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ABSTRACT

This paper summarizes a research effort which addresses some of the current
problems in interfacing systems theory and reliability. Reliability is roughly the
probability that a system will perform according to specifications for a given amount
of time. The reliability of a system depends on the structure of its components.
Systems theory and control theory deal with the response characteristics of a system,
which depend on the system dynamics. This report defines the concepts necessary to
unify the structural and the dynamic properties of a system. The result is a
definition of what constitutes a reliable system, from the viewpoint of systems
theory, and a methodology which can be used to determine if a given design allows a
reliable control system design.
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1. Introduction

A method is described which specifies whether or not a linear system which has

random jump discontinuities in its dynamics can be stabilized by state feedback. The

system is modeled as being a member of a set of linear systems at each time, where

the current member is specified by the state of a Markov chain. The system is

modeled in this paper as allowing discontinuities only in the input (actuator) matrix;

this restriction is easy to remove and causes no change in the results. Only state

feedback is considered; this allows exact identification of the configuraiton after a

unit delay. These results do not hold under more general assumptions.

The method illustrates the unification of the concepts of reliability and

stabilizability. Reliability is defined as the probability that a system will perform

within specified constraints for a given period of time. Stabilizability is defined for

linear time invariant systems as the existence of a state feedback control law for

which the closed loop system has all its poles in the open left half of the complex

plane.

Stabilizability is not as easy to define for system which can experience random

discontinuities in their dynamics. The definition of stability used in this paper (cost-

stability) is that, for a specified quadratic cost criterion on the state and input

signals, the expected value of the cost (with respect to the statistics of the Markov

chain) is finite with probability one over an infinite time horizon. A system is

stabilizable if and only if this expected cost, as a function of the state feedback map,

has a finite value for at least one feedback map.

We emphasize the relationship between these results and reliability. The class

of systems presented here is one model of abrupt failure, reconfiguration, and repair

in a linear system. Given the Markov- model of jumps in the system model, the

methods of robust control, in which the system is guaranteed stable in all modes of



operation, are not sufficient. A system may be allowed to transit through an

unstable mode of operation, and yet be cost-stable.

Cost-stability can be used to classify systems into two subclasses, those which

are reliable (stabilizable with probability one), and those which are not. These

classes are defined by the structural dynamics and by the continuous state dynamics.

The expectation operator which will be used to define cost is with respect to the

statistics of the structural model; whereas, the cost function for a given structural

trajectory is with respect to the value of the state and input.



2. Previous Work

Several authors have studies the optimal control of systems with randomly

varying structure. Most notable among these is Wonham [1], where the solution to

the continuous time linear regulator problem with randomly jumping parameters is

developed. This solution is similar to the discrete time switching gain solution

presented in Section 3. Wonham also proves an existence result for the steady-state

optimal solution to the control of systems with randomly varying structure; however,

the conclusion is only sufficient; it is not necessary. Similar results were obtained in

Beard [2] for the existence of a stabilizing gain, where the structures were of a highly

specific form; these results were necessary and sufficient algebraic conditions, but

cannot be readily generalized to less specific classes of systems. Additional work on

the control problem for this class of systems has been done by Sworder [3], Ratner &

Luenberger [4], Bar-Shalom & Sivan [5], Willner [6] and Pierce & Sworder [7]. The

dual problem of state estimation with a system with random parameter variations

over a finite set was studied in Chang & Athans [8].

Some of the preliminary results on which this research was based were

presented in unpublished form at the 1977 Joint Automatic Control Conference in

San Francisco by Birdwell, and published for the 1977 Conference on Decision and

Control Theory in New Orleans by Birdwell & Athans [9]. A survey of the results

was presented without proofs in [10]. This paper is based on the results in Birdwell

[11].



3. Model of System Structure

Models of the structural and the system dynamics will now be presented and

used in the sequel to demonstrate the concepts outlined in the introduction.

Component failures, repairs, and reconfigurations are modeled by a Markov chain.

Only catastrophic changes in the system structure are considered; degradations are

not modeled. The hazard rate is assumed to be constant, resulting in an exponential

failure distribution. In the discrete-time case, to which the sequel is confined

exclusively, the hazard rate becomes the probability of failure (or repair of

reconfiguration) between time t and time t + 1.

We now define the modes of operation and their dynamic transitions. The

terms system configuration and system structure will be used. A system structure is

a possible mode of operation for a given system, represented by the components, their

interconnections, and the information flow in the system at a given time. The

system configuration is the original design of the system, accounting for all modeled

modes of operation, and the Markov chain governing the configuration, or

structural, dynamics (transitions among the various structures). In this paper,

structures are referenced by the set of non-negative integers

I = {O 1,2, · ,L} (3.1)
(3.1)

Consider the system

4t+l A-t + Jk(t)Ut (3.2)

where

etcRn
(3.3)



.ut e Rm

(3.4)

A Rn xn

(3.5)

and, for each k, an element of an indexing set I

kel=I0,1,2, · · ,L}(3.6)
(3.6)

Bk eR n xm

(3.7)

and

B. t B. foralli, jeI, i ( jl - (3.8)

The index k(t) is a random variable taking values in I which is governed by a Markov

chain, and

't+l t (39)

atrRL+1

(3.10)

where ni,t is the probability of k(t) = i, given no on-line information about k(t), and

lo is the initial distribution over I.

It is assumed that the following sequence of evens occurs at each time t:

1) xt is observed exactly

2) then Bk(t-1) switches to Bk(t)

3) then ut is applied.



Consider the structure set {_Bk}keI indexed by I. Define the structural trajectory

xT to be a sequence of elements k(t) in I which select a specific structure Bk(t) at time

t,

x T = (k(0),k(l),- ,k(T-1))
(3.11)

The structural trajectory xT is a random variable with probability of occurance

generated from the Markov equation (3.10).

T-1

P( T) = Pk(t); k(t+1) k(o), 0
t=O

(3.12)

where the control interval is

{0,1,2, · ,T-1,T}

(3.13)

for the finite time problem with terminal time T, and Pk(t); k(t+l) is the conditional

probability of the system being in the structure indexed by k(t) at time t, given that

it was in the structure indexed by k(t-1) at time t-1. Then for a given state and

control trajectory (xt, ut)T'lt_, generated by (3.2) and xT from a sequence of controls

(ut)T'l-, the cost index is to be the standard quadratic cost criterion

T-- T-T

JT XT' Xt'Ust t= = xt x t+ Rt +XTQT
t=(

(3.14)



4. Problem Statement

The objective is to choose a feedback control law, which may depend on any past

information about xt or ut, mapping xt into ut

q: R n -R m

(4.1)

-t t- t
(4.2)

such that the expected value of the cost function JT from equation (3.15)

JT E [JTII 

(4.3)

is minimized over all possible mapping Dt at D*t.

Normally, a control law of the form (4.2) must provide both a control and an

estimation function in this type of problem; hence the label dual control is used.

Here, the structure of the problem allows the exact determination of k(t-1) from xt,

xt-1 for almost all values of ut-1. This result is stated in the following lemma:

Lemma 1: For the set {Bk} k c I, where the Bk's are distinct, the set

{_k, t+ 1 = A xt + Bk u t } kdI has distinct members for almost all values

of Ut.

Proof: See Appendix.

Ignoring the set of controls of measure zero for which the members of



{Xk,t+l} k=O

(4.3)

are not distinct, then for (almost) any control which the optimal algorithm selects,

the resulting state xt+ 1 can be compared with the members of the set (4.3) for an

exact match (of which there is only one with probability 1), and k(t) is identified as

the generator of that matching member pk, t + 1.

This approach is essentially identical to assuming that the structure of the

system is perfectly observable. Assuming perfect observability does eliminate any

concern about the possibility of encountering a surface of zero measure and causing

the control loop to malfunction. However, in a practical application, neither the

assumption of perfect state observation nor of perfect structure observation is valid,

and in fact the implementer is forced to consider structure identification strategies

and the dual effect of control actions on the observation process.

The optimal control law u* = It* (xt) can be calculated with the assumption

that k(t-1) is known, since this is the case with probability one if no measurement

noise is present. Thus, this solution will be labeled the switching gain solution,

since, for each time, t, L + 1 optimal solutions are calculated apriori, and one

solution is chosen on-line based on the past measurements xt, xt-1 and ut-1, which

yield perfect knowledge of k(t-1). The solution is stated in the following theorem; the

proof is contained in the Appendix.



5. The Optimal Solution

The solution is stated in the following Theorem; the proof is contained in the

Appendix. Dynamic programming is used to derive the optimal solution.

Theorem 1:

At each time t, the optimal expected cost-to-go, given the system structure k(t-1),

which is the minimum of the expected value of the quadratic cost over the interval

{t,.., T} and is given by

V (tk(t- 1),t) = miin Ek(t) + t[ T

-t = t (Xt)

+ V (xt+l, k(t), t+ 1) Xt,

(51)

is quadratic,

V* (xt , k(t- 1), t) = x T Sk Xt'

(5.2)

where the Sk,t are determined by a set of L + 1 coupled Riccati-like equations (one

for each possible configuration):

L

5kt - I Pik Si, t + 1
i=O

HYBTS hA ·t S B.-- E Pik--Sit + I Bi R + E Pik-1 isit + 1Bii=0 i=o

I -Pik-i -it+iA +

(5.3)



The optimal control, given k(t - 1) = k, is

Uk, t R+ Pik si, t+ 1-i

E Pik~iit t+ lAXt
i=O

Proof: See Appendix.

(5.4)From equation (5.4), the optimal linear switching gain is

Gkt + - Pik + Bi |

i=O

(5.5)

and u*t = D*t(xt) is a switching gain linear control law which depends on k(t-1). The

variable k(t-1) is determined from x(t) (see Lemma 1).

Note that the i,t's and the optimal gains Gk,t can be computed off-line and

stored. Then at each time t, the proper gain is selected on-line from k(t-1), using

Lemma 1 as in Figure 1.

This solution is quite complex relative to the structure of the usual linear

quadratic solution. Each of the Riccati-like equations (5.3) involves the same

complexity as the Riccati equation for the linear quadratic solution. In addition,

there is the on-line complexity arising from the implementation of gain scheduling.

Conditions for the existence of a steady-state solution to equations (5.3) can be

developed using the properties of the structural dynamics, as in Chizeck [12]. The

development of these conditions and computational algorithms are of general



theoretical importance in linear system theory. The possibility of limit cycle

solutions in the switching gain computations is excluded by the following lemma:

Lemma 2: If the optimal expected cost-to-go at time t is bounded for all t, then

equation (5.3) converges.

Proof: See Appendix.
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Figure 1: The switching gain control law.



Before we proceed to give necessary and sufficient conditions for the existence of a

steady-state solution to equation (5.3), we must define the structure of the Markov chain.

The states in the set I can be divided into closed communicating classes C1, ... , Cr and a

group of transient states T. Let n(Ci) denote the number of elements in Ci.

Lemma 3: The recursive equations (5.3) converge if and only if there exist feedback control

matrices Gk(t) and there exist positive definite matrices Hi, i e I, such that

( I lt-1

t=l

H E p ~~(A + ).G. + GT (A + A+ Gj Qj

keT

(5.6)

Proof: See Appendix.

This lemma is a restatement of the equivalence of Theorem 2 statements i) and iii), but

with a different proof explicitly involving the Markov chain's structure. The expected cost

JT converges to a weighted sum of the matrices H i, i E I as T -X 0, if it converges, and since it

is the optimal cost, it must be bounded by the same weighted sum if the H i, i E I exists.

Although necessary and sufficient conditions for the existence of a bounded solution in

terms of the system dynamics are unknown, the following Lemma supplies sufficient

conditions on the matrices A B. and P.



Lemma 4: The optimal expected cost is bounded for all t if there exist feedback control laws

Fk, k e I, such that

1. For every state k in C1, ... , Cr:

If Pkk < 1, then

(1-Pkk) E Pkk IIA- BkFkI maxIA-BF c
t=l

(5 ... 7)

where II A II is the maximum singular value of the matrix A.

If Pkk = 1, then

I IA-B kFk l t - < 
t=l

(5.8)

2. For every transient state k in T, let

p(k)= 1 - Pkj-
jeT

(5.9)

Let = min p(k). Then

1 (-i )T maxA-- BkF j < oo

(5.10)

Proof: See Appendix.



Note that the sufficiency conditions in Lemma 4 allow the system to have structures for

which no stabilizing control gain can be designed. However, the overall system can be

considered reliable if the time spent in these structures is sufficiently small, as indicated by

the tradeoffs between the singular values of the closed-loop matrices and the self-return

probabilities Pkk.



6. Implications of the Solution

The existence of a steady-state solution to the switching gain problem establishes a

division of system designs into those which are inherently reliable and those which are

unreliable. Even though conditions to test for the existence of the steady-state solution are

unavailable, software can be used with iteration for the test.

As mentioned earlier, cost stability is the appropriate definition of stability for this

problem.

Definition 6: (Cost stability). The set of constant gains {2}ii I stabilizes the system (3.2)

using the control law

at =-k t

(6.1)

where k is determined by Lemma 1 if and only if the scalar random variable

T T
Xt 9Q2t + t Rut <00

t=O

(6.2)

with probability one.

If the infinite time horizon control problem is defined as the minimization of

J = limJT

T -->oo

(6.3)

then the steady-state values of the gains calculated by equations (5.3) and (5.5) provide the

minimizing control law for equation (6.3); furthermore, the _k, t converge if and only if a

solution to equation (6.3) exists.



In addition, the existence of a cost stabilizing set of gains {i} i c I is equivalent to the

existence of the infinite time horizon solution. These results are summarized in the

following theorem.

Theorem 1: The following statements are equivalent:

i) Equations (5.3) converge to steady-state values Sk as T -, oo (or t -0 - Xo for fixed T).

ii) The steady-state set of gains {G* } k c I from equations (5.5) cost stabilizes the

system described by equations (3.2) and (6.1).

iii) A set of gains {Gk} k c I exists for which JT is bounded.

Proof: See Appendix.



7. Example

In this Section, a two-dimensional example is presented with three different

switching gain solutions to illustrate the switching gain computational

methodology. The computer routines which are used in the calculation of the

switching gain solution are documented in [11].

The example is a two-dimensional system with four structural states

corresponding to the failure modes of two actuators. In this example, failure of an

actuator is modeled as an actuator gain of zero. Thus, the four structures are: I)

Both actuators working (Bo); ii) One actuator failed (B1 and B2), and III) Both

actuators failed (B 3). The system is controllable in all structures except for the

structure represented by B 3.

Although this example exhibits a very simple structure which models only

actuator failure and self-repair, note that the Markov chain formulation does not

restrict the configurations of actuators in any structural state. Therefore, this

methodology can be used to model and control systems with arbitrary failure, repair,

replacement, and reconfiguration structures. Neither is there any restriction that

failure and repair/reconfiguration be accomplished within a single structural

transition. Therefore, actuator degradation can be modeled as a sequence of discrete

failures. The same technique can be applied to repair/reconfiguration modeling.

Actuator failures and repairs are assumed to be independent events with

probabilities of failure and repair, per unit time, of pf and Pr, respectively, for both

actuators. Note that only exponential failure/repair distributions can be

represented.

The matrices Q and R are the quadratic weighting matrices for the state xt and

the control ut, respectively. The matrix P is the Markov transition matrix, which is



calculated from knowledge of the system configuration dynamics, represented

graphically in Figure 2.

There are three cases in the example. Each case assumes a different failure

rate and repair rate for the actuators. Case i) has a high probability of failure and a

low probability of repair, relative to Cases ii) and iii). The switching gain solution is

not convergent for Case i); the gains themselves converge, but the expectecd costs do

not. Only configuration state 0 is stabilized with its corresponding gain, Go.

Cases ii) and iii) both assume more reliable actuators than does Case i). Both

Cases ii) and iii) have convervent switching gain solutions. Therefore, both Cases ii)

and iii) represent reliable configuration designs, while Case i) is unreliable. This

difference is due entirely to the different component reliabilities. Equivalently,

Cases ii) and iii) are stabilized by the switching gain solution, while Case i) is not.

Note that in this Example, stabilizability is not equivalent to stability in each

configuration state, or robustness. For this example, no robust gain exists because

the system is uncontrollable from configuration state 3.

Case ii) is interesting in that neither the cost nor the gain matrix depends on

the structural state. This occurs when all the columns of the Markov transition

matrix P are equal. In this case, the on-line implementation is simplified; no

switching or detection of structural transitions is required.



System and Cost Matrices

2.71828 0.0

= 0.0 .36788

1.71828 1.71828 [ 0.0 1.71828

-o -. 63212 .63212 E 0.0 .63212

1.71828 0.0 0.0 0.0 
tB2= -. 63212 0.0 1 0.0 0.0

14. R I 10 i.0 1



Markov Transition Matrix

1 - 2pf +pf (Pf)P (1 -pf)Prr p

f(1 _pf)2 1 - Pf-Pr+PfPr Prp P(1-p 

E=
Pf(1 -Pf) Prf --PfPr+pfpr Pr( 1-P)

pf2 (- p)pf (1 -r)pf 1 - 2 Pr + Pr

The system dynamics are

xt+l =Axt + Bk(t)Ut ; xt =[Xl t x2,t]T

k(t) e {0,1,2,3}

The cost, which is to be minimized, is

J = E xt t + t R l

Case i)

[.49 o'0

.21 n

.09
n13



The coupled Riccati equations are non-convergent, but the gains converge:

-. 9636 0o

-o L-.9134 0

-. 9234 0 1

1 .8699 0

G2 = 1.020 0 

-. 9636 0

G3= 0.91340

Stability tests:

Configuration Stable

0 (Bo) yes

1 (B!) no

2 (B2 no

3 (3) no

Case ii)

.81 no

.09 n

Pf=.1l; Pr--9 0 
.09 n

.01
n3j



The coupled Riccati equations coverge:

-. 8890 .04222
G. =

-. 7752 -. 991

for i = 0,1,2,3
r25.57 8.6111

Si 
8.611 6.398

Stability tests:

Configuration Stable

0 (BO) yes

1(B 1 ) no

2 (B2) no

3 (B3) no

.9799 no

.009999 n

pf =.l; pr= ; =Pf=.l; r = '9 ; .009999 n2

.0001020 . i3
. ,. 1 I3 ~



The coupled Riccati equations coverge:

-. 7558 .1270

.8073 -. 1786

15.88 8.105

=° £ 8.105 6.137

-. 7060 .1186

G1 = L-.8441 -1.723

16.06 8.074 1

8.074 8.143 l

-. 8375 .1090

-2 -. 7543 -. 1669

I 16.31 8.199

2 8.199 6.158 

-.7863 .1023

L3 l-.79 2 6 -. 1619

16.54 8.170

8.170 6.162



Stability tests:

Configuration Stable

O (BO) yes

1 (B1) no

2 (B2) no

3 (B3) no

11~ ~ ~ ~ ~ ~ ~ ~~~-



8. Conclusions

The concepts which allow component reliability to influence control system

design in a consistent manner have been defined. When specialized to linear

systems with quadratic cost functions, an optimal control problem can be defined.

The resulting control law depends on the system structure, the structural dynamics,

and the system dynamics. The solution to the optimal control problem defines the

boundary between reliable (stabilizable) designs and unreliable designs.

In closing, we also note that the restriction that all structural changes occur in

the actuator matrix can be easily removed. In this case, a structural state is

completely defined by Ak and B k, rather than by B k alone. The results in this paper

are directly extendible to this case. Many of the details are available in [12].



9. Appendix

Al. Proof of Lemma 1.

Assume Xk, t+ 1 = xe, t+ 1 for k k e. Then (Bk - Se)ut-1 = 0, which implies ut-1 is

in the null space of Bk - Be, N(Bk - Be). Now, dimension(N(Bk - Be)) < m because the

Bk's are distinct. Therefore,

dimension( U N(k -Be)) < m
k,e

k;:e

(Al.1)

Therefore the set U N(Bk - Be) has measure zero in R m. Q.E.D.
kl

A.2 Optimal Solution for Deterministic Problem.

For the system described in Section 3, from dynamic programming, the optimal

cost-to-go at time t is given by equation (5.1). Assume the optimal cost-to-go at time

t, given the structure index k(t-1) at time t-1, is quadratic:

V (x k(t-1), t) S x-t k,t-t

(A2.1)

This assumption will be verified by induction. Then

tktt Xt gxt+ U RuTtS xt = Min m t x t+

-t= .t (X)

L

+ E Pik(AXt+ Biut)T Si,t+l (AX t +Biut)
i=O

(A2.2)

and



(A2.2) = min lxt Qxt + U Ru t

-Ut = t (xt)
L

+ Pik TA S A Xt +ut B S B U+ At 1 --it+ t B t --i -i t+ 1 - -t
i=0

+x:ATS, B.Ut +uTBTs Axt

(A2.3)

Differentiating the r.h.s. of equation (A2.3) w.r.t. ut and setting it equal to zero:

L

O-2R.+ : Pi [2BTSiS. +B.iu + 2 BTS. Ax ]- 2 Rat IPik -1t+ 1- --- 1, t+ 1--t
i=O

(A2.4)

or

* TI PBS S Axk (t- 1), t I -- Pik B ' S. 1 Bit Pik _ IiP, t+ -- t
i i=O

(A2.5)

is the optimal u*, given k(t-1).

Since no noise is present in the system, k(t-1) is obtained from xt and xt-l, along with

Ut-l, as

k(t-1)=i iff x= Ax 1 + But 1 (A2.6)

Substituting equation (A2.5) into equation (A2.3), and eliminating xt because the

equation must be true for all xt, and the matrix equation is symmetric, on

simplification we obtain equation (5.3), which verifies assumption (A2.1) by

induction, along with the initial condition



Sk, T- Q

(A2.7)

A3. Proof of Lemma 2.

Consider the optimization of the cost-to-go given k(t-1) at time t with final time

T. This optimal cost-to-go is simply

VT (xt, k(t- 1), t)

(A3.1)

where T denotes the final time. For the process with final time T + 1, the optimal

cost-to-go is

VT + 1 (xt, k(t- 1), t)

|E ETQX + uT RU +x Qx T k(t 1)
-t+ 1Q-T+ 1

(A3.2)

Since this optimal sequence is not necessarily optimal for the problem with final

time T, it must not incur less cost over {t,...,T}.

VT+ 1 (xt, k(t -1), t)

2 VT (xt, k(t- 1), t)

+ EU T RUT + TqXT+ k(t-1) 
'E UT I -T ~XT+1

(A3.3)

Since the expectation term of equation (A3.3) is non-negative,

VT+l (xt, k(t- 1), t) > VT (Xt, k(t- 1), t)

(A3.4)



Now, note that

V (xt , k(t- 1 ), t) - Xi, tT Xt

(A3.5)

and that equation (5.3) depends only on the number of iterations (T-t) for the

calculation of Si, tT, and therefore,

VT(Xt, k(t- 1),t- 1) = VT+(x k(t-1), t)

(A3.6)

Therefore, {Si,t} =T is an increasing sequence in that

S. -S. 20-i,t- 1 -1, t

(A3.7)

Since, by hypothesis, V* is bounded over t, the Si,t converge.

A4. Proof of Lemma 3.

Equation (5.6) implies that the gains Gk result in a finite cost-to-go, expressed

as an average of the matrices Hi. Hence, the optimal cost is also finite, and bounded,

so equation (5.3) converges. Similarly, if equation (5.3) converges, selecting Hk = Sk

and Gk according to equation (5.5) satisfies equation (5.6).

A5. Proof of Lemma 4.

Assume that the control gains Fk are used. Let t be the time of first exit from

state k. Assume To is finite with probability 1. Otherwise, Pkk = 1 and equation

(5.8) applies. Then, equation (5.7) establishes that

1 x I c lx II
-1 -



(A5.1)

Let

s= max JJQ + FTRF. J
-J -- J

(A5.2)

Then, the cost incured while in state k is bounded above by

cs Ix 112

1 -Pkk

(A5.3)

Consider now the new state at to, and denote the time of first exit tl. By similar

reasoning, we construct the sequence o, ..., n, ...

Let C(k) be the communicating class of state k, and

q = max Pi

j eC(k)

(A5.4)

The overall average cost incurred can be partitioned in terms of the costs incurred

between transits ti and i + 1 , as

T T
E| Ut Rt + xt Q xt

t=0

I1-1 12-1

.. RU -txt q-)+ E Rut T t l
t=O- t

(A5.5)

c slIx 1{2 | 

1 -q 1-q



(A5.6)

and equation (5.7) implies

csllx 112
(A5.6) - < (1 + c + c2 + )

1-q

(A5.7)

which is finite since c < 1.

If Pkk = 1, equation (5.9) establishes that, from structure k at time to,

E|E(uRu +xTQ!X)F
t=t t--t

o o

(A5.8)

Hence, equations (5.7) and (5.8) establish that, for any initial state k(to), x(to) in a

closed communicating class, the cost-to-go is finite. To show the overall cost is finite,

we must establish that from any initial transient state, the cost incurred until a

closed communicating class is reached is finite.

Let t(k) denote the time of first exit from T starting at k E T. The expected cost

incurred while in T is

E T ERk x+ Q)xt xk(o) ki

c sEt E OIij2 Xk(o) = kj
t=o

< six 2E E maxIA + x k(o) = k .

t=o

(A5.9)

But, from the definition of p,



Prob {I > n } (l p)n

(A5.10)

Hence,

E xt ( (t) RFk(t) + Q)x t x, k(o)= k
t=o

t=l

(A5.11)

by equation (5.10). Hence, the gains Fj result in finite expected cost for all initial

states. The optimal expected cost-to-go will be bounded in t by this cost.

A6. Proof of Theorem 1.

i) X ii):

Suppose {G* }k e I were not cost stablizing. Then for some set M of non-zero measure

of structural trajectories (k(O), k(1), ... ), J*T on that set is not bounded. But

JT I t JT(m)dp(m)m asT --

(A6.1)

therefore, M must be of measure zero.

ii) X iii): The steady-state gains {G* } k E I satisfy iii).

iii) = i): By assumption, there exists a B such that

JT( Gk} ke I)< Bfora llT

(A6.2)

Since



JT J k kI) < B foralilT

(A6.3)

Statement i) is implied by Lemma 2.
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