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Abstract

A solution to the problem of detecting and identifying control system component
failures in linear time-invariant systems is given using the geometric concept of an
unobservability subspace. Conditions are developed under which it is possible to design
a causal linear processor that can be used to detect and uniquely identify a component
failure in a linear time-invariant system, assuming either i) the components can fail
simultaneously, or ii) the components can fail only one at a time. Explicit design
algorithms are provided when those conditions are satisfied. In addition to the time
domain solvability conditions, the frequency domain interpretation of the results are
given, and connection is drawn with the results already available in the literature.
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1. Introduction
In many applications high reliability control systems are necessary. In some space

missions, for example, a system with hundreds of components is required to operate for

a period of several years. Such systems must naturally employ highly sophisticated

fault tolerant control systems (FTCS) with redundant capacity to perform a given task.

The need for very high reliability has led to extensive research into design of systems

that can do their job using more than one configuration of their components.

Currently there are two different approaches to the design of reliable systems. In the

first approach, the objective is to reduce the dependence of the system on the operation

of individual components and develop systems that remain operational even in the

presence of a failure without any corrective action being undertaken. A few examples of

this passive approach to FTCS are quadriplexed fly-by-wire digital flight control systems

and the mid-value select algorithm.

Instead of triplicating or quadriplicating the expensive hardware components or

sacrificing the performance of the system under nominal operating conditions in order to

gain fault tolerant capability, one can first detect and identify the failed component

using additional information processing and then reconfigure the system to accommodate

the failure. Clearly, this active approach requires more complex information processing

capabilities, but with increasing availability of low cost digital computers this will be

the preferred approach-- especially if it can result in superior performance.

The integral part of an FTCS is failure detection and identification (FDI). An FDI

process essentially consists of two stages. The first stage is residual generation, and the

second stage involves using the residuals to make the appropriate decisions. In this

work we shall only concentrate on residual generation, and refer the reader to the

extensive literature available for the decision making phase of FDI (see [23], [10], and

[201 for comprehensive surveys).
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The output of a residual generator is by definition a function of time that is

nominally zero or close to zero when no failure is present, but is distinguishably

different from zero when a component of the system fails. For example, a simple

residual can be generated by differencing the outputs of two identical sensors that

measure the same quantity. A failure of either sensor corrupts the residual and this can

be used to detect a failure. The process of generating the residuals from relationships

among instantaneous outputs of sensors is usually called direct redundancy. Two

examples where direct redundancy was exploited are [7, 8].

It is also possible to generate the residuals using temporal redundancy, which is the

process of exploiting the relationships among the histories of sensor outputs and

actuator inputs. This is usually done by using a hypothesized model of the dynamics of

the system to relate sensor outputs and actuator inputs at different instants of time.

We refer the reader to [6] for an example of the use of temporal redundancy in residual

generation.

Among all methods that employ temporal redundancy, two are distinguished as being

applicable both to sensor and actuator FDI and, in addition, not requiring any

assumption about how the failed component behaves. These are the methods of

generalized parity relations, first studied by Chow [4, 5] and later extended by Lou

[12, 13], and the failure detection filter introduced by Beard [2], which was later

amplifed by Jones [11] and recently revisited by Massoumnia 114].

Each of these two methods involves the design of a linear processor of a particular

type of structure. In failure detection and identification filters, the linear processor is a

full order observer, with the residuals taken to be the innovations of the observer. The

design procedure consists of choosing the observer gain so that failures of different

system components affect the residuals in linearly independent directions (hence greatly

simplifying the subsequent decision-making process). The restriction to the class of full-

state observer is, as we shall see, a rather severe constraint, as it not only restricts
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significantly the class of problems that have solutions (the set of possible failure modes

must satisfy a strong mutual detcetability (cf. [14j) condition), but it also makes the

design process and the nature of the FDI problem appear more complicated than they

should.

In the case of generalized parity checks, the concept behind the design process is

excedingly simple: we seek residuals generated by forming linear combinations of a finite

window of sensor output and applied input values so that all of the residuals are zero

when the components are functioning perfectly, but a particular subset of the residuals

deviate from zero when a particular system component fails. Again the class of linear

processors considered in this design procedure is severely restricted and does not, for

example, allow one much freedom in adjusting any free parameters to optimize noise

rejection.

In this paper we remove the constraints imposed in these previous studies. In

particular, the only constraint we place on our residual generation mechanism are: (a)

they produce residuals with the same desirable properties as in previous studies, namely

that particular residuals are sensitive only to particular component failure modes; and

(b) the mechanism must be a finite-dimensional, linear, time-invariant causal system--

i.e., we do not restrict ourselves to the far smaller classes of processors considered in

previous work. As we shall see, within this setting it is possible to construct such

processors to uniquely identify failures under less restrictive conditions than those

previously reported.

For solving the problem of residual generation, we shall rely heavily on a few

geometric concepts. Most of these concepts are dual to the ones already developed in

the control literature. In fact, by extending the results of [14], we more fully exploit the

dual relationship and the subtle differences between the residual generation problem and

the control decoupling problem [9, 24].

We begin in Section 2 by formulating the problem of residual generation, and show
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how both sensor and actuator failures and also changes in the system parameters can be

modeled in a unified manner as actuator failures. In Section 3, the fundamental problem

of residual generation is defined. In this problem it is assumed that there are only two

possible faulty components and it is desired to generate a residual that is affected by the

failure of the first component but not by the failure of the second component. By

comparing this residual with a threshold one can decide whether the first component is

operating properly or not. In Section 4, the fundamental problem of residual generation

is extended to the case of multiple simultaneous failures. The solvability condition of

this problem leads to the introduction of the fundamental system theoretic concept of a

strongly identifiable family of failure events. In Section 6, the most general form of the

FDI problem (within the framework stated in Section 2) is solved. The solution of this

problem leads to the introduction of. the concept of an identifiable family of failure

events.

Before proceeding with a complete formulation of the failure detection and

identification problem, we review our notation. Throughout the paper real vector

spaces are denoted by script letters X, Y, Z, and their typical elements by x, y, z. The

symbol d(X) denotes the dimension of X. Matrices and linear maps are all represented

by capital italic letters, e.g., A, B, C. For an arbitrary map L, the symbol Im L denotes

the image of L; from time to time the subspace Im L is denoted by L. Also Ker L

denotes the null space of L. The maps A: X -- X, B: U -t X, and C: X -- Y

(d(X) = t , d(U) = m, d(y) = 1) are fixed throughout and are associated with the

"system (C,A,B)", namely

x(t) = A x(t) + B u(t), y(t) = C x(t).

The spectrum of A is denoted by a(A) and t) denotes union with any common

elements repeated. We say a set A is symmetric if X E A implies X* E A where *

denotes the complex conjugate. With k a positive integer, k will denote the finite set

{1,2, . ..,k}, and k-1 = {1, . . ,k-1}. Moreover, the Laplace transform of an

arbitrary function me(t) is denoted by mr(s).



5

2. Failure Representation and Problem Formulation
Assume our nominal linear time-invariant (LTI) system is described by the state-

space model

Z(t) = A x(t) + B u(t),

y(t) = Cx(t). (1)

Here x(t) E X, u(t) E U, and y(t)E y with the dimensions of X, U, and y being n, m, and

I respectively. The nominal input u(t) to the plant and the measurement y(t) are

assumed to be known and will be referred to as the observables of the system.

Now assume that some unknown disturbances affect the behavior of the plant. These

disturbances can be sensor failures and disturbances at the output, which directly

corrupt the measurement y(t), or they can be actuator failures and external input

disturbances, which will show up in y(t) after their effects are integrated through the

dynamics of the system. The most general form of disturbances that can affect the

output of the system shown in (1) can be represented as follows:

z(t) = A x(t) + B u(t) + E=l Limi(t),

y(t) = C x(t) + _l_ Jini(t). (2)

Here rmi(t) E M i (d(Mi) = k) and ni(t) E Xi (d('i i) = qi) are unknown functions of time

and can be arbitrary. However, when no failure or disturbance is present, mi(t) and

ni(t) are all, by definition, equal to zero. We refer to the functions mi(t) and ni(t) as

failure modes.

In order to model the effect of failures in the j-th actuator, simply set L 1 = Bj where

Bj is the j-th column of the control effectiveness matrix B, for example, if the actuator

does not respond to the applied input, then ml(t) = -u j(t) where uj(t) 'is the j-th

element of the input vector u(t). If the actuator has a bias b, then ml(t) = b. If the

actuator becomes stuck at a value h, then ml(t) = h-uj (t). Because we do not
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constrain rni(t) to any special function class, a wide variety of actuator failure modes

fits this representation. From now on we shall refer to the maps Li: M i -- X as

actuator failure signatures. -Note that the failure signatures L i can be matrices, and are

not constrained to just being vectors.

We can also model a change in the dynamics of the plant, i.e., a change in the A

matrix, by choosing L i appropriately; in this case mi(t) will be a linear combination of

the states of the system x(t). Thus, as far as failure modeling is concerned, a change in

the dynamics of the system can be modeled in the same manner as an actuator failure.

The term actuator failure will therefore be used to refer to any failure event that can be

modeled by choosing L i appropriately.

Similarly, to model the failure of the j-th sensor, simply set J 1 = ej where ej is the j-

th column of the IXl identity matrix. If for instance the sensor fails completely, i.e.,

gives a zero output, then nl(t) = -cjx(t) where c]! is the j-th row of the measurement

matrix C. As should be clear by now, this representation can be used to model a wide

variety of sensor failure modes. Moreover, as in the case of actuator failures, the Ji can

be matrices, and are not constrained to be vectors. From now on we shall refer to the

maps Ji : JWi -- Y as sensor failure signatures.

One major distnction between our approach to failure modeling and the majority of

approaches reported in the literature is that we do not assume any a priori mode of

component failure, i.e., mi(t) and ni(t) in (2) can be arbitrary. However, here it is

assumed that the failure can be represented by choosing an appropriate L i or Ji. Note

that the same assumption was the basis for the work of Beard and Jones [2, 1].

Since the mi(t) and n,{t) are arbitrary, there is no loss of generality in assuming (as

we shall from now on) that the failure signatures are one-to-one. We shall at times

make the assumption that the failure modes are generic in a sense that will be specified

when the occasion arises.
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We shall also find it more convenient to represent sensor failures by pseudo-actuator

failures, as described next. In particluar, note that, without loss of generality, it can be

assumed that the unknown function ni(t) is the output of some linear time-invariant

system E i with impulse response hi(t,r) and some arbitrary input si(t). The only

restriction on E i is that it should be right invertible so that for any ni(t) there exists an

si(t) such that

ni(t) = h(t,r) ?s(T) dr, t > 0.

For the case where the ni(t) are simply scalars, we can assume without loss of generality

that

ni(t) = a i ni(t) + si(t)

for some scalars a i and unknown functions si(t). If the dynamics of the systems

generating the sensor failure modes are added to the dynamics of the system, the sensor

failures can be represented as actuator failures. In this augmented representation, si(t)

appears as a pseudo-actuator failure mode and consequently no sensor failure signature

will be present. Hence, all the analysis that follows uses the model

x (t)= , x(t) + B u(t) + e 1Lfmti(t)'

y(t) = C (t). (3)

It is assumed that the maps A, B, Li, and C have already been appropriately modified

so that the sensor failures are properly represented as pseudo-actuator failures. One

caveat is that the augmented model (3) may not be observable even if the systems in (2)

was observable. However, by properly choosing the augmented dynamics so that they

do not coincide with the spectrum of A in (2), it is always possible to get an observable

augmented model if the unagumented system was observable.

Considering now the system in (3), we define the failure detection and identification

filter problem (FDIFP) as the problem of designing a dynamic residual generator, Er,
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that takes the observables u(t) and y(t) as inputs and generates a set of residual vectors

ri(t) (i E p) with the following properties:

1. When no failure is present, the residuals ri(t) (i E p) are identically equal to
zero. Hence, the net transmission from the input of the system u(t) to the
residuals ri(t) (i E p) should be zero.

2. When the j-th component fails (i.e., nj (t) $ 0), the residuals ri(t) for i E Cj
should be nonzero, and the other residuals re(t), s E p- 1 j, all should be
identically equal to zero. Here the family of coding sets Qj C p (j E k) are
to be chosen such that we can uniquely identify the failed component or
components by knowing which of the ri(t) are zero or not.

We say more about the coding sets 2j later in this section and also in Section 6. A

block diagram of an FDIF is given in Figure 2-1.

Sens or and Actuator

Fai lures

m( t)
Me as ur e me nt s 

Sys t e m y( t ) Res idual 1 ( t ) oo Residuals
Act uat or _ l ~ Ge ner at.or _

Figure 2-1: Block Diagram of an FD (t)

Figu re 2-1: Block Diagram of an FDIF

Note that il the general problem there is no constraint on the number p of the

residuals.

If we can generate a set of residuals with the above properties, then the identification

task is trivial. One needs only to compare the magnitudes of the residuals against some

appropriate thresholds to decide which ones correspond to responses to actual failures,
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and then by referring to the table of the coding sets one can identify the failure, if a

failure is present.

One important design consideration is how to choose the coding sets Q2i. The

simplest choice is just to take p=k and Qj = {j} (j E k), i.e., to let precisely one of the

residuals be nonzero for any one failure. In addition, this coding scheme enables us to

detect and correctly identify simultaneous failures. In Sections 5 and 6, we shall go over

more complicated coding schemes. It should be noted that with some coding schemes it

is not possible to detect and identify the presence of simultaneous failures. As a matter

of fact, for some coding sets, simultaneous failures can lead to identification of the

wrong component as failed. However, no matter what coding sets are used, there are

families of components for which a failure of a component within the family cannot be

uniquely identified. This fundamental limitation will be discussed in Section 6.

Now, consider the most general form of a realizable LTI processor that takes y(t) and

u(t) as inputs and generates a set of residuals ri(t) (i E p) as outputs,

;' (t) = F u(t) - E y(t) + G u(t),

ri(t) = M i w(t) - H i y(t) + K i u(t), i E p,

r(t) = [rl'(t), . . . , rp'(t)l]'. (4)

Here ri(t) E Ri and r(t) E R := Re1 D * * Rp. Also the minus signs in E and H i

are just chosen for convenience in what follows.

We can now restate FDIFP as the problem of finding F, E, G, Mi, Ki, and H i in (4)

such that the transfer matrices relating the mi(t) and ri(t) have the properties

mentioned previously that enable us to determiine from the residuals ri(t) which of the

mrnt) are nonzero.

Before proceeding with the solution of FDIFP, we review a few geometric concepts

that will be useful in solving the problem.
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A subspace S C X is termed A-invariant if A S C S. Let S C X be A-invariant; we

write A: S for the restriction of A to S, and A: X/S for the map induced by A on the

factor space X/S. Moreover, if S and T are both A-invariant subspaces and S C 7; we

write A: T/S for the operator induced by the restriction of A to Ton the factor space

TI/S.

We write B = Im B and <AIB> = B +AB + · · + An-lB for the infimal

A-invariant subspace containing B, i.e., the reachable subspace of (A,B). We write

K = Ker C and <KIA> = K nA-1 Kn ...· · · A-+K for the supremal A-invariant

subspace contained in K, i.e., the unobservable subspace of (C,A).

We say a subspace W C X is (C,A)-invariant if there exists a map D: y -- , X such

that (A+DC) W C W [1, 22, 24]. Let W be (C,A)-invariant; we denote by D(VW) the class

of all maps D such that (A+DC) W C W. Let L C X; we denote the family of

(C,A)-invariant subspaces containing L by _W(L). The family W(L) is closed under

intersection; hence, W(L) contains an infimal element W* := inf W(L) [22]. Also

W* = lim Wk where Vk is given by the following recursive algorithm [24]

Wk+l = L +A (Wk n Ker C), W 0 = 0. (5)

We say a subspace S C X is a (C,A) unobservability subspace (u.o.s.) (complementary

observability subspace according to [221) if S = <Ker HCIA+DC> for some output

injection map D: y -- X and measurement mixing map H: -+ y [15, 22]. Note

that S is the unobservable subspace of the pair (HC,A+DC), and the spectrum of

A+DC: X/IS can be assigned to an arbitrary symmetric set by appropriate choice of D

[15]. We use the notation S(L) for the class of u.o.s.'s containing L. The class S(L) is

closed under intersection; it therefore contains an infimal element S* := inf S(L)

[22, 24]. Also S* = lim Sk where Sk is given by the following recursive algorithm [24]

Sk+1 = W* + (A-lSk) n KerC, SO = X. (6)



Moreover, for any D E D(S*),

S* = <Ker C + S*IA+DC>. (7)

Let {Wi, i E k} be a family of (C,A)-invariant subspaces of X. We say {Wi, i E k} is

compatible (cf. [141) if

n1 1 (Wi) 4 0,

i.e., if there exists a D such that every Wi is (A+DC)-invariant.

Using the above geometric concepts, we first solve a restricted version of the FDIFP

in Secton 3. The solution to this problem will then be used to tackle more general

problems in the sections that follow.

3. The Fundamental Problem in Residual Generation
In this section, we assume that only two failure events are present, and examine when

one can design a residual generator that is sensitive to the failure of the first actuator

but is insensitive to the failure of the second actuator. This restricted version of FDIFP

will be called the fundamental problem in residual generation (FPRG). Later on, FPRG

will be extended to more general cases.

Consider the model given in (3) with k = 2,

x(t) = A x(t) + B u(t) + L 1 ml(t) + L 2 m 2(t),

y(t) = C x(t). (8)

The dimensions of the maps shown in (8) are the same as the ones given in (1) and (2).

It is desired that a nonzero ml(t) should show up in the output r(t) of the residual

generator, while a nonzero m 2(t) should not affect r(t). As usual, our observables are

the measurement y(t) E y and the known actuation signal u(t) E U.
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Now consider a residual generator of the form

u3(t) = F w(t)- E y(t) + G u(t),

r(t) = Mw(t) - H y(t) + K u(t). (9)

Note that this is the most general form of a realizable LTI processor that takes the

observables y(t) and u(t) as inputs and generates a residual r(t).

First combine (8) and (9) as follows:

[ +(t) [ A [(t) [ L u(t)] [L

u. (t) -EC F w(t) G o+ m2(t) 
r(t)= [ -HC M] x(t) +[K ] u(t) . (10)

w(t) n2(t)

Define the extended spaces Xe := X e W and Ue = U e M2. Let x e := (x, w) E 'e

and ue := (U, m2) E Ue. Equation (10) can then be rewritten as follows:

xe(t) = Aexe(t) + B e ue(t) + Leml(t),

r(t) = Hexe(t) + Keue(t), (11)

where the definition of the matrices A e, Le, B e, H e, and K e are evident from (10).

Now we formalize the statement that the failure of the first component should

showup in the residual r(t), i.e., that a nonzero ml(t) should showup in r(t). There are

several possible mathematically unequivalent formulation of the above statement. The

most natural formulation is to require that the transfer matrix from ml(s) to r(s) to be

left invertible so that any nonzero ml(t) results in a nonzero r(t).

However, another approach is to only require that the system relating ml(t) to r(t) to

be input observable. Recall that a system (C,A,B) is input observable if B is monic and
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the image of B does not intersect the unobservable subspace of (C,A). In terms of

transfer matrices,this is equivalent to the requirement that the columns of C(sI-A)-IB

should be linearly independent over the field of real numbers. We note that even if the

system relating ml(t) to r(t) is not left invertible but is only input observable, it will be

extremely unlikely that an arbitrary nonzero ml(t) will hide itself for all t in the null

space of the mapping from ml(t) to r(t) so that the failure can not be detected. Hence,

if we only require input obvservability, then almost any nonzero ml(t) will produce a

nonzero residual r(t). Therefore, it may be argued that the ideal requirement of left

invertibility is somewhat of an overkill for failure detection and identification purposes.

It may be further argued that we can even relax the condition of input observability

and require only that the transfer matrix from ml(s) to r(s) to be nonzero. However, it

will then generally not be possible to reconstruct ml(t) from r(t). By contrast, input

observability implies that if the failure mode ml(t) has some rather mild properties, then

it is possible to reconstruct m 1 (t) from r(t). Note that during the failure

accommodation, the one-to-one relation between ml(t) and r(t) can be very valuable,

since we can theoretically determine ml(t) from r(t) and hence compensate for its

adverse effects.

Finally, if we are dealing with a single-input multi-output system, i.e., if the transfer

matrix is simply a column vector, then input observability automatically implies left

invertibility. In the context of the FDI problem, the transfer matrix T(s) relating ml(s)

to r(s) is usually a column vector (or a scalar), since the failure signature L 1 is usually a

column vector. Therefore, in the FDI problem the input observability of T(s) is

typically equivalent to its left- invertibility.

Based on these arguments, we state FPRG as follows. Consider the system given in

(10) and (11). FPRG is the problem of finding F, E, G, Al, H, and K such that:

ue = (u, mn2) e- r = O0, (12)
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m 1 4 r input observable. (13)

Furthermore, when the condition in (12) is satisfied and the first actuator is functioning

properly, all signals r(t) obtainable by varying the initial conditions x(O) and w(O) are

exactly those outputs obtainable by varying the initial condition e(O) of e = Fo e,

r = Mo e, for some observable pair (Mo,Fo). The spectrum of F0 determines the

dynamics of the residual generator. In addition to the conditions in ((12) and (13) we

shall require that, the dynamics of the residual generator be stable.

We need a few preliminary results for deriving the solvability condition for FPRG.

First, let Xe be as defined previously in this section. With x E X, define the embedding

map Q: X -+ Xe as follows:

x = lol. (14)

Note that if V C Xe; then

Q-1V={x:x E X&lol E V}. (15)

Less precisely, Q-1 V is the intersection of the subspaces V and X.

Using the above definifio5ns, it is- relatively simple to relate the unobservability

subspaces of the systems in (11) and (8). The following fundamental result, which

exactly accomplishes this task, is crucial to the solvability condition of FPRG.

Proposition 1: Let Se be the unobservable subspace of (He,Ae); then

Q-lSe is a (C,A) unobservability subspace [21, 19, 18]. (

With this result at our disposal, the solvability condition is immediate.

Theorem 2: FPRG has a solution if and only if

S* n L1 =0, (16)
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where S* = inf _S(L2). Also if (16) holds, then the dynamic of the residual
generator can be assigned arbitrarily.

Proof: (only if) Consider the systems given in (11) and (10). For (12) to
hold, we should have K e = 0, and

<AelBe> C Se := <Ker HeIAe>. (17)

Equation (17) implies Be C se; hence, Q- 1 Be C S := Q-1Se. Using
Proposition 1, S is a (C,A) u.o.s. Also Q-1 Be D L2. Therefore,

S E S(L2). (18)

For (13) to hold, we should have L e monic and £e n Se = 0; thus we should
have L 1 monic (which we have assumed) and

Q-l(Le n Se) = Q-l Le n Q-iSe

= L n s = o. (19)

Obviously (18) and (19) hold only if (16) is true.

(if) Let Do E D(S*), P: X -+ X/S be the canonical projection, and
Ao := (A+DoC: X/S*). Let H be a solution of Ker HC = S + Ker C and M
be the unique solution of AIP= HC. By construction, the pair (M,Ao) is
observable, hence there exists a D 1 such that o(F) = A where F := Ao+D 1M
and A is an arbitrary symmetric set. Let D= Do+P-rD1 H, E= PD,
G = PB, and K = 0. Define e(t) := w(t) - Px(t). Then it simply follows
that

e = Fe - PLlml,

r = MIw- Hy-= Me.

Thus rl(s)= -- Ts)m(s) with T(s) = M(sI-F)-IPL1. Obviously, the
requirement in (12) is satisfied. Furthermore, 5 n L1 = 0 and L 1 monic imply
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that PL1 is monic. Moreover, the pair (M,F) is observable; hence from the

definition of input observability it follows that the system relating ml(t) to r(t)

is input observable and (13) is satisfied. 0

The major step in the design of the filter is to place the image of the second failure

signature in the unobservable subspace of the residual r(t), and then to factor out the

unobservable subspace so that the order of the filter is reduced. Also, the condition (16)

simply states that the image of the first failure signature should not intersect the

unobservable subspace of the residual generator, so that a failure of the first actuator

shows up in the residual r(t).

It is clear that the order of the residual generator given in Theorem 2 is n-d(S*), and

this order is in general conservative. This is because there may be a u.o.s., S, that

satisfies (16) and contains S*. Clearly, using this S the order of the residual generator

can be further reduced. Unfortunately, there is no systematic way of constructing such

non-infimal unobservability subspaces. However, for the case of monic C, the minimal

solution is easy (see [15]).

The reader who is familiar with the disturbance decoupled estimation problem

(DDEP) [21, 3] will readily recognize the relationship between DDEP and FPRG.

However, these two problems have subtle differences that completely distinguish them

from each other. In DDEP, the state to be estimated is given as part of the problem

statement. In FPRG, we have to find the part of the state space that can be estimated

even in the presence of unknown input m2(t).

An interesting interpretation of the solution to FPRG can be given. Referring to

Theorem 2, the residual generator can be rewritten as follows:

wv(t) = AO w(t) - PDoy(t) + G u(t) + Dlr(t),

r(t) = NI w(t) - Hy(t). (20)
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Note that by choosing DO and H appropriately, we change the observability properties

of (HC,A+DoC) in such a way that the second actuator failure becomes unobservable

from the residual. Next, by-injecting the residual r(t) back in the filter, the spectrum of

the residual generator can be modified as desired. Clearly, the residual generator given

in (20), can be thought of as an observer for the hypothetical system

z(t) = Ao z(t) + Uh(t),

Yh(t) = M z(t), (21)

where uh(t) := P(Bu(t)-Doy(t)) is the hypothetical input, and Yh(t) := H y(t) is the

hypothetical measurement. This interpretation of the residual generator can be used

effectively in computing a gain D1 that shapes the dynamics of the residual r(t) in some

desired fashion.

To illustrate this point, consider the original system model given in (8) and assume

that an additive zero-mean white noise vl(t) with covariance E[vl(t)v1l'(r)j = R 1 (t-r)

enters the system as an input. Also assume that the measurement y(t) is corrupted by

an additive zero-mean white noise v 2(t) with covariance E[v 2(t)v 2 '(r)] = R2 6(t-r) and

uncorrelated with the input noise vl(t). Incorporating the effect of v1 and v 2 on the

hypothetical system of (21), we get

z(t) = AO z(t) + uh(t) + v3 (t),

Yh(t) = Mz(t) + v 4(t), (22)

where v3(t) := P(Vl(t)-D 0ov 2 (t)) and v4 (t) := Hv2(t). Note that V3 and v4 are now

correlated. A simple computation shows that the intensity R 34 of the noise driving the

system in (22) is

PR I P '+PDo R 2 DO° P ' -PDOR 2 H' 1
R34= . (23)

-HR 2'Do'P ' HR2H ' 
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If the objective now is to whiten the residual r(t) (note that white residuals are desirable

in the decision making phase of FDI), simply design a steady state Kalman filter for the

system given in (22) with the noise statistics in (23). Then-use this steady state Kalman

gain for the matrix D1 of (20).

An alternate non stochastic approach is to choose D 1 so that the transfer matrix

i1s) = M(sI-Ao-D1M)-IPL 1 has certain nice properties. For example, it is not

difficult to see that increasing the bandwidth of Yis), which is desirable for fast

response, can translate into low steady state gain which can lead to difficulty in

distinguishing the response due to a failure from that due to background noise.

Therefore, the gain matrix D1 can be used to find a compromise between conflicting

objectives.

Next the generic solvability of FPRG is discussed.

Proposition 3: Let us assume that A, C, L 1, and L 2 are arbitrary matrices

with the respective dimensions nXn, lXn, nXkl, and nXk 2. Then FPRG

generically has a solution if and only if

ki + k 2 < n, (24)

k 2 < 1. (25)

Proof: The simple proof is given in [15]. 0

Note that if the S* defined in Theorem 2 is used to design a residual generator, then the

generic order of the processor is n-k 2. Also, the condition given in (24) is quite

intuitive, since if kl+k2 > n then the image of L1 and L2 intersect, and hence there

exists failure modes such that Llml(t) = L 2m 2(t). Therefore both failures affect the

output exactly the same way, and thus they can not be distinguished from each other.

Now we solve a simple example to illustrate the design procedure.
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Example 1: Consider the system given in (8) with

A-= 1 2 3 ,L 1 - , L2= 1 , C= 
0 2 5 .5 0 0 0 1

and B = [L1, L2]. Now assume we want to design a residual that is sensitive to the

failure of the first actuator, and is insensitive to the failure of the second actuator.

First, let us compute S* defined in Theorem 2. Using 6,

S* :- Im 1 0 .
0 0

Clearly L1 n S' = 0; therefore, FPRG is solvable. Now we follow the procedure

outlined in Theorem 2 to design a residual generator. One possible choice for

Do E D(S*) is

D o := 0 0 .
-2 0

This results in Ao = A+DoC: X/S* = 5. Also H = [0, 1] is an appropriate solution of

Ker HC = S + Ker C. With this H, we have M= 1. Now if we choose A = {-5} and

continue the design procedure, we find

wv(t) = -5 w(t) - [-2, -10] y(t) + [.5, 01 u(t),

r(t)= w(t)- [0, 1] y(t). (26)

Note that if the first failure signature had been

L1 = [1, 0, 0] ',

then clearly L1 C S* and FPRG would not have had a solution. We shall continue this

example in the next subsection after some additional theoretical developments.
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4. Extension of FPRG to Multiple Failure Events
In this section we extend FPRG to the case of multiple failures. Let us assume that k

failure events are present, and we want to design a processor that generates k residuals,

ri(t) (i E k), such that a failure of the i-th component, i.e., a nonzero mi(t), can only

affect the i-th residual ri(t) and no other residuals rj (t) (j y/ i). More precisely, what we

require is that the transfer matrix relating mi(s) to ri(s) should be input observable, and

the transfer matrix from mi(s) to all other ri{s) should be zero.

In the notation of Section 2, the problem we have just formulated is the same as the

FDIFP with the the coding sets fi = {i} (i E k). This particular version of the FDIFP

will be called the extension of the fundamental problem in residual generation (EFPRG).

Obviously, if EFPRG has a solution, then it is possible to detect and identify even

simultaneous failures with almost arbitrary modes for each component failure. Note

that for identifying simultaneous failures, we need at least as many residuals as there

are failure events. In this sense, the coding set i =--i} (i E k) (or any permutation of

it) is minimal.

In a recent article, Massoumnia [14] defined the similar problem of designing a

residual generator of the form

t (t) = (A+DC) w(t) - D y(t) + B u(t),

ri(t) = Hi(W(t) - y(t)), (27)

such that a nonzero mi(t) only shows up in the residual ri(t). This problem is a slight

generalization of the failure detection filter problem and was referred to as the

restricted diagonal detection filter problem (RDDFP) in [14]. Obviously, RDDFP is a

special case of the FPRG that we have formulated here since in FPRG the matrix F is

not restricted to be of the form A+DC for some appropriate gain matrix D (nor is w

required to be of the same dimension as x).
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The solvability condition for EFPRG now follows immediately from that of the

FPRG.

Theorem 4: EFPRG has a solution if and only if

Si* n Li = , iEk, (28)

where Si* : inf S(Ej i £j), i Ek.

Proof: (only if) The necessity follows immediately from the proof of

Theorem 2. Just replace the L1 and L2 in Theorem 2 with L i and Ej, i Lj

respectively.

(if) For sufficiency, the procedure given in Theorem 2 can be used to design

k different residual generators, nri, each generating the residual ri(t). Let

D i E D(Si*) and Fi = (A+DiC: X/Si*). Obviously, D i can be chosen such

that a(Fi) = A i for arbitrarily given symmetric sets A i (see Theorem 2). Let

E i = PiDi, G i = PiB, H i be any solution of Ker HiC = Si* + Ker C, M i the

unique solution of MiPi = HiC, and K i = 0. A simple computation shows

that ri(s) = -Ti(s) mi(s) with Ti(s) = Mi(sI-Fi)-1PiLi. Using the same

argument as in Theorem 2, the system relating m.i(t) and ri(t) is input

observable; thus the collection of the residual generators Zri (i E k), viewed as

one large system, is a solution to EFPRG. 0

A family of failure signatures satisfying the conditions in (28) will be called a strongly

identifiable family. Theorem 4 shows the system theoretic consequences of this concept;

it is posiible to design an LTI residual generator that identifies simultaneous failures

within a familly of failure events if and only if the family is strongly identifiable.

The order of the residual generator given in Theorem 4, i.e., the sum of the orders of

k different residual generators, can be quite large. Nevertheless, in this filter, the

residuals are generated by k completely decoupled filters, and there is a great deal of

freedom in choosing the F i matrices of these individual residual generators. This

freedom can be used to simplify the decision making phase of FDI by enhancing the
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effect of the failure or supressing the effect of noise on the residual through the

procedure that was outlined in Section 3. Now we proceed with stating the generic

solvability conditions for EFPRG.

Proposition 5: Let us assume that (A,C,Li) are arbitrary matrices with

dimensions nXn, lXn, and nXk i respectively. Let v := ki. Then

EFPRG generically has a solution if and only if

v < n. (29)

v- min ({ki, i E k) < I. (30)

Proof: The simple proof is given in [15]. (

Note that if the family {Si*, i E k} defined in Theorem 4 is used to design a residual

generator, then the generic order of the processor is

k 1 (n-ij. I kj) = k(n-v)+e. (31)

To illustrate the design procedure given in Theorem 4, we now continue Example 1 of

Section 3.

Example 2: The residual generator we designed previously is the same as Zrl of

Theorem 4. Therefore, rename the r(t) given in (26) as rl(t), and we only need to design

the residual generator, Er2, which is sensitive to the failure of the second actuator but is

not affected by the failure of the first actuator. Using (6), we have

52* := Im 1.5

and hence EFPRG is solvable. Choosing A2 = {-2, -3}, the residual generator Zr2 is

simply
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[2 -201 -23 -300 -1
'(t) = w(t)- -(t) + - (t) (32)

1 -7 -9 -15 0 1

r2(t) = [ 0 1 ]w 2 (t)- [ 1 1 Jy(t).

With the residual r(t) given in (26) renamed as rl(t), (26) and (32) can be combined in

a single equation as follows:

-5 0 0 -2 -10 5 0
wv(t)= 0 2 -20 w(t) - -23 -30 y(t)+ 0 -1 u(t), (33)

0 1 -7 -9 -15 0 1

r(t)- 0 0 I w(t)- 1 1 y(t),

where r(t) := [rl(t), r2(t)]'.

To gain some insight into the problem, let us compute several different transfer

matrices associated with this example. First denote the transfer matrix relating

rn(s) = [ml(s), n2(s)]' to y(s) by Gm(s). A simple computation shows

1 1-.5(s2-.lOs+6) (s-3)(s-5) 1
G .. )= 83-7s2+s+7 L .5(s2--4s+1) 2(s-3) J

Now consider the residual generator given in (33) and let us compute the transfer

matrix, Hy(s), relating y(s) to r(s). It is easily determined that

2 -(S-5)
(8+5) (V+5)

Hy(s)=- -(82-4+1) -(82-108+6) 1
(+2)(s+3) (V+2)(s+3)

The transfer matrix relating mrn(s) to r(s) is then simply

(9+5) G ) O= ( 
H,(s) G.(s) = -(.3-3)



24

As was required, ml affects rI and only rl, while n2 affects r2 and only r2. It can also

be shown that the transfer function from u(s) to r(s) is zero; hence, the nominal input

u(t) does not affect the residual r(t). Therefore, EFPRG is really the problem of

designing a stable, diagonalizing post-compensator. 0

Motivated by the last example, the solvability condition of the EFPRG in the

frequency domain is now developed. For the remainder of this section, it is assumed

that the failure signatures are simply column vectors.

We can rewrite (3) as follows:

y(s) = Gu(s) u(s) + Gm(s) rm(s), (34)

by taking the Laplace transform of both sides. In (34), Gu(s) := C(sI-A)-iB,

Gm(s) := C(sI-A)-1[L1 , . .. ,Lk], and m(s)= [ml(s), . . . ,mk(s)] '. The objective of

EFPRG can now be restated as generating a k dimensional vector r(t) by passing the

observation vector z(t) - [y'(t), u'(t)] ' through a causal LTI system characterized by the

transfer matrix H(s), i.e,

r(s) = H(s) z(s) = [H(s), Hu(s)] [ y(s) , (35)

u(s) J
such that the net transmission from the input u(t) to the residual vector r(t) is zero, and

the failure mode mi(t) only affects the i-th component of the residual vector r(t). In

other words, the objective is to find a proper post compensator H(s) such that

H(s)G(s)= [-T(s), O], (36)

where

Gm(s) G;(s)
G(s) | |, (37)

0 I
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the 0 in (36) is a kXm matrix, and T(s) is a k Xk diagonal matrix with nonzero

diagonal elements Ti(s).

In addition, when no failure is present, the residuals due to initial conditions in the

system and in the post-compensator should die away so. The residual due to a nonzero

initial condition x(0) is simply Hy(s)Gs(s)x(O) where

Gs(s) :- C(sI-A)-1 . (38)

Hence the transfer matrix Hy(s)G,(s) should be stable. Also the residual due to nonzero

initial conditions of the post compensator should die away, so we require that H(s) be

stable.

It is shown in [15] (also see [16]), that the above problem has a solution if and only if

the transfer matrix Gm(s) is left invertible. In other words, when the failure signatures

are column vectors, the condition of strong identifiability given in (28) is equivalent to

the left invertibility of

C(sI-A)- 1[L 1, . . . ,Lk]. (39)

The reader who is familar with the control decoupling problem [9, 24] should readily

recognize the dual relationship between the EFPRG and that problem. Despite of this

duality, the structure of the residual generator proposed in Theorem 4 is quite different

from that of the extended decoupling controllers given in the fundamental reference [241.

This is because of the fact that here we are concerned with designing observers and

there is more flexibility, but in the decoupling problem the objective is to design control

systems and the problem is more restrictive. However, it is interesting to note that the

generic order of the residual generator given in (31) is exactly equal to the generic order

of the extended decoupling controller given in Theorem ? of [24] if the matrices involved

are properly transposed.

Now, an interesting question is how to reduce the order of the processor given in
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Theorem 4. This task can be accomplished by either restricting the structure of the

residual generator, as was done in [14] by formulating the RDDFP, or by deleting the

requirement that the filter should be capable of detecting and identifying simultaneous

failures. We shall follow the latter path in the remainder of this paper, by considering

more complicated coding schemes than the one dealt with in this section.

5. Triangular Detection Filter Problem
The first problem in the above category that we formulate and solve is the triangular

detection filter problem (TDFP). Consider the system in (3) and the residual generator

(27). In TDFP the objective is to design k residuals ri(t) (i E k) such that a nonzero mr

affects r1 and possibly affects r2 ,. . . ,rk; a nonzero m 2 affects r2 without affecting r1

but possibly affecting r3 , . .. ,rk; ... finally, a nonzero mk affects rk without affecting

rl ... ,rk_ 1. In the notation of Section 2, this process of relating the failure events to

the residuals corresponds to the coding sets Q2i = {i} U A i where A i is some subset of

{i+1, ... ,k. The input-output relation of TDFP is shown in Figure 5-1, which shows

the origin of its name.

ml(t) o __ _ r l(t)

m2(t) '5 _' r2 (t

mk(t) Go 0 rk(t)

Figure 5-1: Input Output Relationship of TDFP

The concept of TDFP is an exact dual of the triangular decoupling control problem

introduced and solved in [171. Interestingly enough, this formulation is quite

appropriate for failure detection and identification problem if it is assumed that

simultaneous failures are not possible. Even if simultaneous failures do occur, theirN,~
simultaneous failures are not possible. Even if simultaneous failures do occur, their
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presence in the TDFP will not lead to incorrect identification as it may in other coding

schemes. In such cases, at least the failure of the component with highest priority (i.e.,

the mi(t) with the smallest value of i) can be correctly identified.

Using the statement of the problem, TDFP can be stated in geometric language as

follows: Given A, C, and L i (i E k), find an output injection map D: Y -+ X and a

family of compatible u.o.s.'s {Si, i E k} such that

Si :- <Ker HiCIA+DC> = <Ker C + SilA+DC>, i E k,

k Lj C Si i E k-1, and OCSk, (40)

Si nL i =O iEk. (41)

The requirement given in (40) implies that the failures of (i+l)-th up to k-th component

should not affect the i-th residual, and (41) implies that the failure of the i-th

component should at least show up in the i-th residual. Now the solvability conditions

of TDFP are stated.

Theorem 6: Let (C,A) be observable. TDFP has a solution if and only if

Si*n FLi =, iEk,

where Si* := inf S(j= £i+l L) (i E k-l), and Sk* = 0. Moreover,

ur(A+DC :Si*_l/Si*) = Ai, i E k,

a(A+DC) = -I 1 A i,

where So* = X, and Ai (i E k) are arbitrary symmetric sets.

Proof: The proof is the dual of the one given in [17], and hence is omitted.

A family of failure signatures satisfying the solvability conditions of TDFP is not
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necessarily a strongly identifiable family. However, it is clear from Theodrem 6 that any

strongly identifiable family of failure signatures satisfies the solvability conditions of

TDFP. For such families, the order of the filter that solves TDFP is only n (same as

the order of the system model). On the other hand, RDDFP may not have a solution

for this family of failure signatures; since Massoumnia showed in [14] that strong

identifiability is a necessary but not sufficient condition for the solvability of RDDFP.

Our last remark concerns the case of simple sensor failures that can be modeled by

taking Ji in (2) as columns of the identity matrix. Using some of the results of [14], we

know that a family of failure signatures with output separable detection spaces (cf. [14])

is strongly identifiable. Recall that the detection space Ti* of the failure signature L i

was defined in [14] as follows (also see [21:

Ti* := inf S(Li), (42)

and that a family of detection spaces {T/*, i E k} was termed output separable if the

output images of the detection spaces were independent, i.e., if

C.*n(.j.C7ic *)= o, iCk.

Using the state space augmentation procedure given in Section 2, it is always possible to

model I simple sensor failures as a family of I pseudo-actuator failures with output

separable detection spaces. Now using the preceding remarks, it follows immediately

that there always exists an n+l dimensional filter with arbitrarily assignable spectrum

that triangularly detects and identifies any family of I sensor failures, assuming that the

actuators are fully reliable. This fact is one of the most useful applications of TDFP.

For more details we refer the reader to [15].
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6. Failure Detection and Identification Filter Problem
Our objective in this section is to state necessary and sufficient conditions for it to be

possible to design a residual generator that can be used to uniquely detect and identify a

failure within a family of k possible failure events, assuming that only one failure is

present at a time. This problem will lead to the introduction of the fundamental

concept of an identifiable family of failure signatures.

In order to treat the above problem, it is necessary to more concretely define the

coding sets /2 i (i E k) introduced in Section 2. Define an auxiliary coding matrix

A = [6ij] with 6ij = 1 if i E 2j for i E p, and bij = 0 otherwise. An element 6ij = 0

implies that the j-th component failure should not affect the i-th residual, while, ij = 1

implies that the j-th component failure should affect the i-th residual, in the sense that

the transfer matrix relating the j-th component failure to the i-th residual should be

input observable. Hence, our goal is to design a residual generator such that the

transfer matrix relating the failure events to the residual vectors is structurally the

same as the coding matrix A defined.

Example 3: Assume that six failure events are present, and three residuals are

defined such that / 1 ={1}, 22=-{2, Q23=(1,2}, F24 =(3}, F25={1,3}, and !26--(2,3}.

Using the definition of a coding matrix, we construct A:

I o 1 o 1 o

A -- 0 1 1 0 0 1 (43)
0 0 0 I i 1

The coding scheme used in this example is called a binary coding. This is because the

columns of A (e.g., [0, 1, 1] ') are just the binary representations of the corresponding

column indices of A (e.g., 6). When binary coding is used, the minimum number, p, of

residuals is simply

p = [log 2 (k+l)], (44)
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where [x] is the smallest integer such that [x] > x. It is simple to show that the

number given in (44) is the minimum number of residuals required, no matter what

coding scheme is used. This is the major desirable attribute of binary coding. However,

intuitively speaking, the probability of false identification associated with this coding

scheme can be large. In the event of a failure, some of the residuals may not cross the

threshold, and therefore a totally incorrect component may be identified as having

failed. 0

Now some of the fundamental properties of the coding matrix A are pointed out.

First of all, no row of A should be identically zero, since a zero row implies that none of

the failure events affect the residual corresponding to this row, hence this residual is

superfluous. Also, no column of A should be identically zero since the failure event

corresponding to this column would not affect any of the residuals and therefore could

not be detected. Most importantly, no two columns of A should be the same, since

otherwise the failures of the components corresponding to these columns could not be

distinguished from each other. Finally, note that permutation of the rows and columns

of A corresponds to a renumbering of the residuals and the failure events respectively.

We also define the sum (+) of any two rows of A as the Boolean OR of the elements

of one row with the corresponding elements of the other row. Using this definition, one

has for example

[1, 0, 0] + [1, 1, 0] = [1, 1, 0].

Clearly, any row of A that is the sum of other rows of A is redundant. For example,

assume that for some coding matrix the first row is the same as the sum of the second

and third rows. Then the second and third residuals are sufficient for FDI purposes,

and the first residual is not necessary; however, this redundant residual may be useful in

the decision making process, given the presence of noise and uncertainties.

Now define the finite set F i as the collection of all those j E k for which bij= O. For
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example, the family F i (i E p) associated with the binary coding sets we used in

Example 3 is simply:

F1 = {2,4,6}, F2 = {1,4,5), F3 {1,2,3}

Note that the sets Fi (i E p) contain all the information required for specifying the

structure of the transfer matrix relating the failure events to the residuals.

Using the above preliminary concepts, we now derive the solvability condition for

FDIFP.

Theorem 7: FDIFP with a given family of coding sets and the assumption

that there is only one failure present at a time has a solution if and only if

SrinLj=O, jEk-Fi, iEp, (45)

where

Sri := inf S(ZjEFri ), iEp. (46)

Proof: (only if) Recall that the objective of FDIFP is to generate p

residuals, rl (t) (l E p), such that when the j-th component fails, the residuals

ri(t) for i E 7j should be nonzero, and the other residuals all should be

identically zero. We can think of FDIFP as p separate FPRG (see Section 3)-

one for each row of A- which should be solvable simultaneously. Using the

necessary condition for solvability of FPRG (see Theorem 2) and the

assumption that there is only one failure present at a time, the condition given

in (45) follows immediately.

(if) Simply use the unobservability subspaces Sri (i E p) to design p separate

residual generators each being the solution to an FPRG corresponding to

different rows of the coding matrix (see Theorem 2 for construction of the

residual generator). 0

Note that all of our remarks in Section 3 about accommodating the effect of sensor and
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process noise hold equally well for the residual generators of Theorem 7.

The following example illustrates the design procedure.

Example 4: Consider the system in (3), with

I 1 0 10 0 0 0 0
0 1 0 0 0 I 1 0 0 I 1

A= 0 0 -1 1 0 ,B 0 0 1 0 0 0
00 0 -20 0 0 1 0 0
00 0 0 -2 000 1 0 1

1 0 1 0 0
0 1 0 1 0

00 0 1 1,

and the failure signature Li being the i-th column of B. The problem is to design a

residual generator using the binary coding scheme of Example 3. The coding matrix A

for this example is given in (43). First, the infimal subspaces Sri defined in (46) are

computed. One can show that

Sr = L, L4

Sr2 = L1 L4 e L5

Sr3 = L e L£2 ( L3

A simple check shows that the necessary condition in (45) is satisfied. Hence Sri can be

used to design a residual generator E i according to the procedure in Theorem 2. It is

clear that E1 will be a third order filter, and the other two residual generators EL2 and

Z 3 will each be second order filters. Therefore, the over all residual generator is 7-th

order.

We also point out that if the columns of L are permuted (this permutation

corresponds to a renumbering of the failure signatures), then the problem may not have
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a solution. First note that the failure signature L6 is a linear combination of the failure

signatures L 2 and L 4, and now consider interchanging the fifth and the sixth columns of

L but still using the coding matrix in (43). It is immediate that the new problem does

not have a solution, since the new L5 is a linear combination of L 2 and L 4, and the

solvability conditions of FDIFP are not satisfied. Thus, in practice, care should be

taken to specify the coding sets in a way that avoids such easily resolved difficulties.

Our objective is now to show that FDIFP will not have a solution for certain families

of failure events, no matter what coding scheme is used. For this, we shall assume in

the remainder of this section that the failure signatures are column vectors.

The following result will be crucial to our derivation.

Lemma 8: Let (C,A) be observable, d(L1 ) = d(L2 ) = 1, and L1 C T2*

where T2* := inf S(L 2). Then T1*-- T2* where T1* := inf S(L1 ).

Proof: Since L 1 C T2* and T2* is a u.o.s., T2* E S(L1 ). Thus the

infimality of T1 * implies that T1* C T2*, and hence CT1* C CT2 *. From the

observability of (C,A) and some of the results of [14], we know CT1 * and CT2*

are both one dimensional; thus CT,* = CT2*, or equivalently

TI* + Ker C-= T2* + Ker C := V. (47)

Also T2* and T1* are compatible since Tl*+T2 * - T2* is (C,A)-invariant (see

[151). Let D E nD(Ti*). Using (47) and (7), we have

T2* = < VA+DC> = Ti*.

Theorem 9: Given an LTI system (C,A,B) with a family of failure

signatures {Li, i E k} with arbitrary modes of failures, and assuming that there

is only one failure present at a time, it is possible to design a coding set and a

residual generator to detect and identify any failure within this family if and
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only if

L n Tj* = 0, lj E k, 1 = j, (48)

where Ti* := inf S(Li).

Proof: (only if) Suppose that we have designed a residual generator with an

appropriate family of coding sets. Recall that no two columns of the coding

matrix associated with these coding sets should be the same. Using this

property, it follows that for any two distinct integers 1,j E k, there should
exist an i such that either

j E F i but 1 rF, (49)

or

i E Fi but j 0 Fi. (50)

Now let the family of detection spaces { T/*, i E k} be as defined in (42). If (50)

holds, then obviously T/* C Sri. Similarly, if (49) holds, then Tj* C Sr.. Now

using the necessary condition given in (45) and the argument in (49) and (50),

it follows that for any l,j E k

either Li n T7* = 0 or Lj n T* = 0. (51)

Using (51) and Lemma 8, we then conclude that (48) necessarily should hold.

Because of Lemma 8, the condition given in (48) is also equivalent to

L n7 *=o , Ek, jE l+1, ... ,k. (52)

(if) We need to show that if a family of failure signatures satisfies the

condition given in (52), then there exists a family of coding sets for which the

FDIFP, with the assumption that only one failure is present at a time, has a

solution. For this, just use the coding sets

2 ({1, . . . ,i-l,i+l, . . ,k}, i k, (53)
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to design k different residual generators such that the unobservable subspace of

the i-th residual is simply Ti*, so that the failure of the i-th component will not

show up in this residual. 0

Note that if we are using the coding sets (53) to design the residual generator, then

the unobservable subspace of the i-th residual is exactly the detection space we defined

earlier. Hence, a more appropriate name for such a subspace seems to be the

undetectable subspace of a failure signature, but in order to conform with the notions

introduced in the work of Beard [2], we chose to continue to use the name detection

spaces.

A family of scalar failure signatures {Li , i E k} satisfying the condition given in (52)

will be called an identifiable family of failure signatures. Note that if a family of failure

signatures is not identifiable, then there does not exist any processor with which it is

possible to detect and identify the failures in the sense of Section 2.

It is also possible to state the frequency domain counterpart of the failure

identifiability condition given in (52). From (39), we know that the condition

Li n Tj* = 0 and Lj n Ti* = 0

is equivalent to the statement that the transfer matrix C(sI-A)-I[Li, L.) is left

invertible. Hence, the condition in (52) is equivalent to the statement that the rational

vector subspaces spanned by C(sI-A)-1 Li are nonintersecting. Note that the necessity

of this condition is obvious, since if the image of C(sI-A)-lLi (over the field of rational

functions) intersects the image of C(sI-A)-1Lj, then there exist proper rational

functions mi(s) and mj{s) such that

C(sI-A)-lLimi(s) = C(sI-A)- 1Ljm3(s).

This means that there exist failure modes for the i-th and the j-th components that

result in the same output; hence, it will be impossible to distinguish between the failure
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of these two components with these failure modes by observing the output of the

system.

7. Conclusion
In this paper we have solved the problem of generating residuals for the purpose of

detecting and identifying control system component failures by processing the

commanded inputs and measured outputs of a linear time-invariant system. We have

also developed simple design procedures for generating the residuals when the solvability

conditions are satisfied.

We should mention that all of our results hold equally well for discrete-time systems,

since our approach has been entirely geometric. Therefore, the left hand side of (3) can

be replaced with x(t+l) and the solvability condition for all of the problems that we

have formulated here will remain unchanged. An interesting characteristic of residual

generators for discrete-time systems is that we can assign the spectrum of the filter to

the origin of the complex plane, and hence obtain dead-beat behavior. It can be shown

that the residuals thus obtained are the generalized parity relations introduced by Chow

[5]. We refer the reader to [161 and [15] for a more complete discussion of the

relationship between the generalized parity relations and the residual generators

discussed in this article.

A challenging problem that we did-not address in this paper is the task of generating

residuals that are robust to the modeling errors. Lou [12, 13] and Chow [4, 51 have done

some preliminary work on the problem of robust parity relations. Using our results, it is

clear that the residual generator is a finely tuned processor that relies on the given

dynamics of the plant. Speciffically, for actuator failures, the design of the processor

relies on inverting the transfer matrix of the system, which can be quite sensitive to

changes in the system parameters. We also point out that the issue in robust residual

generation is not simply the stability of the perturbed system as in many robust control

system problems, but the preservation as nearly as possible of the diagonal structure of
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the transfer matrices in the presence of plant uncertainties. This is a much more

complicated problem and deserves the attention of researchers in linear system theory

and robust control.
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