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Abstract

In this paper we develop efficient recursive smoothing algorithms
for isotropic random fields described by non-causal internal differen-
tial models . The 2-D estimation problem is shown to be equivalent
to a countably infinite set of 1-D separable two-point boundary value
smoothing problems. The 1-D smoothing problems are solved using ei-
ther a Markovianization approach followed by a standard 1-D smooth-
ing algorithm, or by using a recently developed smoothing technique
for two-point boundary value problems. The desired field estimate

is then obtained as a properly weighted sum of the 1-D smoothed
estimates.
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1 INTRODUCTION

Problems involving spatially-distributed data and phenomena arise in various
fields including image processing, meteorology, geophysical signal processing, oceanog-
raphy and optical processing. A major challenge in any such problem is to develop
algorithms capable of dealing effectively with the increased computational com-
plexity of multidimensional problems and which can be implemented in a recursive
fashion. In one dimension the ways in which data can be organized for efficient
processing are extremely limited and causality typically provides a natural choice.
Furthermore, in one dimension, internal differential realizations of random processes
were exploited to develop an efficient estimation algorithm,namely the Kalman
filtering technique. This has led researchers in estimation theory to investigate
the extension of 1-D Kalman filtering and smoothing methods to non-causal 2-D
random fields. The work of Woods and Radewan [27], Habibi [9], Attassi [3], Jain
and Angel [11], Wong [25], Ogier and Wong [18] to name a few, has shown that
such extensions do exist. However, the methods developed by these researchers are
either approximate or can be applied only to a limited class of 2-D fields, namely to
fields that can be described by hyperbolic partial differential equations, and which
therefore are causal in some sense.

The objective of this paper is to study the smoothing problem for a class of
random fields which have non-causal internal differential realizations but which
also have enough structure to allow the development of efficient recursive smoothing
algorithms. Note that, unlike one dimension, the most natural estimation problem
in higher dimensions is the smoothing problem, rather than the causal filtering prob-
lem. This is due to the fact that in higher dimensions, the filtering problem requires
an artificial partition of the data between past and future, whereas the smoothing
problem does not assume any causal ordering of the data. Specifically, in this paper
we investigate efficient recursive smoothing techniques for tsotropic random fields
which can be represented as the output of rational 2-D filters driven by white noise,

and which admit therefore simple internal differential models. An isotropic field is
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characterized by the fact that its mean value is a constant independent of position
and its autocovariance function is invariant under all rigid body motions, i. e. under
translations and rotations. In some sense, isotropy is the natural extension of the
notion of stationarity in one dimension. Furthermore, isotropic random fields arise
in a number of practical problems such as the black body radiation problem [17],
the study of underwater ambient noise in horizontal planes parallel to the surface
of the ocean [6], and the investigation of temperature and pressure distributions at
constant altitude in the atmosphere [12].

The smoothing problem for 2-D random fields has been studied from an snput-
output point of view by Ramm [20] and by Levy and Tsitsiklis {15] among others.
In particular, Ramm studied the integral equation governing the optimal linear
filter for estimating a general random field given some observations, while Levy and
Tsitsiklis developed efficient Levinson-like recursions for computing the optimal
smoothing filter for the case where both the field of interest and the observations
are isotropic. Here, in contrast, we develop a recursive, differential-model-based
estimation technique for the smoothing problem for 2-D isotropic random fields.
The difference existing between our approach and that of [15] and [20] is therefore
the same as that existing between Kalman and Wiener filtering methods in 1-D
estimation theory. Specifically, we consider the smoothing problem for isotropic
random fields 2(7)! having an internal differential realization involving the Laplacian
operator. The motivation for studying a model of this form is that any isotropic
process that can be obtained by passing 2-D white noise through a rational linear
filter has an internal realization of this type (see Section 2). Another motivation for
considering such a model is that it can be used to describe a large class of physical
phenomena such as the variation of the electric potential created by a random charge
distribution.

An important property of 2-D isotropic fields is that when they are expanded
in a Fourier series in terms of the polar coordinate angle 8, the Fourier coefficient

processes of different orders are uncorrelated [26]. Given noisy observations of

! Throughout this paper we use 7 to denote a point in 2-D Cartesian space. The polar coordinates
of this point are denoted by r and 6.
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the isotropic random field z(¥) over a finite disk of radius R , our approach is to
reduce the 2-D smoothing problem to a countable set of decoupled 1-D smoothing
problems for the uncorrelated Fourier coefficient processes z;(r) corresponding to
the process z(7). Using the internal model of the process z(¥), 1-D state space two-
point boundary value (TPBV) models are constructed for the Fourier coefficient
processes . The resulting 1-D TPBV smoothing problems are then solved using
either a Markovianization technique which transforms the non-causal state-space
model to a causal one to which standard 1-D smoothing techniques can be applied,
or directly by using the method of Adams et al. [2]. Finally, the best linear least
squares estimate of z(7) given the observations is obtained as a properly weighted
combination of the 1-D smoothed estimates of all the Fourier coefficient processes
zx(r) . Observe that by properly exploiting the structure of isotropic random fields,
a recursive solution to the smoothing problem for a non-causal isotropic process has
thus been constructed . The recursions here are with respect to the radiusr in a
polar coordinate representation of the fields.

This paper is organized as follows. In Section 2, we introduce an internal
differential model for the class of 2-D isotropic fields to be studied and show that
this class includes isotropic random fields which can be represented as the output
of rational 2-D filters driven by white noise. In Section 3, the smoothing problem
for the isotropic random field 2(¥) given noisy measurements over a disk of radius
R is defined and is reduced to a countably infinite set of decoupled 1-D estimation
problem. Two-point boundary value models are then developed to describe the
1-D estimation problems. Section 4 outlines two solutions to the 1-D two-point
boundary value smoothing problems of Section 3. In Section 5 we briefly discuss
some implementation issues. Finally, in Section 6, we study the asymptotic behavior
of the differential models introduced in Section 3 as the radius R of the disk of
observations tends to infinity. In particular, we show that the filters that we use to

solve the 1-D estimation problems are asymptotically stable.
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2 INTERNAL MODEL

A Differential Model

The class of random fields considered in this paper is described over the plane
R? by the differential model

Il

(I,V? — AY)z(7) Bu(7) (2.1)
2(7) = Cazf(7) (2.2)

with the asymptotic condition
E[z(F)zT(3)) =0 as |F— 3] — co. (2.3)

Here, z(¥) € R™ , u(f) € R™ , 2(¥) € R?, and A , B, and C are real matrices
of appropriate dimensions. The eigenvalues of the matrix A are assumed to have
strictly positive real parts. This assumption insures that there exists a solution
z(7) to (2.1) that obeys the asymptotic condition (2.3). In equation (2.1) u(7) is a

random zero-mean two-dimensional white Gaussian noise process with

E[u(F)u”(3)] = In6(F - 3), (2.4)

where I, is the m X m identity matrix.
From an input-output point of view equations (2.1)-(2.2) together with the

asymptotic condition (2.3) are equivalent to the representation

1 - -
—_ F— ol ! 7 2
z(f) = oy /R2 Ko(A|F —r'|)Bu(r')dr', FER (2.5)
27 = Ca( (2.6
where drf = dz'dy' denotes an element of area. Here, Ky(Ar) denotes a ma-
trix modified Bessel function of the second kind and of order zero [4]. In fact,
G(7,5) = L£Ko(A|F — §]) is the Green’s function associated to the differential

equation (2.1), i. e. G(7,3) satisfies the equation

(I.V? — A%)G(F,5) = —I,6(7 - 3) 2.7)



2 INTERNAL MODEL 6

for 7,5 € R?, with the asymptotic condition
G(7,3) -0 as |[F—3§|— oo. (2.8)

Matrix modified Bessel functions of the first and second kinds arise naturally in
the study of rational isotropic random fields. A brief discussion of some of their
properties appears in Appendix A. (For more details see [4] and the references
therein).

The main property of the process z(7) defined by (2.1) and (2.3) is that it is a

2-D rational isotropic random field as is shown below.

Theorem 2.1 The process z(¥) defined by equation (2.1) together with the asymp-
totic condition (2.3)is an tsotropic random field, i.e. its autocorrelation function
R,(7,3) = E[z(7)zT(3)] is invariant under translations and rotations.
Proof
We will first show that R,(,3) is invariant under translation. From (2.5) we have
R(75) = Ela()a’(3)] (29)
1

e /Rz Ko(A|F — @) BBT Ko A|5 — @) di (2.10)

Now perform the transformation

T=d+h (2.11)
to obtain
) 1 L e
R(78) = /m Ko(A[F + h — 7)) BBT Ko(A|5 + h — 7)) d7. (2.12)

This shows that R,(7,5) is invariant under translation. Using this fact, we can write

R, (7,8) = R,(¥,0) (2.13)
where ¥ = ¥ — 5. Hence,
L 1 I o
R.(7,9) = L [, Ko(Als— @) BB"Ko(4])) d2 (2.14)
= 4—,113 /R, Ko(A(v? + u® — 2uvcos(d — ¢))3) BB Ko(Au) di

(2.15)
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where v = (v,¢) and @ = (u,0). Letting o = ¢ — 0, we conclude from the above

equation and the periodicity of cos a that
2x oo
R.(7,3) = Z};/ / Ko(A(v? + u? — 2uvcos ) 3) BB Ko(Au)ududa  (2.16)
o Jo

oo

Theorem (2.1) implies also that the output process z(7) is isotropic with auto-

correlation function
R,(F,5) = CR,(7,5)CT. (2.17)

Since R.(-) is translation-invariant we can define its spectral density matrix SZ(X),
which is the 2-D Fourier transform of R.(7) :

S.(0 = [, Rulf)e " aF (2.18)
= or /0 ” Ra(r)Jo(Ar)r dr (2.19)
= (AL, + M)'BBT(\'I, + MT)™? (2.20)
= S,(%), (2.21)

where we have taken advantage of the circular symmetry of R,(7),and where
M = A?. Here M7 denotes the transpose of M. Observe that S,(\) is rational
in A, the magnitude of X. Furthermore, the poles of the spectrum S;()), obtained
by setting p = 7 in (2.20), have a quadrantal symmetry property when plotted in
the complex p-plane. Another important property of the process z(r) that follows
from equation (2.20) is that z(7) is pseudo-Markovian of order 1 [19], i.e. the value
of z(¥) inside a closed curve T is independent of the value of z(7) outside I' given
the value of z(¥) and of its normal derivative along I'. In the sequel, we shall make

extensive use of the isotropic and pseudo-Markovian nature of the process z(r).

B Motivation

The motivation for considering model (2.1)-(2.3) is that it can be used to
describe a large class of physical phenomena such as the variation of the electric po-

tential created by a uniformly distributed random sources in a lossy medium, where
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the loss is described here by A%. Another important motivation for considering such

a model is given in the following theorem.

Theorem 2.2 Any isotropic process that is obtained by passing 2-D white noise
through a rational and proper 2-D circularly symmetric linear filter has an internal
realization of the form (2.1)-(2.2).

Proof
Consider the scalar 2-D random field z(¥) described by the partial differential

equation 5 8 3 3
—_ = — — 2.
Pl 3)o(7) = Qs o)ul?) (222)
where () is a 2-D white noise process of intensity I,,. Here, P(sy,s;) and Q(sy, s3)
are 2-D polynomials in the variables s; and s,. Equation (2.22) implies that z(7) is

the output of a rational 2-D filter H(X) driven by the noise process u(F), where

™ Q(JAhJAz)
H )\ = —— 2.23
) P(5)1,52) (223)
The spectrum of 2(7) is given by
S.(X) = [H(X)[%. (2.24)

In (28], Yadrenko shows that the process z(F) is isotropic if and only if the 2-D
polynomials P(-,-) and Q(-,-) are functions of A = (A? + A2)'/% only, i.e. if P(,")
and Q(-,-) are of the form

P(GA,5A) = En:pk(—-z\z)" (2.25)
= ;:?—A”) (2.26)
QUidiride) = zi:qk(-mk (2.27)
= Q—z—/\z). (2.28)

In this case, the model (2.22) reduces to

P(V*)2(7) = Q(V*)u(). (2.29)
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Furthermore, if n > ¢, by writing

H(-)Y) = %—E—:—iz—; (2.30)
= C(-XI,-M)'B (2.31)

and using any of the standard 1-D state-space realization techniques with the
variable s replaced by A? and the operator 4 by the operator V?, we can obtain a

state space realization of 2(7) in the form (2.1)-(2.2).

ao

We see therefore that the class of random fields with an internal differential real-
ization of the form (2.1)-(2.2) is quite large. It is, in fact, the analog of the class
of 1- D stationary processes which are obtained by passing white-noise through a
finite dimensional, linear time-invariant filter.

Finally, note that in [20], Ramm has investigated the solution of a set of integral
equations that arise in the study of input-output estimation problems for a class of
random fields that includes all 2-D isotropic random fields with an internal differ-
ential realization of the form (2.1)-(2.2). In particular, Ramm gives a procedure for
constructing the optimal linear smoothing filter for estimating random fields in the
class that he studies given noisy observations of such fields. As mentioned earlier,
we consider here a different problem. Specifically, we are interested in developing a
recursive differential model based procedure for computing the linear least squares
estimate of the field 2(¥) over the disk r < R given noisy observations of z(-)
over that same disk. In the next section, we compute estimates of z(:) directly
- (i.e. without ever writing the estimate in integral form), by properly exploiting the
internal realization (2.1)-(2.2) of the field z(:).

C Model over a Finite Disk

Over the finite disk Dp = {¥ : r < R}, the field z(¥) defined by
(2.1)-(2.3) or alternatively by the integral representation (2.5) can be modeled by
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(2.1)-(2.2) together with a suitable boundary condition on the edge I' of Dg. In
addition to well-posedness, we would like to specify this boundary condition so that
it is independent of the noise u(7) inside the disk Dg. This will allow us later to
directly apply the results of Adams et al. [2] for the estimation of boundary value
processes. We shall call a boundary condition that satisfies the above conditions an

admissible boundary condition. An admissible boundary condition can be specified

as follows.

Theorem 2.3 An admissible boundary condition for the process z(F) over the disk

Dpg 1s given by

[ [G(é,s')gz-(s) - (‘;—i(é,a)x(a] dl= B(R,9), 0<0 < 2r (2.32)
where T is the circle of radius R, G(F,5) = 5= Ko(A|F — 3§]), and
EIB(R,0)] = 0 (2.33)

E[ﬂ(Ra 0)r6T(Ra ¢)] = Hﬂ (R; 60— d’)
= S L(AR)L, (R)IT(AR)*O—9  (2.34)

k=-o00

with
1, (R) = 51; fR ” Ki(As)BBT Ky(As)s ds. (2.35)

Here, ;,Q; and dl denote respectively the normal derivative with respect to I' and an
infinitesimal element of arc length along I'. The functions Iz(Ar) and Kj(Ar) are
matrix modified Bessel functions of the first and second kind respectively, and of
order k (see Appendix A and [4]).

Theorem (2.3) is proved in Appendix B, where by repeatedly applying Green’s
identity it is shown that the boundary condition (2.32) leads to a well-posed problem
and that the process z(¥) given by (2.5) is the unique solution to
eq. (2.1) with the boundary condition (2.32). It is further shown that the boundary
process 3(R,0) is independent of the noise u(7) for r < R . Since we are primarily
interested in the smoothing problem for the field z(¥) over the finite disk Dg, we
shall assume throughout the remainder of this paper that z(7) is described by the
model (2.1)-(2.2) together with the boundary condition (2.32) or equivalently by
equations (2.5)-(2.6).
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3 THE SMOOTHING PROBLEM

A Problem Statement
Let
y(f) = 2(F) +v(F), 7€ Dr (3.1)

with Dg = {7 : r < R}, be noisy observations of the isotropic field z(7) defined by
the internal model (2.1)-(2.2) together with the boundary condition (2.32). Here,
v(7) is a two-dimensional white Gaussian noise field of dimension p uncorrelated

with u(7) and 8(R, 8), and with intensity V, where V is a positive definite matrix.
Thus,

Ep(®u@)] = 0 (3.2)
E[(7B7(R,0)] = 0 (3.3)
E[o(Mo?(3)] = V6(F-3) (3.4)

where §(7) denotes a two-dimensional delta function. The estimation problem that

we consider here consists in computing the conditional mean
3(FIR) = Bl2(A)| y(5) : 0< s < B (3.5)

for all ¥ € Dg.

B Solution via Fourier Series Expansions

Following [15], our estimation procedure relies on the Fourier series expansions

of the observation, signal and observation and process noise fields, e. g.

f(r,6) = _fj fulr) &, (3.6)
filr) = 51; fo " (r,0)e=4 4o (3.7)

where f(-) stands for y(-), 2(:), z(), u(-) or v(:). Note that the Fourier coefficient

processes y(r), 2x(r), ux(r) and vx(r) are one dimensional processes. Substituting
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the Fourier series expansions of y(-), 2(-), and v(:) into (3.1) yields
yi(r) = zi(r) + vi(r), 0<r<R. (3.8)

The main feature of this approach is that the Fourier coefficient processes of different

orders are uncorrelated, i.e.
Elox(r)vf(s)] =0, for k #1 (3.9)

where a(-) and ~(+) stand for y(:), 2(:), z(+), u(+) or v(:). Consequently, our original
two-dimensional estimation problem requires the solution of a countable set of
decoupled 1-D smoothing problems for the Fourier coefficient process zx(r) given
the observations yi(s) over the interval 0 < s < R. Once the smoothed estimates
2x(r|R) = E|zk(r)|ye(s) : 0 < s < R] are found, 2(7|R) may be computed as

(o0}

2(FIR) = > z(r|R)e&™ (3.10)

k=—o00
where the equality in (3.10) is to be understood in the mean-square sense. In
practice, of course, one would consider only a finite number N of the above one

dimensional estimation problems. We shall have more to say about this point in

Section 5.

C State-Space Models For The Fourier Processes

Using the internal model (2.1)-(2.2) and (3.1) for the process z(¥) and the obser-
vations y(7), 1-D state-space two-point boundary value models can be constructed

for the Fourier coefficient processes zx(r) and yi(r) as follows.

Theorem 3.1 A two-point boundary value (TPBV) model describing zx(r) and
yk(r) over the interval [O,R] is given by

€xk(r) ]

nk(r)

a4
dr

—rIy(Ar)B
rKk (Ar) B

uk(r) (3.11)

& (r) J
nk(r)

ye(r) = zi(r) + ve(r), (3.13)

Il

zi(r) [CKi(Ar) CI(Ar)] (3.12)
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with the boundary conditions
£(0) =0  with probability 1 (3.14)

and
”k(R) ~ N(O’ an (R)) (3'15) :

where Il (R) ts given by equation (2.85). Here, ux(r) and v(r) are two one-

dimensional zero-mean white Gausstan noise processes with covariance

[ ue(?) ] (w2 (s) v{(s)l} -

vg(r)

I 0
oV

§(r — s)
2rr

E (3.16)

Note that the TPBV model dynamics (3.11) are extremely simple, consisting of a
gain matrix multiplying the input noise process ui(r). This is to be contrasted with
the more complicated dynamics of an equivalent Markovian model for z;(r) that we

shall develop in the next section.

Proof
To derive equations (3.11)-(3.13), we shall use the following identity [4]

Ko(AlF—-35]) = zk: I(Ar<) Ky (Ars) cos(k(8 — @) (3.17)

where ¥ = (r,0), § = (s,¢), r< = min(r,s) and r> = max(r,s). Upon multiplying
both sides of (2.1)-(2.2) and (3.1) by e ’**/27 and integrating from 0 to 27, we
obtain

zk(r) = —Ki(Ar) /Dr I (As)Bug(s)sds
— I(4r) / ” Ku(As)Bux(s)s ds (3.18)
z(r) = Cxzi(r) (3.19)

and

yr(r) = zi(r) + v(r). (3.20)
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Define the state variables &(r) and ni(r) by

€x(r) = ——/(;r I.(As)Bug(s)sds (3.21)

and
ne(r) = — /roo K (As)Bug(s)s ds. (3.22)

Then, it follows from (3.18)-(3.22) that a TPBV model describing yi(r) over the
interval [O,R] is given by the system (3.11)-(3.13).

oo

Note that the boundary condition for the process 7, (r) follows directly from the
boundary condition (2.32) for the process z(r) upon recognizing from
identity (B.8) that

B(R,0) = fj I.(Ar)ni(R) €%, (3.23)

k=—o00

Note also that the TPBV model (3.11)-(3.15) is well-posed, since 2zx(r) can be

expressed uniquely in terms of ui(r) and ni(R) as
a(r) = —C(Ku(Ar) fo " I.(As) Bux(s)s ds
R
+ Iy(Ar) [ Ki(As)Bup(s)sds + I(Ar)me(R))  (3.24)

Furthermore, observe that n;(R) is independent of ux(r) for r < R.

4 1-D SMOOTHERS

In this section we discuss two solutions to the 1-D TPBYV smoothing problems for
the Fourier coefficient processes. The first solution is based on a Markovianization
procedure followed by standard 1-D smoothing techniques, while the second solution
is a direct application of the method proposed by Adams et al. [2]. Conceptu-
ally, the difference between the two approaches lies in the way they deal with
the boundary conditions for the smoother. In the method of Adams et al. the
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boundary conditions are replaced initially by zero boundary conditions and a two-
filter smoothing formula with simple dynamics is used. Once all the measurements
yk(r) have been processed, a second step is required to take the true boundary
conditions into account. On the other hand, the Markovianization approach deals
with the boundary conditions directly as the measurements are processed. It does
so by properly incorporating the boundary conditions into the dynamics of the

estimator, a step that results in a more complicated smoother implementation.

A The Markovianization Approach

-As mentioned earlier, the main feature of the TPBV model (3.11)-(3.15) de-
scribing the k** order Fourier coefficient is that it is separable, i.e. the boundary
conditions £(0) and nx(R) are decoupled (cf. [13]). Hence, a Markovian model of
the same order as the model (3.11)-(3.15) can be constructed for zi(r) by reversing
the direction of propagation of n(r) using a technique introduced by Verghese and

Kailath [24] for constructing backwards Markovian models. Let
F¥=o{m(s), 0<s<r} (4.1)
be the sigma field generated by the process nx(s) over the interval [0,7]. Then
te(r) = Elu(r)|7]
= Elug(r)ni () E[ne(r)ni ()] ne(r)
1 -
- —E;BTKk(Ar)Hn:(r)nk(r), (4.2)
where )
My (r) = 5= / Ki(As)BBT KT (As)s ds, (4.3)

and where we have assumed that II,, (r) is non-singular. The process #x(r) defined
by

i (r) = ur(r) — @x(r) (4.4)
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is then an 7* - martingale with the same intensity I,,/27r as ux(r). Substituting
(4.2) and (4.4) into (3.11)-(3.15) yields the forward-propagating model

d [ Ek(r)] _ [0 G [Ek(r) J . [ ~rh(4nB | .
dr k() 0 Fi(r) nik(r) rK(Ar)B
(4.5)
Yp = [CK),(AT) CIk(AT)] j:i:; + vk(r), (4.6)
with
Elug(r)] = 0 (4.7)
Elve(r)] = 0 (4.8)
ar(r) | . | I 0 |é(r—ys)
sl w0 e wal| - [0 ]%552 e
and where
Gi(r) = Er;zk(Ar)BBTK{(Ar)n;; (r) (4.10)
and
Fi(r) = --ZI;Kk (Ar)BBT KT (Ar)II7 (r). (4.11)
The initial conditions for the state-space model (4.5) at r=0 are given by
{ &(r) ] ~ N(0,11,(0)) (4.12)
n(r)
with
I (0) = g I 0(0) J , (4.13)

where we have used the fact that
Bl&.(0)nE (0)] = o. (4.14)

Here, 7§ (r) denotes the complex conjugate transpose of n;(r) . The smoothing
problem associated with the system (4.5)-(4.6) over [O,R] is a standard causal
smoothing problem and can be solved using any of the 1-D smoothing techniques
such as the Mayne-Fraser two-filter formula [16], [8], or the Rauch-Tung-Striebel

formula [21], among others.
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B The TPBYV Smoother Formulation

Directly applying the results of [2] to the TPBV model (3.11)-(3.15), we find
that the smoothed estimates of &(r) and n,(r), &x(r) and fjx(r) respectively, satisfy
the following Hamiltonian TPBV system

[ gk(r) ] [ ék(")
a | M(r) | _ 0 wBBT | | ) | 0
dr | A(r) 2nrCTV-1C 0 Ak(r) —27rCTV "y, (r) ’
| &(r) | | 8(r)
(4.15)
where
BT = [—rBTIF(Ar) rBTK,(Ar)] (4.16)
C - [CK];(A?') CI],(AT)], (4.17)
and with the boundary conditions,
&(0) = o, (4.18)
5%(0) = o, (4.19)
W(R) = o, (4.20)
S(R) = —TI}(R)M(R). (4.21)

An alternative way of deriving the Hamiltonian system (4.15) is to note that, since
z(¥) is described by the model (2.1)-(2.2) with the boundary condition (2.32), then
according to Adams et al. [2], the 2-D smoothed estimate of z(7), Z(7|R), satisfies
the Hamiltonian system

(I,V? — M)%(FlR) = BBTO(F|R) (4.22)
(V2 ~ MT)B(FIR) = CTV~'(y(7) - C3(7IR)) (4.23)
with the boundary condition [2]

£(R'|R)
2 3(R|R)

N . o

S(BIR) (4.24)
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where B = (R,0) and B = (R,¢). In the above identity, if L5(T') denotes
the space of k£ vector functions which are square-integrable over I', the operator
V : L2*(T') — L3(T) is such that for

f(R) = [fI(R) fF (R (4.25)
we have s
(V) (R) = /P (5B BN A(B) + G(R, B) (8] at (4.26)

where G(R, R') = L Ko(A|R — R'|) and where d! denotes an element of arc length
along T'. In (4.24) the operators V* and II,;1 denote respectively the Hilbert adjoint
of the operator V and the inverse of the correlation operator associated to the kernel
IIg(R; 6 — ¢) defined in eq. (2.35). If we introduce the variable

¥(7|R) = 27rO(F|R) (4.27)

and substitute the Fourier expansions of £(7|R) and ¥(F|R) into (4.22)- (4.23) we

obtain the following Hamiltonian system for the k** order Fourier coefficient process

(L + 12 K mpnrir) = —_BB"h(rR)  (429)
@ d1, K. o .
(In('de'—E;[;. —-13) -M )¢k(T|R) = 27mrC'V
(yk(r) — C2i(r[R)).
(4.29)
By properly selecting the state variables
B(r) = rdir(lk(Ar)):%k(rlR) —rI,,(Ar)dirzk(ﬂR), (4.30)
blr) = —ra(Ka(4r))Ba(r|R) + rKu(dr) S5, (s(B), (4.31)
au) = (N aTRT(4r) - KT, (4n)(r1B)
— ATKT(4r) di’r-zz,,(rm) (4.32)
b = (B a2 () 4 I, (4r) el B)

— AT (4r) %17;,, (r|R) (4.33)
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it can be shown that the second order Hamiltonian system (4.28)-(4.29) has the
realization (4.15).

The Hamiltonian TPBV system (4.15) for the smoother with the boundary
conditions (4.18)-(4.21), can be solved efficiently by using the procedure proposed
by Adams et al. (see [2] for details).

Once the smoothed estimates gk(r) and 7;(r) have been computed for all k, the

smoothed estimate 2(7]R) of z(F) can be found as

BAR) = 3 C(Ku(Ar)&u(r) + Lu(Ar)an(r))e™. (4.34)

k=-—o00

5 IMPLEMENTATION ISSUES

In this section we briefly discuss some implementation issues. Specifically, we
examine the problem of truncating the series (3.10) and the problem of implement-

ing the 1-D smoothers of Section 4.

A Truncation of the Series Representation of the Smoothed

Estimate

The smoothed estimate 2(7|R) is given by equation (3.10) as an infinite sum
of the 1-D Fourier coefficient processes smoothed estimates 2;(r|R). In practice, of
course, one would consider a finite set of 1-D smoothing problems and one would
approximate the series (3.10) by the finite series

an(f) = Y. Z(r|R) €. (5.1)

k<N
Note that, with 2y (¥) = 2(F) — 2~ (F) and with Z(r) = 2¢(r) — 2¢(r|R), we have
Elzn(A)zy (7)) = ITL Elz(r)z ()] + ’HZNE[zk(T)Zf (r)]- (5.2)

As r tends to zero, the matrix E[z;(r)zf (r)] tends to zero as r? for k # 0. Fur-

thermore, as r tends to infinity, the matrix E[z;(r)zf(r)] tends to zero as r~! for
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all values of k. Hence, in order to keep the variance of the estimator error small,
the number 2 N + 1 of terms to be used in (5.1) should increase with the distance
between the origin and the point where z(7) is to be estimated. If r is small, one
can use very few terms in (5.1) and still obtain a good estimate of 2(7). In fact, for
r = 0 one needs only the zeroth order Fourier coefficient process smoothed estimate,

20(0), in order to compute 2(0|R) exactly.

B 1-D Smoother Implementation

At first glance the implementation of the 1-D smoothers of Section 4 poses some
- problems since the models (3.11)-(3.13) and (4.5)-(4.6) are not well behaved in the
vicinity of r = 0 for k # 0. This can be seen from the singularity of Ki(Ar) at
r = 0, and is not surprising since the Fourier series decomposition degenerates at
the origin. We now show that this is of no practical consequence. In practice, to
compute 2(¥|R) we divide the intervals [0, R] and [0, 27| into M and N subintervals of
length A, = R/M and A; = 27 /N respectively. As a result, the Fourier coefficient
processes yi(r) are available at the positions r = mAy, 0 < m < M. The 1-D
smoothed estimates Zx(r|R) are then found by discretizing the smoother equations
corresponding to models (3.11)-(3.13) and (4.5)-(4.6). In particular, for k # 0 we
consider the 1-D discretized smoother implementations for 1 < m < M. Note that,

since 2x(0) = 0 and y;(0) = O with probability one for k # 0, then
2(A1]0) =0, k#0. (5.3)
Thus,
Elzr(mAy)|yk(lA1) : 0 <1l < M| = E[zx(mA)|ye(lA,) : 1 <1< M) (5.4)

for k # 0. For k = 0, the models (3.11)-(3.13) and (4.5)-(4.6) are well behaved at
r = 0. Hence, we solve the 1-D discretized smoothing problem for the zeroth order
Fourier coefficient for 0 < m < M. Observe that the zeroth order Fourier coefficient

process is the only process needed to compute 2(0|R). Consequently, in practice,
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the smoothed estimate of 2(mA;,nA,) is computed as

2(0) ifm=0
2(mAy,nl,) = Z Zx(mAy) e’**82  otherwise, (5.5)
[k|I<K

where
Elzg(mA)|yo(ld,) : 0<I< M| k=0

(5.6)
Elzzg(mAy)|ye(lA1) : 1<I< M| k#0,

:‘zk(mAl) = {

and where K is some number suitably chosen (see the previous section).

6 ASYMPTOTIC BEHAVIOR OF THE DIFFER-
ENTIAL MODELS AT INFINITY

The Fourier coefficient processes zi(r) have a finite variance for all r € R since
by definition z(¥) has finite variance over the whole plane (see Section 2.) Hence, the
optimal estimator for the Fourier coefficient process zx(r) written in integral form,
must have a well-behaved kernel for all r. However, as we have already discussed,
there is an issue to be addressed in examining the estimator as r tends to zero,
as all Fourier coefficients except the zeroth-order one approach zero. There is also
a similar issue to be faced for large values of r. In particular, as we will discuss,
our earlier analysis shows that the variance of any individual Fourier coefficient
decreases as r~! as r tends to infinity. This has two implications. The first is that
in order to obtain an accurate estimate for large r, one must retain a large number
of terms in (3.10). The second is that one must develop a method to implement
our Fourier coefficient estimators that is well-behaved as r tends to infinity. As
one might expect, this will involve a scaling of the Fourier coefficients to obtain a
well-posed estimation problem for large r.

The need to do scaling can be seen immediately in (3.11)-(3.13) and (4.5)-(4.6)
which are not well-behaved as r tends to zero or infinity. This ill-behavior is due
to the singularity of Ki(Ar) and Ix(Ar) as r tends to zero and infinity respectively
[1], [4]. In Section 5, we discussed a strategy for dealing with the singularity of




6 ASYMPTOTIC BEHAVIOR . 22

the models (3.11)-(3.13) and (4.5)-(4.6) as r tends to zero. Here, we introduce
differential models for the Fourier coefficient processes that are well-behaved as r
tends to infinity. These models show that we can interpret the Fourier coefficient
process yi(r) as being the output of a cascaded system which is driven by non-
singular noise processes. The cascaded system consists of a system which is well-
behaved as r tends to infinity followed by a gain stage with a gain of r~1/2 as
shown in Fig. 1. For large values of r, we use these models to obtain smoothed
estimates of the Fourier coefficients z;(r) by feeding the observations yi(r) into an
input gain stage with a gain of /2 followed by the smoothing filter associated to the
models that we develop and an output gain stage with a gain of r~1/2, as is shown in
Fig. 2. In the sequel, we show that the smoothing filter corresponding to the center
block in Fig. 2 can be implemented by using asymptotically stable Kalman filters.
Furthermore, the asymptotic forms of these Kalman filters are tdentical for all of

the Fourier coefficients and also lead to an important spectral factorization resuit.

A Models

The models that we develop are obtained by applying the state transformation

xe(r) = Ti(r) [5:23 } (6.1)
Ki(Ar) I (Ar)

Tulr) = —Kp1(Ar) L1 (Ar)

(6.2)

to models (3.11)-(3.13) and (4.5)-(4.6), followed by a normalization of all the pro-
cesses. The normalization consists in multiplying all processes by r1/2, which forces
the intensity of the noise processes to be a constant.

Note that by using (3.12) we can identify

zi(r) } _

Xk(r) = A—l(%zk(r) — "fl'k(r))

(6.3)
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Uy (r),%(r) System Yilr)
—_—— -

(3.5.13)-(3.5.14)

|
Y

Figure 1: A model for y;(r) for large values of r.

<>

y, (r K f(r)
k ﬁ_ | alman k

k(')

psm— o

Filter Jr

Figure 2: Filtering procedure for large values of r.
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Note also that the transformation Tj(r) has the properties that

d 1 A

FB0 = | gy | B0 (64)

T,;'l(r) S AI],+1(A1‘) —AI,,(Ar) ) (6.5)
AKi+1(Ar) AKi(Ar)

Identities (6.4)-(6.5) can be derived by using the recurrence relations for modified
Bessel functions [1], [4] and the Wronskian identity [1], [4]

Li11(Ar) Ky (Ar) + I(Ar) Ky i (Ar) = A7 7L (6.6)

If we apply the state transformation Ty(r) to the model (3.11)-(3.13) and if we

introduce the normalized processes

&k(r) = vrou(r) (6.7)

where a4(r) stands for xi(r), u(r), ye(r) or vi(r), we obtain

T3l = (Axlr) + 2)xalr) + Baalr) ©4)
B(r) = Cxu(r) +w(r) (6.9)
where
Ak(r) = Lj _Q';QI (6.10)
B = A_OIB (6.11)
C = {b 0], (6.12)

and where we have used (6.4)-(6.5). In (6.8)-(6.9) @i(r) and Ti(r) are two un-
correlated zero-mean Gaussian noise processes with intensities I/27 and V/2x
~ respectively. Hence, (6.8)-(6.9) does not lead to a singular estimation problem.

Similarly, by using the state transformation T;(r) and normalizing all processes
we find that model (4.5)-(4.6) is transformed to

L5alr) = (440) + 2 )xe(r) + BEaly) (6.13)

g(r) = Cxulr) +oe(r) (6.14)
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where
£ A
) = r 6.15
() A+ Dy(r) —%0T 4 Ey(r) (6.15)
Di(r) = —-E:Y—A”IBBTKZ(Ar)H;:(r)KkH(Ar)A (6.16)
Ei(r) = —EEr-A‘lBBTK;f(Ar)II;:(r)Kk(Ar)A, (6.17)

- and where % (r) and i(r) are two uncorrelated zero-mean Gaussian noise processes
with intensities /27 and V /27 respectively.

Let us now make two comments. First observe that the transformation T}(r), its
inverse T} *(r) and the normalization gain r'/? blow up as r tends to infinity. (The
transformation T}(r) and its inverse T; *(r) blow up as r tends to infinity because of
the singularity of the matrix functions I;(Ar) as r tends to infinity.) However, the
normalized processes that appear in (6.8)-(6.9) and (6.13)-(6.14) are well-behaved
and have a finite non-zero variance as r tends to infinity. In fact, by using the
asymptotic forms of K;(Ar) and I;(Ar) as r tends to infinity (cf. Appendix A) and

using equation (6.1), it can be shown that the process xi(r) has a variance that

1

tends to zero as r~' as r tends to infinity. Furthermore, recall that the intensity of

the noise processes ui(r) and vi(r) is also proportional to r~!. Hence, the variance
of all the Fourier coefficient processes tends to zero as r~! as r tends to infinity. This
is precisely the reason why we have to keep a very large number of terms in (3.10)
to obtain meaningful results as r tends to infinity. Note that this also implies that
all the normalized processes are well-behaved with variances and noise intensities
that tend to a finite constant as r tends to infinity. Second, note that as mentioned
earlier, the models (6.8)-(6.9) and (6.13)-(6.14) can be used to obtain smoothed
estimates of the Fourier coefficient processes z(r) for large values of r by feeding
the observations yi(r) into an input gain stage with a gain of r1/2 followed by the

smoothing filter associated to (6.8)-(6.9) and (6.13)-(6.14) and an output gain stage
with a gain of r~1/2,
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B Asymptotic forms

We now turn to the examination of the asymptotic behavior of models (6.8)-
(6.9) and (6.13)-(6.14) as r tends to infinity. Not only will this provide us with the
basis for a stability result for our Kalman filter implementation but it also yields a
spectral factorization result for the random field. To begin, we note that as r tends
to infinity the modified Bessel functions Kj(Ar) and Iz(Ar) have the asymptotic

forms [1]
L(Ar) ~ (2mAr)~3e?" (6.18)
Ki(Ar) ~ (-zi-::)“%e"A’. (6.19)

Hence, if we assume that the pair (A4, B) is controllable we obtain

lim Dy(r) = lim —A7'BBTe™4™"( / ” ¢4 BBTe~4™1 ds) e A7 A

= —A7'BBTQ7'A
= D, (6.20)
where @ is the matrix
Q =/ e 4*BBTe 4" ds. (6.21)
0

Note that since —A is a stable matrix and since the pair (A, B) is controllable then

@ is the unique positive definite solution of the matrix equation [5]

— AQ — QAT + BBT =o. . (6.22)
Similarly, we have
lim Ex(r) = D. (6.23)
Thus, as r tends to infinity the TPBV model (6.8)-(6.9) takes the form
d - -
5Xk(r) = Axe(r) + Bux(r) (6.24)
Gi(r) = Cxu(r) + ve(r) (6.25)
where
a=|% 41, (6.26)

A DO
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whereas the Markovian model (6.13)-(6.14) takes the form

2xalr) = Axul) +BUs) (6.27)
B(r) = Cx(r) +u(r) (6.28)
where
v=| ° 4 (6.29)
A+D D

Note that the asymptotic models (6.24)-(6.25) and (6.27)-(6.28) imply that the
models (6.8)-(6.9) and (6.13)-(6.14) are well-behaved as r tends to infinity. Note
also that the asymptotic models (6.24)-(6.25) and (6.27)-(6.28) are space tnvariant
models that do not depend on the order & of the Fourier coefficient process under
consideration. This reflects the fact that as r tends to infinity all the Fourier
coefficient processes have an equal importance in the sense that we would have to
retain a very large number of terms in (3.10) to obtain meaningful results, as was
already observed in Section 5. This also implies that for large values of r, we can

use the same filter to obtain smoothed estimates of all the Fourier coefficients.

C Stability analysis

We now show that the stability of the matrix A’ implies that the Kalman filter
associated with (6.13)-(6.14) is stable. To do this we will need the following lemma
which is an adaptation of a result of Coddington and Levinson ([7], p. 314).

Lemma 6.1 Let
= Az + f(t,z) (6.30)

where A is a real constant matriz with eigenvalues all having negative real parts.

Furthermore, let f be real, continuous for small |z| and t > 0, and such that
fit,z) =o(|z]) as |z|]—0 (6.31)

uniformly in t, t > 0. Then, the system (6.30) is ezponentially stable in a neigh-
borhood of z = 0.
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Proof

Let ¢(t) be a solution of (6.30). So long as ¢(t) exists, it follows from (6.30)
that

#(t) = e*4(0) + /: A0 £ (s, ¢(s)) ds. (6.32)

Because the real parts of the eigenvalues of A are negative, there exists positive

constants K and o such that
le*| < Ke™® for t>0. (6.33)
Hence, we have
8] < KI$(0)]e™ + K [ 69| 1(s, 4(5))] ds. (6.34)

Given € > 0, there exists by assumption a § > 0 such that |f{t,z)| < €|z|/K for
|z| < 6. Thus, as long as |¢(t)| < &, it follows that

18(0)| < KIg(0)] + ¢ [ e*I6(s)] ds. (6.:35)
This inequality yields
e”[¢(¢)| < K|¢(0)[e, (6.36)
or
|6(8)| < K|$(0)]e* for ¢>o0. (6.37)

The above discussion now implies that if initially |#(0)] < 6/K, then |¢(t)| will

decay exponentially to zero.
aa
Lemma 6.1 can now be used to prove the following result.

Theorem 6.1 The system defined by equations (6.13)-(6.14) is exponentially sta-
ble.
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Proof

The proof follows by writing
AL(r) = A" + A(r)
where A’ is defined in (6.29). By taking f(r,z) in Lemma 6.1 as
f(rxe) = A(r)Xi(r),

and noting that
Jim A'4(r) =0,

we obtain the desired result by invoking Lemma 2.

29

(6.38)

(6.39)

(6.40)

oo

By using Theorem 6.1 we can state and prove the main result of this section.

Theorem 6.2 The Kalman filter associated with the model (6.13)-(6.14) is asymp-

totically stable. Furthermore, the error covariance associated with the normalized

process Xi(r) converges to a non-negative definite matriz P as r tends to infinity,

where P is the solution of the algebraic Riccati equation

where the matriz A' is defined in (6.29).

Proof

The result follows by direct application of Theorem 4.11 of [14].

(6.41)

oo
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D Stable spectral factorizations

Model (6.27)-(6.28) also provides a stable spectral factorization of S,(A). In

particular, observe that the transfer function associated with equation (6.27) is

Wi(s) = A(sI+ A)'(sI—A+A'BBTQ'A)'4™'B
= (sI+ A)™'(sI- A+ BBTQ™)'B. (6.42)

The formula
— A+ BBTQ 1 =QATQ™! (6.43)

(which is easily derived from (6.22)) now shows that —A+ BBTQ~! and A have the
same eigenvalues. Therefore, W;(s) will have its poles in the left half-plane since
all the eigenvalues of A have a positive real part by assumption. Note that this also

implies that the matrix A’ is a stable matrix. Furthermore, observe that

Wy(s)U(s) = Wy(s) (6.44)
where
Wi(s) = (sI+ A)"'(sI—- A)™'B
= (! I- A*)"'B
= (s’ I-M)'B (6.45)
and where
U(s) =I+ BTQ (sl — A)™'B. (6.46)

It is easy to verify that U(s) is a paraunitary or allpass transfer function in the
sense that

U(s)UT(~s) = UT(—s)U(s) = I (6.47)
Hence, we have
Wi(s)W7(=s) = Wi(s)W) (~s)
= (sI+ A)7Y(sI — A)'BBT(—sI — AT)"}(—sI + AT)!
= Sz(A)|r=-js . (6.48)
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Al

which proves that the asymptotic model (6.27)-(6.28) does lead to a stable spec-
tral factorization of S,(A). Finally, observe that the results of [24] imply that
(sI-A+BBTQ"!)"!B is the transfer function of a stable forward Markovian model
corresponding to the stable backwards Markovian model with transfer function
(sI — A)"'B.

7 CONCLUSION

In this paper we have obtained efficient recursive estimation techniques for
isotropic random fields described by non-causal internal differential realizations.
By exploiting the properties of isotropic random fields, we showed that the problem
of estimating an isotropic random field given noisy observations over a finite disk
of radius R is equivalent to a countably infinite set of decoupled one-dimensional
two-point boundary value system (TPBV) estimation problems for the Fourier
coefficient processes of the random field. We then solved the 1-D TPBYV estimation
problems using either the method of Adams et al. {2] or by using a Markovianization
approach followed by standard 1-D smoothing techniques. We have also studied the
asymptotic behavior of the Markovian models that we developed as the radius R of
the disk of observation tends to infinity, and we have shown that the 1-D Kalman
filters associated to these models are asymptotically stable. The smoothing schemes
that we have developed involve recursive structures in which the data is processed
outwards or inwards with respect to a disk of observation as shown in Fig. 3.
Observe that this concept of causality follows naturally form the special geometrical
structure of isotropic random fields.

Note that the approach that we have used in this paper carries over to the case
where the source term u(-) appearing on the right hand side of (2.1) is not spatially
white but has a covariance function which is invariant under rotations only. In

particular, it applies to the case where the field u(-) has a covariance function of
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Figure 3: Outgoing and incoming radial recursions.
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the form

Eu(fu’(3)] = Ki(r,s)Kz(0 - ¢)
= Kl(r,s)Zake"k(a_é), (7.1)

where Kj(r,s) is a positive definite function of the variables r and s which is
assumed to have a finite dimensional state-space realization. In such a case the noise
process u(+) has a Fourier series expansion with uncorrelated Fourier coefficients. By
substituting the Fourier series expansion of u(-) into (2.1) we find that the field z(:)
has also a Fourier series expansion with uncorrelated coefficients. Hence, the 2-D
estimation problem for the field z(-) can be reduced to a countably infinite number
of 1-D estimation problems for its Fourier coefficient processes. Note however that
in such a case the TPBV model (3.11)-(3.13) describing the 1-D Fourier coefficient
processes has to be properly augmented to account for the fact that the processes
ux(r) have covariance functions a;K;(r,s) and must be realized as the output of a
1-D dynamical system driven by white noise.

Several interesting extensions of our results suggest themselves. One of these
is the development of alternate “recursive ” structures. In particular, one can
imagine developing algorithms that process data recursively in the angular direction
as shown in Fig. 4, rather than radially ( see [23] for such an algorithm in a different
setting). Also, note that an important problem of great practical interest which is
special to applications in several dimensions, is the problem of estimating random
vector fields governed, for example , by Maxwell’s equations, the heat equation
or the gravitational field equations. This problem has not yet been considered in
the literature and constitutes a natural generalization of the estimation problem
for scalar fields that we have examined here. A preliminary investigation of 2-D
estimation problems for isotropic random vector fields is currently under way and
is based on the ideas introduced in [10], [29], [22].
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Figure 4: Clockwise and anticlockwise angular recursions.
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APPENDIX A

In this paper, we make frequent use of the matrix modified Bessel functions of
the first and second kinds, Ix(Ar) and Ki(Ar). These functions are a generalization
of the corresponding scalar modified Bessel functions, and they satisfy the matrix

differential equation

(’"(a% + %3"1; - g) _ A F(r) = 0 (A1)
with the limiting forms
L(4r) ~ (k) (G0} (A.2)
Ko(Ar) ~ In(Ar) (A.3)
— 1)1 Ar
Ki(Ar) ~ Q‘—zi‘l(‘-;—)-k, k> 1 (A4)

as r tends to zero, and with the asymptotic forms

L(Ar) ~ (27Ar) 3¢ (A.5)
Ki(4r) ~ (%:l)—%e-m (A.6)

as r tends to infinity. Thus I;(Ar) and K (Ar) are regular at r = 0, and as r tends
to infinity, respectively.

Bessel functions have a number of useful properties which are listed in [4].
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APPENDIX B

‘In this appendix we show that the boundary condition for the process z(7)
given in Theorem (3.3) is independent of the noise inside the disk Dg, where
Dr = {¥: r < R}, and that this boundary condition leads to a well-posed
problem. From Green’s identity, we have

[, GENEV* - £)2(@) - (1Y - A)GFE N &5 =
[166,9) 2-2(8) ~ (o-G(F, )a(®)] d (B.)

where ¥ € Dg, G(7,5) = 5= Ko(A|F—3]), and where £ denotes the normal derivative
with respect to the curve I' = {f: r = R}. Here, dl is an element of arc length

along I'. Equation (B.1) implies that
o) =~ [ G(FHBuE) di + [[GF.5) z(d) - (oG Na(@]d.  (B2)
Dr r ' 'dn on "’
However, from (2.5) z(F) can be expressed as
o(F) = — /D _G(7,3)Bu(3) ds - /D , G(78)Bu(3) ds (B.3)

where D% denotes the complement of Dg in R%. Hence, we conclude from (B.2)
and (B.3) that

.50 R
[16(,9)5-2(3) - (5-G (7 Ma(@) & (B.4)
= /D _ G(7,5)Bu(3) ds (B.5)

®r(7)

and the above identity can be used to specify a boundary condition for z(¥) which
is independent of the noise inside the disk Dg. Specifically, ®r(R,6) depends only
on the noise u(7) outside the disk Dg, and is therefore independent of the noise
inside Dg. Let

B(R,6) = Ba(R,0). (B.6)
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By taking the expression (B.5) into account, and using the expansion [4]

Ko(A|F —3]) = ; Ii(Ar ) Ky (Ars) cos(k(8 — ¢)) (B.7)
where 7 = (r,6), § = (s, 4), r< = min(r, s) and r» = max(r, s), we obtain
SR =~ _fjw 1(4r) [ Ki(49)Bus(s)s ds &, (B.8)
where ) o
u(r) = 5- fo " u(r,8)e"3* dg. (B.9)

Since the random variables ui(s) and w;(s) with k # {, are independent zero-mean

white Gaussian noise processes of intensity I/2xs , it follows that

E[A(R,8)] = o, (B.10)
EB(R,0)67(R,¢)] = Tip(R;0—9)
= 3 L(AR)L,(R)IF(AR)&™ "),

k=—oc0

(B.11)

where II,, (R) is given by (2.35). Then, as indicated in Theorem (3.3), equation
(B.5) together with (B.10) and (B.11) can be used to specify a boundary condition
for the 2-D field z(¥) in terms of the boundary process §(R, 6).

To show that the boundary condition (2.32) leads to a well-posed problem, note
that (B.4) implies that ®(7) satisfies

(I.V?— A)®g(F) = 0, forFe€ Dy (B.12)
dr(R,0) = B(R,9). (B.13)

Let Ggr(7,5) denote that Green’s function corresponding to the system (B.12)-
(B.13). Then Gg(F,3) obeys the equation

(I.V? — A%)Gg(7,5) = —I.6(F - 3), (B.14)
for 7,5 € Dpg, with the boundary condition

Gr(R,5) =0 for ReT. (B.15)
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Now using Green’s identity, we obtain
a . ~
@r() = — [ (57 Cr(,)B(E) dL. (8.16)
r on
Then, combining relations (B.3), (B.4) and (B.16), z(7¥) can be expressed as
)= [ GFIBuE) &~ [(GaFNBE) A, (BT
: Dg r on ’

which shows that the boundary value problem for z(¥) is well-posed.
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