(S,T)x, v G P(S -1,T )y, y Tu + T(x - u).

-1 -l - T -i
Proof. u S- v and x e u + T v, imply x e (S + T )v. Using

theorem 2.3, v e (S]J.T)x. By definition 2.7, v e Su and v 0 T(x - u)

u e P(S,T)x. Finally, y G v + Tu and v e T(x - u) imply y G Tu+ T(x -u).

This proves that (1) implies (2)-(5). Let us assume that all sets ap-

pearing in (3) are singletons (we will then use the same symbol to denote

both the set and its unique element). As u = P(S,T)x, there is some v'

e Y such that v' e Su, v' = y - Tu = T(x - u). Thus v' e (SO T)x = {v},

and (1) follows at once. Similarly, let us assume that all sets in (5)

are singletons. Then so are Tu and T(x - u), and u = P(S,T)x implies

that T(x - u) e Su or y - Tu e Su, from which y e (S + T)u, and via the-

orem 2.3, that u e (S- OT- )y. Since v = P(S-1 ,T y, ue lvnT-l(y-v).

The remainder of (1) follows from v = Tu - y = T(x - u). QED
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3. Convex analysis. This section is an outline of some concepts of

convex analysis. The presentation is informal, its'main purpose being

to introduce notation and terminology. Some references are Asplund

(1969), Ekeland and Temam (1976), Holmes (1975), Moreau (1966), and

Rockafellar (1970a, 1974).

Let X,Y be two real vector spaces in duality by means of a bilinear

form (*,):X xY + R, satisfying

(1) For all x G X, x Z 0, there is some y g Y, such that (x,y) $ 0.

(2) For all y G Y, y i 0, there is some x G X, such that (x,y) # 0.

Two real vector spaces X,Y paired. as above will be denoted (X,Y). Usual-

ly Y will be a subspace of the algebraic dual X' of X, and X, Y will be

canonically paired. By this we mean that (x,y) will be y(x), the value

of the linear functional y at x. This is the case if X is a topological

vector space (e.g., a Banach space) and Y is its (topological) dual X*.

If X is a Hilbert space or R , then X* can be identified with X via the

inner product which will then act as the bilinear form,

A locally convex topology on X (resp, Y) is compatible with the

pairing (X,Y) iff the continuous linear functionals on X (resp, Y) are

precisely {x -* (x,y)'jy G Y} (resp. {y + (x,y) x g X}), By (1) and (2),

such topologies are Hausdorff, and each continuous linear functional has

a unique representation.

Various topologies compatible with a given duality always exist and

can be generated systematically, The weak topology on X, w(X,Y), is the

coarse'st topology on X compatible with the pairing (X,Y), The Mackey

topology on X, m(X,Y)', is the topology of uniform convergence on the

w(Y,X)-compact convex subsets of Y. It is the finest topology compatible

-13-



with the duality. The strong topology on X, s(X,Y), is the topology of

uniform convergence on the w(Y,X)-bounded subsets of Y. s(X,Y) is finer

than m(X,Y), it is compatible with the duality iff s(X,Y) = m(X,Y).

In the reflexive case

s(X,Y) = m(X,Y), s(Y,X) = m(Y,X).

If X is a Banach space and Y = X*, the norm and the weak, w(X,X*), topo-

logies on X, as well as the weak* topology on X*, w(X*,X), are compatible

with the canonical pairing (X,X*), The norm topology on X* is compatible

iff X is reflexive. Further details can be found in Kelley, Namioka et

al. (1963).

Let ER denote the set of all functions defined on X with values in

E = ERU {f-'}' The epigraph and strict epigraph of any f IxR are

respectively

epi f = {(x,r) C Xx IRIf(x) < r},

sep f = {(x,r) e Xx IRIf(x) < r},

Its effective domain is dom f = {x g X If(x) < Go}. Such a function f is

proper iff it is not identically o, and never takes the value -. Thus

dom f is nonempty and f is finite there.

A function f e EX is convex iff its (strict) epigraph is a convex

subset of X IR. Assuming the computation rules

co + (_oo) = o, 0oo- = O.(-Co) = O,

it follows that f is 'convex iff for all, x,x' 6 X; t G [0,1]
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f((1 - t)x + tx').< (1 - t)f(x) + tf(x').

Let X,Y be given topologies compatible with the pairing (X,Y). The

continuous affine functions on X are precisely those of the form x-* (x,y)

-r, where y G Y, r e JR. The pointwise supremum of any collection of such

affine functions is convex. The set of all such convex functions is de-

noted F(X,Y) (simply F(X) if-it is clear what the pairing is), the set of

convex functions defined on X which are regular with respect to the pair-

ing (X,Y). Furthermore, f g r(X,Y) iff f is convex and lower semicontin-

uous (lsc) in any topology compatible with the duality (X,Y) (Moreau

1966, p 28, prop 5.d). Let F (X,Y) denote the set of functions F(X,Y)
o0

less the two constant functions x wX and -X -- . If f e r(X,Y) takes

the value -A, then it has no continuous affine minorants and f -X.

Thus r (X,Y) is the set of all proper lsc (in any topology compatible
o

with (X,Y)) convex functions defined on X.

Given y G .Y, r 6 IR, the continuous affine function x - (x,y) - r,

minorizes f e6 X iff

r > sup {(x,y) - f(x) x e X} - f*(y)d

The maximal elements (with respect to the usual partial ordering of ex-

tended real-valued functions) of the collection of continuous affine

minorants of f, are those of the form x -+ (x,y) - f*(y), such that f*(y)

-'x
is finite. The Fenchel transformation f + f* defined above, maps JR

onto F(Y,X). Furthermore,it is a bijection between r(X,Y) and F(Y,X),

Its inverse g + g*:F(Y,X) + F(X,Y), is defined by

g*(x) = sup {(x,y) - g(y)ly 6 Y}.



In fact f** = (f*)* = f iff f G r(X,Y) (see Asplundi.1969, p 5, th 2.10),

Taking into account that wX* -Wy, and (-WX)* = COy the Fenchel trans-

formation is also a bijection between F (X,Y) and F (Y,X), A pair of

functions f e F(X,Y), g e F(Y,X) such that f = g*, or equivalently, g =

f*, are called (Fenchel) dual or conjugate.

-X
A function f e R is subdifferentiable .at x G X iff there is a

o

continuous affine function x - (x,y ) - ro, which minorizes f and is ex-

act (i.e., takes the same value as f) at x, If a function is subdif-
0

ferentiable at some point, it is proper as it can never take the value

-co, and it is finite wherever it is subdifferentiable, The slope y is

a subgradient of f at x . The set of such subgradients is the subdif-
0

ferential of f at x , af(x ), which can be expressed as

af(xo) = {y 6 Y Vx g X, f(x) 2 f(xo) + (x '- xo,y)}

Being the solution set of a system of continuous linear inequalities,

Df(x ) is a closed in any topology compatible with the pairing (X,Y).
o

Taking into account the definition of f*, af(x ) can be written
o0

Df(xo) = {y e Y If(x) + f*(y) = (x ,y)}

If af(x o) 0, then f(x ) = f**(x ), and the above expression of af(xo)

implies

y e af(x ) => x 6 Df*(yo) ,
0 0 0

When f 6 F (X,Y), then f** = f and
0o

y G Df(x <=> x f*(yo) <=> f(x ) + f*(yo) = (x ,yo) .
00 0 0 0 0 



f achieves a finite global minimum at x iff 0 e 2f(x ).
0 0

-X
Let f,g Ge R , their inf-convolution fO g is given by (see Moreau

1966, p 15, ch 3)

(fOg) (x) = inf {f(u) + g(v) lu + v = x},

where the convention 03 + (-cx) = o remains in effect. The inf-convolution

is closely related to the convolution of multivalued maps X + 2 intro-

duced in §2, as it will be seen in §4. f[]g is exact at x iff the inf-

imum in its definition is actually reached. This operation is commuta-

tive, associative and has as unit the function 4 such that 4(0)- = 0, and

9(x) = o whenever x $ 0.

One can show that (ibid.)

dom f[]g = dom f + dom g, sep f[]g = sep f + sep g,

The inf-convolution of two convex functions is convex. However the inf-

convolution of two proper functions need not be proper, consider in X =

ER two linear functions with different slopes, If f,g are proper and

fa g is exact, then itisproper. If f,g are weakly lsc and there ifs an a

e Y where both f*,g* are finite and one of them is continuous, then fo]g

is weakly lsc and exact. When X is barrelled, i.e., each closed convex

balanced absorbing subset is a neighborhood of 0 (which happens if X is

reflexive or a Banach space), f e C (X,Y) is continuous on int(dom f)

(Rockafellar 1966a, p 61, cor 7.C), Thus if f,g C r (X,Y), Y is barrel-
0

led in the Mackey topology m(Y,X) and dom f*f int(dom g*) $ 0, then f'Ug

FP (X,Y) and is exact.
or all fg e never take the value

For all f,g C JR , (fag)* = f* + g*, if f,g never take the value
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-~. Otherwise f[Og c -X. If f,g are proper convex functions and both

are finite at a point where one of them is continuous then (f + g)* =

f*Elg*, and the inf-convolution f*[ag* is exact. These properties clear-

ly resemble those proved in theorem 2.3 for the convolution in (2Y) 

At each x 8 X, fO[g is defined via a minimization problem. The set

of solutions to such minimization is termed the set of proximal points

of f to x along g. The multivalued map that assigns to each x g X the

set of its proximal points will be denoted p(f,g) G (2X) , the proximal

map of f along g,

p(f,g)x = {u c X f(u) + g(x - u) < (f g)(x) < o}

When f,g are convex, so is p(f,g)x. If in addition f,g are lsc, then

p(f,g) is closed. If (f 1g)(x) is finite, then

p(f,g)x = {u e X C G D(f + g(x --))(u)}.

Proximal maps were introduced by Moreau (1962, p 2897) in the case

X = Y. = H a real Hilbert space, f g F (H), and g:x + _lxI 2 . If f is the

indicator function ofa nonemptyclosed convex subsetA, of X, that is f is

equal to zero on the set A, and equal to o elsewhere, and g is as

1 2
above, (f[ g) (x) = -d(x,A) , where d(x,A) is the distance from x to A.

Let f be subdifferentiable. For any positive ' integer n, and any

n + 1 points in the graph of 3f

(xi,Yi) g gph f (i =

one has
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Vi,j G {O,l,...,n}, f(x.) > f(x.) + (Xj - xiyi),

hence

0 > (x0 Xn n,) + (x X 1 Y (X XO .)
= n Xn-1 Yn-) +

A map S C (2Y)Xsatisfying this inequality for every set of n + 1 points

in its graph will be called monotone of degree n, n-monotone for short,

1-monotone maps are called monotone, A map is cyclically monotone iff

it is n-monotone for every positive integer n, The sets of n-monotone,

monotone, and cyclically monotone maps, will be respectively denoted by

Mn(X,Y), M(X,Y), M (X,Y). We shall simply write Mn (X) et cetera, if the

particular pairing in mind is clear. If f e IR , then If C M (X,Y), al-

though it is possible that af _ 0,

n
The sets of.maps M (X,Y), 1 < n.< A, can be partially ordered by

means of the inclusion of graphs. Thus given S,T C M (X,Y), S C T iff

-1 -1
gph S C gph T, or equivalently, iff S C T . The maximal elements of

this partial order relation are called maximal n-monotone maps, maximal

monotone maps if n = 1, or maximal cyclically monotone maps if "n = c."

The sets of such maps will be denoted M (X,Y), 1 < n < c. Clearly S e

-n -1 -n
M (X,Y) iff S e M (Y,X). From Zorn's lemma it follows that every S e

n -n
M (X,Y) can be extended to a T C M (X,Y) which contains it.

A map S C (2 ) is contained in the subdifferential map af, of some

-X co -

f R , i.e., Sx C af(x) for all x e x, iff S e M (X,Y). If S e M (X,Y),

then S = af, and f e r (X,Y). When X is a (not necessarily reflexive)
0

real Banach space, the converse statement is true, i.e., if f g r (X,X*),

-00- ~,o
then af C M (X,X*). This fails in more general spaces.
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4. Convolution of monotone maps. The inf-convolution f[]g of func-

tions f,g gIR has some of the properties of of the convolution of maps

X + 2 , especially when f, g are proper convex (see §3). There are two

cyclically monotone maps associated with f,g, their respective subdif-

ferential maps af,ag e (2 ) X . Therefore one can compute the inf-convolu-

tion fOg then find its subdifferential a(fEag), and also directly com-

pute the convolution of the subdifferential maps, afa Ig.

-X
Theorem 4.1. (1) Let f,g IR , then

P(of,Dg) C p(f,g), afn ag C (f[n Eg).

(2) Sufficient conditions for P(Df,Dg)x = p(f,g)x are as follows.

(a) a(f + g(x - ^)) = Df + ag(x - -). (b) f, g are proper convex and

there is a vector in X where both f, g(x - .) are finite, and one of them

is continuous. Equivalently, there is a vector in dom ff (x - dom g)

(resp. (x - dom f) ndom g) where f (resp. g) is continuous. (c) f,g G

r (X,Y), x is barrelled in the Mackey topology m(X,Y), and x g dom f +
0

int(dom g), or x 6 int(dom f) + dom g.

(3) If f,g e r (X,Y), then 9afig a= D(fI g) iff af* + Dg* 

$(f* + g*). Sufficient conditions for these equalities are as follows.

(a) There is a vector in Y where both f*,g* are finite, and one of them

is continuous. (b) Y is barrelled in the Mackey topology m(Y,X) and

dom f*nint(dom g*) 90.

Proof. (1) Let x 6 X,

u G P(Df,3g)x <=>- f(u) ng(x - u) # 0 <=> 0 G af(u) - ag(x - u).
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The last inclusion implies 0 C D(f + g(x - '))(u), and u e p(f,g)x. If

ye (afE ag)(x), there is an u e X such that y C 3f(u) (ag(x - u). Then,

for all x',u' g X

f(u') > f(u) + (u' -u,y), g(x' -u') > g(x - u) + (x' -u' - (x - u),y).

Adding both inequalities and taking the infimum over u' e X in the left

side, for all x' G X

(f [] g) (x') > f(u) + g(x -u) + (x' -x,y) > (f [ g) (x) + (x' -x,y)

(actually f(u)+ g(x- u) = (fnEg)(x), because u C P(Df,Dg)x C p(f,g)x),

and y e8 (f Ig)(x).

(2) The sufficiency of the condition is clear from the proof of the

first half of (1). When f,g are proper convex one can apply a result of

Rockafellar (1966b, p 85, th 3(b)) to show that the sufficient condition

holds. Finally, Rockafellar (1966a, p 61, cor 7C) allows a further re-

finemnent.

(3) If f,g C r (X,Y), then

afj ag = (f-l + ag-l)-l = (af* + g*)-l C ((f* +))-

-1
= (a(fa g)*) 9= (f[Og).

The first equality is from theorem 2.3, the inclusion is a well known

fact (see the proof of (1)), for the rest see Moreau (1966, p 38, 6.15

and p 60, 10.b). This proves the equivalence between Df] ag = a(f lg)

and af* + ag* = D(f* + g*). The.rest is as in (2). QED

This theorem has several consequences. First, the convolution of



two cyclically monotone maps is cyclically monotone, If S,T e M (X,Y)

then there are f,g rF (X,Y) with S C af, T C Dg (Rockafellar 1966c, p
0 - -

500, th 1), and SOiT C T f[Elg C (fO g).

Second, let X be a Banach space (thus barrelled), and f,g g r (X,X*)
0

be such that x G dom f + int(dom g), then P(9f,Dg)x = p(f,g)x, and

P(3f,Dg)x is a closed convex subset of X.

Third, let X be a reflexive Banach space. If f,g C r (X,X*),r then
0

f*,g* e F (X*,X) and their respective subdifferentials are all maximal
0

monotone. The condition dom f*fnint(dom g*) $ 0, implies that af []g =

D(fEOg), and also that f[]g g8 F(X,X*) (Rockafellar 1966b, p 85, th 3(a)),

_00

hence- (f[ng) 8 M (X,X*). Clearly dom af C dom f, also (see Pascali and

Sburlan 1978, p 27, prop 2.6) int(dom g) C dom ag, thus int(dom g) =

int(dom 3g). Hence dom 9f* nint(dom Dg*) # 0 implies that 3afE]g C

-00
M (X,X*).

The following theorem extends results to monotone maps.

Theorem 4.2. Let S 8 Mm(X,Y), T _ Mn(X,Y), with m,n ZZ+U {}.

Then SEIT e MP(X,Y) for some p > min{m,n).

Let X be a reflexive Banach space, and let S,T e M(X,X*). If ran S

F int(ran T) # 0, then SE]T 8 M(X,Y). If x 6 dom S + int(dom T), then

P(S,T)x is a closed convex subset of X.

Proof. By theorem 2.3, (SEaT) = S + T 1 It is easy to show

-l -ma 1 n - -1
that S G M (Y,X) and T C M (Y,X), and that S + T is min {m,n}-

monotone, hence so is SL0T.

The condition on the ranges of S,T is equivalent to dom S -lint-

(dom T ) $ 0, which implies (Rockafellar 1970b, p 76, th 1) that Sl +
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-1 -1
T = (Sa T) is maximal

The condition on the domains of S,T is equivalent to dom Sn (x -

int(dom T)) # 0. For all y C Y, x - int(dom T) = int(dom D TD ) (the
y x

maps D , D were introduced in proposition 2.10), and D TD is clearly
x y yx

maximal monotone. Thus the condition is equivalent to ran S- nint-

(ran DxT Dy) $ 0, which by above guarantees the maximality of S -l

-1
(D T D ). Proposition 2,10(2) implies that for all y - Y, P(S,T)x =
x y

(S L C(D T D ))y, as the image at any point of a maximal monotone map

is closed convex (Pascali and Sburlan 1978, p 105, 2.3), so is P(S,T)x.

QED

A monotone map S is strictly monotone iff for all Yi e Sx. (i= 1,2),

if x1 # x2 then (x1 - x2,y 1 - Y2) > 0. Contrapositively, if (x1 -x 2,y

-1
y2) = 0, then x1 = x2. The inverse S , of a strictly monotone map S,

is single-valued. Otherwise there would exist x1,x2 G X, y g Y, satisfy-

-1
ing X1, x2 6 S y, x1 x2, but then (xl -x 2,y - y) = 0 contradicting the

strict monotonicity of S. The converse statement is true in X =/R but

fails elsewhere. Cons'ider in X =R 2 the linear map S which rotates vec-

-1
tors counterclockwise through an angle of 7/2. Clearly both S, S = -S,

are monotone and single -valued, but neither is strictly monotone.

Proposition 4.3. For all S,T 6 M(X,Y),

-1 -1
(1) If S or T is strictly monotone, then S[]T is single-valued.

(2) If S or T is strictly monotone, then P(S,T) and P(T,S) are single-

valued.

(3). Statements (1) and (2) are dual, and their converse statements are

false.
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(4) If S and T are strictly monotone, so is S[UT.

-1 -1 -1

(5) If S and T are strictly monotone, so is (S+ T) - .

-1 -1
(6) The strict monotonicity of either S or T (resp. S or T ) is not

-1
sufficient for the strict monotonicity-of SC T (resp. (S+T) ). Fur-

thermore, the statements converse to (4), and to (5), are false.

Proof. (1) Let Y1 ,y2 G (S[]T)x with Yl y Y2. Then there are ul,

U2 e X such that Yi C Su. FT(x - ui) (i=1,2). As S,T G M(X,Y),
1 1

(u1 - u2 Y 1 -y 2) > 0, and (x - u1 - (x- u 2 ) 'Y - Y) > 0,

-1 -1
thus (u1 - u2,Y 1- 2

) = 0. As Yl # Y 2, neither S nor T can be strict-

ly monotone.

(2) Let u1 ,u2 g P(S,T)x with u1 # u2. Let Yi e Su.CiT(x-u.) (i =

1,2). One has

0 = (u1 u2 'Y1 -y 2 ) + (x- U1 - (X - U2) 'Y1 - Y

S,T g M(X,Y), hence both terms in the sum vanish. As u1 # u2 neither S

nor T can be strictly monotone.

(3) Let X,ul,u2,Zl,z 2 e X, Y,Vl'V2,W 1,W2 e Y satisfy

x . + z i, v. + w. (i = 1,2).

The strict monotonocity of S is equivalent to

(w. C (D SD )z. (i = 1,2), z1 z2 ) => (z -2-W 2 ) > 0
.1 y x 1 2 f 2

which holds iff D SD is strictly monotone. Mutatis mutandi one proves
yx

that S is strictly monotone iff D S D is so. From proposition 2.10
-2x y
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(S[T)x = P(S ,D T D )y, P(S,T)x (S g (D T D ))y.
x y x y

If S or T is strictly monotone, then, respectively, S or D T D is
x y

so. By (2) P(S ,D T D )y is either a singleton or empty, and so is
x y

(S[]T)x as (1) asserts. Similarly, if S or T is strictly monotone, then,

respectively S or D SD is so. By (1) S U (D T D ) is either a single-
yx x y

ton or empty, and so is P(S,T)x as (2) asserts. Let X = R , and let S

rotate vectors counterclockwise through an angle of 4/2. Then S and-S

are single-valued, and so is S[OS = (S +S ) = (S2). But neither S

nor S is strictly monotone. Also for all x G R

P(S,S)x = {u IR ISu = S(x -u)} = {2 x},

thus P(S,S) is single-valued whilst S is not strictly monotone.

(4) Let us suppose that SUT is not strictly monotone, then there

are X1,X 2 G X, x1 ¢ x2, and yi g (SI] T)xi (i = 1,2), such that (x - x2,

Y1 Y2) = 0. Let u1 ,u2 g X be such that Yi G Su. T(x -u.) (i =1,2),

then

0 = (x1 - x2 ,-Y2
) = ( y-U2'Y -Y2 ) 

+(xu U- (x2 -u2) 'Y,-Y2
)

Being S,T monotone, it follows that both terms in the right side vanish.

If S is strictly monotone, then u1 = u2 and x1 - u1 $ x2 - u2, which

implies that T is not strictly monotone. If T is strictly monotone,

then u1 - u2 = x1 - x2 $ 0, and S is not strictly monotone.

-1. -1 -2
(5) Apply (4) to S T = (S + T)

(6) In X = R, consider I the identity map, and T given by

gph T = {(x,x)Jx < 0} U{(x,0) 0 < x < 1}U{ {(x,x -1)11 < x}.
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Then for all x e [0,1], (IENT)x = {O}. Again in X =JR , considerthe map

S introduced in (3) and the identity map I. An easy'calculation.shows

that I(]S = (I + S (I -1 = 2-1(I + S) is strictly monotone

without S being so. QED

Let X, Y be real normed spaces whose norms are both denoted f I.

The bilinear form pairing X and Y, and the norms on both X and Y, are

related by the Cauchy-Buniakowsky inequality I(x,y) < FxllyI, for all

x e x, y e Y. Typically X will be a real Banach space and Y will be a

linear subspace of its dual X*.

Definition 4.4. Let S e (2Y )X . Let

As= {X 6 [0,o) V(x,y) , (x I ,y) Ggph S, Iy-y' I < Ax-x'I}.

The modulus of Lipschitz continuity of S is XS = inf AS, where one sets

Xs = m if AS = 0.

Definition 4.5. Let S G M(X,Y). Let

MS= {fSG [0,) V CK,Y), (X ',Y'I) G gph S, px - x'12< (x - x',y - y')}.

The modulus of strong monotonicity of S is IS = sup MS.

For any set A, let IAI denote its cardinal number. If Igph SI < 1,

then As'= [0,), MS = [0,), and XS = 0, US = 0. If Igph S I > 1 but

Idom S I = 1, then AS = , MS = = [0,) and XS = iS = a. Most results

proved below depend on the assumption that gph S contains more than one

point. Maps S e (2Y)X such that Igph SI < 1 will be called trivial.

These definitions of the Lipschitz continuity and strong monotonicity
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moduli have several advantages over the usual ones (see Dolezal 1979, p

345, (36),(37))

X's = sup{ - I(x,y),(x',y') C gph S, x x'},
x X

i'S = inf{( - x',y ')l (x,y),(x',y') C gph S, x # x'}.
Ix x'12

First, they allow the tratment of the case in which dom S is a singleton

in a more satisfactory manner. As the set in the definition of p'S is

empty, p'S = X which coincides with the value of PS as seen above. How-

ever, the set in the definition of A'S is also empty and there is no way

to assign to X'S the value a, which is the most natural, when ran S is

not a singleton and thus S is not single-valued. Second, the sets AS,

MS are defined as the solution sets to systems of linear inequalities,

thus they are closed and if not empty they contain AS, PS respectively.

Third, they make the proof of the following propositions easier.

Proposition 4.6. (1) Let S (2Y)X be nontrivial, if XS < a,

then S is single-valuMd, thus Idom S I = Igph SI > 1, and AS = [AS,O).

If AS = 0, then Iran SI < 1.

(2) Let S e M(X,Y). If PS > 0, then Sl is single-valued. Also,

PS < o <=> Idom SI > 1 <=> MS = [O,pS]

(3) Let S C M(X,Y) be nontrivial, then PS < AS, and the bound is

reached.

Proof. (1) If y,y' C Sx and y # y', AS is empty and AS = O. Clear-

ly
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> X' > X e As => A' e As,

and S is closed as seen above. Thus if AS $ 0, which happens if XS< ,

it contains its infimum, and AS = [XS,-). Let XS = 0 < X, then 0 G AS

and for any pair (-x,y),(x',y')G6 gph S one has l y-Y'I < o0x-x' =0,

thus Iran SI < 1.

(2) If IS > 0, S is strictly monotone and S is single-valued.

Also if y e Sxf Sx', x # x', the only solution in [0,O) to

Ilx - x'1 2 < (x - x',,y - ) = 0

is M = 0, thus MS = {0} and HS = 0. Clearly,

0 < I' < P 6 MS => i' 6 MS,

MS is closed as seen above, and if bounded from above it contains its

supremum, thus

pS = sup MS < <=> MS = [O,pS] C [0,0).

If Idom S I < 1, then .S = o. If Idom S I > 1, picking x $ x' in dom S

and y e Sx, y' e Sx', any p in MS has to satisfy

(x - x',y - y )

x - X1

thus p S < c.

(3) Assume XS < 0, pick X g As = [XS,C) $ 0 by (1), p g MS s 0 as

0 e MS always, and x $ x' in dom S which is possible as S is single-

valued by (1) and Idom SI = Igph SI > 1 by the hypothesis. If y g Sx,

y e Sx', |x-x' x| (x-x',y-y') < Vx-X' |2 and p < . Therefore
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US = sup MS < inf As = As. To prove that the bound is reached, let X

Y = H a real inner product space with identity map I', select any S = aI

with a > 0. QED

The objective is to find bounds for A(SE]T), p(S]aT), kP(S,T). Thus

we need bounds for AS , pS , XA(S + T), p(S + T), et cetera.

Proposition 4.7. Let S 8 M(X,Y) be nontrivial, then

(1) (AS) < As < (Ks),

-2 -1 -1
(2) iS(;S) < pS < (pS) ,

-2 -2
where pS(AS) = X if PS = XS = 0, and pS(AS) = 0 if aS = XS = o. Fur-

thermore, the bounds are reached.

-1 -1 -l
Proof. (1) If XS or AS = , then (AS) < AS . Let AS < a,

*then by proposition 4.6(1), NS 6 AS and Idom SI = Igph SI > 1. Choose

,(x,y),(x',y') G gph S, then Y - Y'I < ASIx - x'.. If AS 0, Iran SI =

Idom Sll = 1, as Idom sI = Iran s-ll > 1, S- 1 is not single-valued and

XS = c (proposition 4.6(1)). If 0 < AS < - and AS < a, As AS

As Idom SI > 1, picking x # x' above, yields ly-y' < ASIx-x'l 'and

Ix - x'I < AS-1Y - y' . From x # x' and AS > 0, it follows that (AS)-1

< XS . If PS = 0 there is nothing to prove, so let MS > 0. If PS = o,

Idom sI = Iran s I = 1 (proposition 4.6(2)), thus AS = [0,m) and S- 1

O. If PS < c, pick (x,y),(x',y') G gph S. As pS g MS (proposition

4.6(2)), pSx - x'|2 < (x - x',y - y') < Ix - x'l'Iy - y'j. In any case

USIx - x'I < Y - Y' , and as PS > 0, Ix x' XI < (US) - ly - Y'I, which

implies (PS) 61 AS and XS1 = inf As < (US) '.

(2) Igph S11 = Igph SI > 1, applying proposition 4.6(3) and (1),

-29-



US1 < AS- 1 < (US) - If AS = 0, Iran SI = Idom S- | = 1 and by proposi-

tion 4.6(2), 'S = a. If 0 < AS < a, S is single-valued, using Igph SI

> 1, one shows Idom sI > 1 and US < m (proposition 4.6(1,2)). Select

(x,y),(x',y') C gph S, as AS 6 AS, US C MS, by proposition 4.6(1,2),

Pslx-x' 2 < (x - x',y - y'), (AS)-ly - y'l I Ix - x'I,

thus'pS(S)-2ly - yl2 < (x - x',y - y') and PS(CS)2 e MS ~1 which im-

-2 -1 -1
plies pS(XS) < sup MS1 = US 1 If PS = a, by proposition 4.6(2),

Idom SI = Iran S-ll = 1, as Igph I > 1, S Also (proposition
=XS 0. Also (proposition

4.6(3)) XS > US = O, 0 = AS > PS-1 As US < AS, vIS(AS) < (XS) =0.

To prove that the bounds are reached, it suffices to take in X = Y

= H, a real inner product space, S = aI, T = bI, where I is the identity

map of H and a,b > 0. QED

Proposition 4.8. For all S,T G (2 Y)X (S + T) < AS + XT. For all

S,T e M(X,Y), p(S + T) > US + UT. Furthermore, the bounds are reached.

Proof. If Igph (S + T)I < 1, then A(S + T) = 0 as seen above. If

Igph (S + T)I > 1 and Idom (S + T)I = 1, either S or T is multivalued

on dom (S + T) , and XS + AT = o by proposition 4.6(1). If Idom (S + T)l

> 1, assume XS + AT < a, pick (x,y),(x',yt ) C gph S, (x,z),(x',z') C

gph T,

ly + z- (y' + z') < ly - y'I + Iz - z'l < (AS + T)Ix - x'l.

Thus As + XT 6 A(S + T) and the bound follows.

If Idom (S + T)I < 1 then p (S + T) = o as seen above. Otherwise

Idom SI, Idom TI > 1 which by proposition 4.6(2) implies iS G MS, PT e
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MT, M(S+ T) = [O,P(S + T)]. Select vectors x,x',y,y',z,z' as above, then

(US + pT) x - x'2 < (x - x',y + z - ( y' + z'))

and pS + UIT G M(S + T) from which the bound follows.

To prove that the bounds are reached, proceed as in proposition 4.7.

QED

Theorem 4.9. Let S,T 6 M(X,Y) be such that S, T, S]IT are nontriv-

ial. Then

1 ,

-< (Sf T) <
S(S)-2 + (XT)S) + IT(XT)

-2 -2
pS((S) +p T(T) 2< (S aT) < 

((Ps) + (UT) ) S(S) + JT(XT)-2

To evaluate the bounds when one or more of the moduli is either zero or

infinite, replace every modulus equal to zero by r, every modulus equal

to infinite by r , and take the limit as r + 0. The bounds are tight.

Proof. By theorem 2.3, SE]T = (S + T) 1 , and X(S [] T) = %(S 1

+ T ) - 1 Being S + T nontrivial, proposition 4.7(1) yields

(A(S + T - ))l < (SaT) < (p(S + T ))-i

From propositions 4.7 and 4.8

(Sl + T 1) < + XT- < (S) -1(s) (pT)-1

B(S + T 1) > S-1 + pT > S(S)-2 + pT(XT) - 2

and the bounds on X(SO]T) follow.
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Using proposition 4.6(3) and the above upper bound on A(S 0T)

iSET)' <(S T) < ( < (S(S) + pT(XT)-2 )-

From proposition 4.7(2)

-1 -1 -1 s-1 -1 -1 -1 -2
1(S 0 T) = p(S +T ) > 1(S +T )((S +T ))

the two factors in the last term can be transformed, as done above, to

obtain the final expression of the lower bound on I(S]aT).

The procedure for resolution of indeterminate expressions works for

both upper bounds by proposition 4.7(2). The lower bound of p(S[]T),

see above, comes from an expression of the type p(')(X(')) . The above

-2 -2
procedure is equivalent to evaluate p(-) > PS(XS) + pT(XT) , and then

-2
)) by the rules of proposition 4.7(2).

Taking X = Y = H a real inner product space, S = aI, t = bI, where

a,b > 0 and I is the identity map of H, it is easy to show that all

bounds are reached. QED

Proposition 4.10; Let X,Y be normed spaces, and S,T e (2 ) , Then

S C T implies AS < XT.

Let X,Y,Z be normed spaces, S e (2 )X and T (2 ) . If ToS e (2Z)X

is nontrivial, then X(ToS) < XT'XS, where by convention, XT'XS = 0 when-

ever XT = 0, and XT-kS = ~ ifXS = 0 and XT = o. The bound is reached.

Proof. By definition 4.4, S C T implies AT C AS, and AS = inf AS <

inf AT = AT.

The proof of the second part will be broken up into several cases.

If XT = 0 then ran T is a singleton by proposition 4.6(1), and ran ToS C
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ran T is also a singleton. Being ToS nontrivial, Igph ToS I > 1, thus

Idom ToS I > 1 and picking two different points in domr ToS, one gets XToS

= 0. If AT g (0,c) and AS 6 [0,m), let Yi g Sxi, zi . TYi (i = 1,2).

By Proposition 4.6(1) AS 6 AS and XT g AT, thus

Jz1 z2 1 < XTIy 1 - Y2 1 < XT XSlXl - x2 1,

hence ATAS e AToS and XToS = inf AToS < ATA-S. If AS,XT> 0 and max{AS,

AT} = o, there is nothing to prove. The only case left is AS = 0, AT =

a, in which it is easy to construct examples with ATo.S = A. Take S - {y}

on X with yedom T, and T multivalued at y, then for any x G X, ToSx =

Ty, and AToS = a. To show that the bound is reached, let X = Y = Z, let

I be the identity map in X, S = aI, T = bI with a,b > 0. QED-

Theorem 4.11. Let S,T 6 M(X,Y) be such that S,T,S[]T,S (SLIT),

SoP(S,T) are nontrivial. Then

(AS) 1
-< AP(S,T) < s)

-1 -1 -- 2 -2 '
(US) + (LT) PS(XS) + VT(AT)

whenever the expressions giving the bounds are defined. If in addition

T is linear and T + S is nontrivial

XT
XP(S,T) < XS + AT

whenever the right side is defined. All bounds are reached.

Proof. By proposition 2.8(1), P(S,T) C S 0l(SEIT), SIT C SoP(S,T).

If the right sides are nontrivial, the above proposition yields
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XP(S,T) < XAS X(SC[T), X(SEJT) < XS'AP(S,T).

If S is nontrivial and AS > 0, proposition 4.7(1) gives

(AS) *X(S T) < XP(S,T) < (US) iX(S[fT).

If in addition T, S[]T are nontrivial, theorem 4.9 yields the bounds on

XP(S,T), By proposition 2.8(3) and the linearity of T

P(S,T) = (I TS) C (T-(T + S)) (T + S) -T.

By the above proposition, the nontriviality of T + S, and proposition 4.8

-1 XT
XP(S,T) < XT'(p-(S + T)) < K T

To prove that the bounds are reached, take X = Y = H a real inner product

space with identity map I, and S = aI, T = bI with a,b > 0. QED
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5. Duality theorems. Given two real vector spaces X, Y in duality,

and f G r (X,Y), the vectors u S X, v e Y are said to be conjugate with
0

respect to f iff f(u) + f*(v) = (u,v). Moreau (1962 , p 2897) charac-

terized such pairs of points, when X = Y = H a real Hilbert space, by

proving that the following two statements are equivalent,

(I) f(u) + f*(v) = (u,v), x = u + v,

(II) u = p(f,q)x, v = p(f*,q)x,

where q = 11.12 The object of this section is to prove generaliza-

tions in several directions of the above and related results (Wexler

1972, p 1328, th 2). By using to the fullest extent theorem 2.12, we

are able to prove the results in this section in an elementary and uni-

fied fashion.

Theorem 5.1. Let S,T G M(X,Y), and let T,T - be strictly monotone.

Then (1)-(5) are equivalent.

(1) v G T(x-u), u e T (y - v), v e Su,

(2) v G (SUCT)x, u g (S[T)y x T v + T (y - v),

(3) v 6 (S [T)x, u (S []T )y, y Tu + T(x - u),

(4) u E P(S,T)x, P(S-1,T-1)y, x T v + T-(yv)

(5) u E P(S,T)x, v e P(S -1 ,T)y, y Tu + T(x - u).

Proof. As T, T are strictily monotone both are univoque, and by

proposition 4.3 so are S[T, S - IT 1
, P(S,T), P(S i,T1 ). Apply theo-

rem 2.12. QED

-1 2
To assume that T, T are univoque is not enough. Let X = IR , S
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rotate vectors counterclockwise by an angle of f/2, and T = S = -S.

THen (1) and (2) of the theorem read

(1) v = S(x - u), u = S(y - v), v = Su,

(2) v e (S E(-S))x, u e ((-S)[IS)y, x = Sv + S(y - v).

2
For any x g 1R

(S (-S))x = U Su0 -S(x-u) u gR2 } =

if x = 0,
fSujSx 'O. u =R 

00 if x O.

and analogously for ((-S)aIS)y. The vectors x,y,u,v e R satisfying (2)

2
are x = 0 = y; u,v GIR , which do not necessarily satisfy (1) unless v =

Su.

A convex function is strictly' convex iff for all x,x' Sdom f, for

all t e (0,1), f((l - t)x + tx') < (1 -t)f(x) + tf(x'). The relation

between the strict convexity of f and the strict monotonicity of Of is

as follows.

Lemma 5.2. Let f GIR be convex. If f is strictly convex, then Of

is strictly monotone. If Of is strictly monotone, then f is strictly

convex on any convex subset of dom af.

Proof. Let y. e f(x.) (i = 1,2) with x1 ~ x2. As f is convex and
1 1 2

finite at x1,

Vt C [0,1], f(t(x2 - x1 ) + x1) - f(x 1) < t(f(x 2) - f(xl))

The definition of subgradient implies
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f(t(x - x) + X) - f(x) _ t(x -x .
2 2

t(f(x2) - f(xl)) < t(X2 - x1Y2)

If (X1 - x2Y 1 - Y2) 
= 0, f is not strictly convex on [xl,X 2].

Let f be not strictly convex on some convex subset of dom 2f. Then

there are xl,x2 G dom af with xl # x2 such that [Xl,x 2] C dom 3f and

Vt G [0,1], f((1 - t)x 1 + tx 2 ) = (1 - t)f(xl) + tf(x2).

Let yt C af(x t) , where xt = (1 - t)xl + tx2 C dom 3f, for some t [0,1],

then

f(x2) - f(xt) > (x2 xt,Yt) f(xl) - f(xt) > ( 1 - xtt)

Replacing xt by its expression as a convex combination of xl and x2, and

using the fact that f is not strictly convex on [xl,x2]1, one can easily

obtain f(x1) - f(x 2) = (x1 - x2,Y t) . With this equality, and substitut-

ing for xt, f(xt ) their expressions as convex combinations of xl,X2, and
t t 21

f(xl),f(x2), respectively, in

Vz G X, f(z) > f(xt ) + (z xt'Yt) 

one gets

Vz e X, f(z) > f(xi) + (z xi,yt (i 1,2).

Thus yt e af(x1 ) af(x2), and it follows that Df is not strictly mono-

tone. QED

Theorem 5,3. Leti X be a reflexive topological vector space, Let g

e rO(X,X*) be strictly convex with strictly convex dual g* e O(X*,X),.
0 0-37-

-37-



Then for all f e r (X,X*), x e X, y e X* such that

dom fn int(dom g) $ 0, x C dom f + int(dom g),

dom f* n int(dom g*) $ 0, y e dom f* + int(dom g*),

where the interiors are in the strong topologies, and any u g X, v e X*,

statements (1)-(5) are equivalent.

(1) v g ag(x - u), u C ag*(y - v), v C Df(u),

(2) v C a(f Elg)(x), u g a(f* a g*)(y), x EG g*(v) + ag*(y - v),

(3) v e a(fElg) (x), u G 9(f*lg*) (y), y e ag(u)'+ Dg(x - u),

(4) u e p(f,g)x, v G p(f*,g*)y, x G ag*(v) + ag*(y - v),

(5) u C p(f,g)x, v e p(f*,g*)y, y C ag(u) + ag(x - u).

Proof. That (1) implies (2)-(5) follows from definitions 2.1, 2.7

and theorem 4.1. To prove that any of (2)-(5) implies (1), one notices

the following facts. First, the conditions imposed on the domains of f,

g,f*,g* imply, by theorem 4.1, that

D(f Eg) = afg Dg, D(f*Clg*) = af*[] g*,

p(f,g)x = P(Df,Dg)x, p(f*,g*)y = P(Df*,Dg*)y.

Second, by lemma 5.2, both ag,ag* are strictly monotone. The result fol-.

lows from theorem 5.1. QED

Let X be a real Banach space with dual X*. The norms on X and X*

will be denoted I·I and .I', respectively. If confusion does not arise,

we will write | for 'I,. The normalized duality map of X, J:X + 2

is given, for all x 6 X, by
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Jx = {x* X*l (x,x*) = Ix12 =- x*12}.

It is straightforward that J can be also defined as the subdifferential

of q = (X,X*) (see Pascali and Sburlan 1978, p 109, §2.6),

Jx = {x* G X*lVy e X, q(y) > q(x) + (y - x,x*)}.

A Banach space is locally uniformly convex if for any c g (0,2], x

e X with lxi = 1, there exists a 6 > 0 such that whenever y 6 X with [Yl

= 1, IX - Y[ > E implies Ix + yj < 2(1 - 6). Troyanski (1971, p 177, th

1) has proved that a reflexive Banach space can be renormed so that X

and X* are locally uniformly convex. In what follows we will assume

that every reflexive Banach space has been so renormed.

If X is reflexive, the normalized duality map of X*, J* has as

expression for all x* e X*

J*x* = {x Xl (x,x*) = Ix*12 = Ixl2} J-(x*).

This also follows from the fact that J* = ( -'I_), and (Asplund 1969, p

15) q* = (2|*Il )* 1 2 | Hence J, J-1 will have the same properties

whenever I' and |-|* do so. The main facts about J (and J ) are sum-

marized in the following

Theorem 5.4. Let X be a reflexive real B'anach space which is norm-

ed so that X and X* are both locally uniformly convex. Let J be the

normalized duality map of X. Then J (and J ) has the following prop-

erties,

(1) J is a bounded homeomorphism between (X,I.i) and (X*,IlI,).

(2) J is homogeneous of degree 1, i.e., Vx X, Vr e 1R, J(rx) =rJ(x).
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(3) J is strictly monotone.

(4) J is coercive, i.e., there is a function p: IR+ R, with lim P(r)

= C, such that for all x G X, (x,Jx) _> 1xlp(xl). Take as p the

injection of R+ into R,.

Proof. See Pascali and Sburlan 1978, p 109, §2.6. QED

Let S 6 M(X,X*) and a > 0. The Yosida approximant and the resolvent

of S are, respectively,

-1 S -1
S (S la J), J = P(S,a J).
a a

Clearly S is monotone. Using theorem 2.3 and proposition 2.8(3) one

obtains the usual expressions

S -1 + aJ) - = (aJ los + I) ,
a a

-1 5
and the splitting, aJ oS + J 6 I, where I is the identity map of X.

a a

Theorem 5.5. Under the assumptions of theorem 5.4, let S. 6 M(X,X*)

and a > 0. Then,

(1) S e M4(X,X*) is single-valued, continuous (X,I'I) + (X*,|.*,), with

dom S = X and ran S = ran S.
a a

(2) J = is single-valued, continuous (X,I-1) + (X,I*I), with dom J =
a a

S
X and ran J = dom S.

a

Proof. (1) J is maximal monotone with ran J = X*, thus theorem 4.2

-1

implies that S is maximal monotone. As J is strictly monotone, by
a

proposition 4.3, S is single-valued. By proposition 2.6, ran S = ran S.
a a

Since S 8 M(X*,X), dom S = X and S = (S-1 + aJ ) , the continuity
a a

of S follows (see Pascali and Sburlan 1.978, p 122, prop 2.11, note that
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the conclusion of lemma 2.11 (ibid.) is actually x. + x in norm, see for

example Browder 1983, p 20, prop 8).

S S
(2) By proposition 2.9, dom J = X, ran J = dom S. By proposition

a a

4.3, J is single-valued. As dom S = dom J = X, one actually has the
a a a

-1 S
splitting I = aJ os + J . Given this plus the continuities of S and

a a a

J, the continuity of J follows. QED
a

Let f 6 F (X,X*), then Df e M(X,X*) and by theorem 4.1(3c)
0

(af)= af[]alaq = (f[a lq) = f,
a a

-1
where f = f[]a q. As 3f is single-valued,. f is Gateaux differenti-

a a a

able (Moreau 1966, p 66, prop 10.g), as f is continuous,.f is actually
a a

Frechet differentiable (Pascali and Sburlan 1978, p 11) with differential

Df -l
df . By theorem 4.1(2b) one can conclude that J p(f,a q).

a a

If X is a Hilbert space, then J = I, S is Lipschitz continuous with

-1 S -1
constant a , and J is nonexpansive. Just set T = a I in theorems 4.9,

-1 1 -
4.11 to find (S a I) < a , P(S,a I) < 1 (see also Pascali and Sbur-

lan 1978, p 131). Using theorem 2.3, proposition 2.8 one can easily get

S =SaI-l= (S 1 + aI) =(a s + I) I) - ( aI) I)

a

5 -1 -l c- - -1 -l -1 -1o
=P(S,a I) = (aS+I) = (S + aI) (a I) = (S o(a I),

a -1
a

aS + J e I,
a a

whenever S e M(H) and a > 0. If S e M(H), then there is = instead of e

in the last equality above, and
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-1 -1. -1 -1)
I = aS + (S- ) o (a I) S o(aI) + a (S)

a -1 a -1
a a

-1jS S S s
a J Q(aI) + J J + aJ o(a I).

a -1 a -1
a a

When S = af with f G F (H), the above expressions become
0

df= p(f*,aq)o(a I), df* 1o(a I) = p(f,a q),
a

a

I = a'df + df* Io(a I) = df o(aI) + a df*
a a -1

a a

-1 -q1
= a p(f,a q)o(aI) + p(f*,aq)

=p(f,a -q) + ap(f*,aq)o(a I).

Theorem 5.6. Let X be a reflexive real Banach space with normalized

duality map J. For all S e M(X,X*); x,u G X; y,v e X*; a,b e (O,0), (1)-

(5) are equivalent.

(1) v = a J(x - u), u= b J (y - v), v . Su,

(2) v = S(x), u = (S (y), x = b 1J l(y - v) + aJ 
a b

(3) v = S (x), u= ( b y = a J(x - u) + bju,

(4) u = Js (y), x = b- 1J- (y v) + aJ-1
a b

-1
lS -1

(5) u j(x), v = J (y), y = a J(x - u) + bJu.
a b

Proof. The proof is essentially the same as that of theorem 2.12.

However there ' is a small subtlety associated with the fact that if ab # 1,

then (a J)-1 bJ . Luckily this does not present any difficulty due

to the homogeneity of degree 1 of J (resp. J ). There is no difficulty,
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using definitions 2.1, 2.7 and the homogeneity of J, in proving that (1)

implies (2)-(5).

Assuming that (2) holds, one has for some u' e X, v' e X*,

-l -1j-1 -
v = a J(x - u') · Su', u = b J (y - v') e s v.

From the first equality it follows that x = u' + aJ v which together

with the third equality of (2) yields u' = b J (y - v) 6 S v. Hence

u' e (s-lb-l -l -l-lu E (s-]b J )y, v e P(S ,b J )Y.

Being J-1 strictly monotone, these two sets have precisely one element u

and v' respectively, from which (1) follows easily.

Assuming that (4) holds, there are u' 6 X, v' 6 X*, such that

v' a J(x - u) 6 Su, u' b 1J- (y v) 6 S v

From the second equality, it follows that u' = b -J (y - v), which to-

gether with the third equality of (4) yields v = a J(x -u') 6 Su'. Hence

v = (S a J)x, u' E P(S,a J)x.

Being J strictly monotone, these two sets have precisely one element, v'

and u respectively. QED

Corollary 5.7. Let X, X*, J be as in the above theorem. For all f

e r (X,X*); x,u g X; y,v e X*; a,b g (,OVc), (1)-(5) are equivalent.

(1) v = a J(x - u), u =b J (y - v), f(u) + f*(v) = (u,v),

(2) v = dfa(x), u = df*(y), x= b -l(y v) +aJ -
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(3) v b= f u df (Y), y = a J(X - u) + bJu,

(4) u =,p(f,a q)x, v = p(f*,b q*)y, x = b J y v) + a v,

-l(5 ~~( vC) + a-1(5) u = p(f,a q)x, v = p(f*,b q*)y, y = a J(x u) + bJu.

Corollary 5.8. Let H be a real Hilbert space with identity map I.

For all S G M(H); x,y,u,v e H;- a,b E (0,o), (1)-(5) are equivalent.

(1) x - u = av, y - v = bx, v e Su,

(2) v =S (x), u= (S ) x = b y v) + av,

, u = (S -1)(y),

-1(3) v = S (x), u = (S ) y - a (x - u) + bu,S 1 -1
(4) u = J x), v J (Y), x = b (y - v) + av,a b

$ .~S -1(5) u = J (x), v = (), y = a (x - u) + bu.a b

If ab = 1, then (1') and (2') are equivalent

(1') x = u + av, v e Su,

S S-1
(2') u = (x) = (S ) l(x/a), v = (x/a) S (x),a -1 -1 aa a

Corollary 5.9. Let H be a real Hilbert space with identity map I.

For all f rF (H); x,y,u,v e H; a,b C (0,o), (1)-(5) are equivalent.

(1) x - u = av, y - v =bu, f(u) + f*(v) = (u,v),

(2) y = df (x), u df(y), x = b (yv) + av,a b

(3) v = df (x), u = dfb(y), y = a (x u) + bua -
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(4) u = p(f,a q)x, v = p(f*,b-lq*)y, x = b- (y v) + av,

-1 -l -1(5) u = p(f,a q)x, v = p(f*,b q*)y, y a (x u) + bu.

If ab = 1, then (1') and (2') are equivalent

(1') x = u + av, f(u) + f*(v) = (u,v),

(2') u = p(f,a -lq)x = df* l(x/a), v = p(f*,aq) (x/a) = df (x).
-45 a
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