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Abstract

In this paper we propose a new method for solving linear programs. This method may be

viewed as a generalized coordinate descent method whereby the descent directions are chosen

from a finite set. The generation of the descent directions are based on results from monotropic

programming theory. The method may be alternately viewed as an extension of the relaxation

method for network flow problems [1], [2]. Node labeling, cuts, and flow augmentation paths in

the network case correspond to respectively tableau pivoting, rows of tableaus, and columns of

tableaus possessing special sign patterns in the linear programming case.
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1. Introduction

Consider the general linear programming problem with m variables and n homogeneous

equality constraints. We denote the constraint matrix for the equality constraints by E (E is a

n x m real matrix), the jth variable by x., and the per unit cost of the jth variable by aj . The

problem then has the form:

Minimize a .. (LP)
JJ

j=1

subjectto E ex.J = 0 V i=1,2,...,n (1)
j=1

I. < x. < c. Vj=1,2,...,m (2)J J J

where the scalars I. and c. denote respectively the lower and the upper bound for the jth
J I

variable and e.. denotes the (i,j)th entry of E . We make the standing assumption that (LP) is

feasible.

We consider an unconstrained dual problem to (LP) : Let p. denote the Lagrange multiplier

associated with the ith constraint of (1). Denoting by x and p the vectors with entries x.,

j = 1,2,...,m, and p., i = 1,2,...,n respectively we can write the corresponding Lagrangian function

m n

L(x,p) = (a E Pi)X
j=l i=l

The unconstrained dual problem is then

Minimize q(p) (3)

subject to no constraints on p
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where the dual functional q is given by

(qp) = _ l cmin L(x,p)

J J J

E max ( E eijpi.-aj)x.
1.-x.<c. i=

j=1 J J J

We will call x the primal vector and p the price vector. The vector t with coordinates

n (5)
tJ = epijp Vj=1,2,...,m (5)

i=1

is called the tension vector corresponding to p. In what follows we will implicitly assume that the

relation (5) holds where there is no ambiguity.

For any price vector p we say that the column index j is:

Inactive if t. < a.
I I

Balanced if t. = a

Active if t. > a.

For any primal vector x the scalar

m (6)

d. = e..x. V i=1,2,...,n
j=1

will be referred to as the deficit of row index i.

The optimality conditions in connection with (LP) and its dual given by (3), (4) state that (x, p)

is a primal and dual optimal solution pair if and only if
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for each inactive column index j (7)
x. - l.

J J

for each balanced column index j (8)
J J J

for each active column index j (9)
X. = C.

J J

for each row index i (10)d. =O

Conditions (7) - (9) are the complementary slackness conditions. Let d be the vector with

coordinates di ( in vector form d = Ex ). We define the total deficit for x to be

n

E Idil
i=1

The total deficit is a measure of how close x is to satisfying the linear homogeneous constraints

(1).

The dual problem (3) can be easily seen to be an unconstrained convex programming problem,

and as such its solution motivates the use of nonlinear programming methods. One such method

is the classical coordinate descent method whereby at each iteration a descent is made along one

of the coordinate directions. This method does not work in its pure form when the cost function

is nondifferentiable. We bypass this difficulty by occasionally using directions other than the

coordinate directions. The idea is illustrated in the example of Figure 1 where a multi-coordinate

direction is used only when coordinate descent is not possible.

To develop the mechanism for generating the multi-coordinate descent directions we will

view the problem of this paper in the context of monotropic programming theory [7], [8]. We

can write (LP) as
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p2

level curve of
the objective

o < _/ function

pr denotes the price vector generated
at the rth iteration.

Figure 1 Example of convergence using multi-coordinate descents.

m n/'

Minimize fj(xj) + (d) (P)
j=l i=1

subject to (-d, x) E C

where f.: R - i (-o,] is the convex function

a.x. if l. x.- c.
Ji J J J

fj(X.) = 
J J +t if x.<l. or x.>c.

J J J J

6: R -. (-o,,o] is the convex function

8 = 10 if 4=OV else

and C is the extended circulation space

C = |(-d, x) e..x. = di V i=1,2,...,n (11)

From (4) we see that the dual functional q(p) can be written explicitly as
From (4) we see that the dual functional q(p) can be written explicitly as(12)

q(p) g(ETp) (12)

where

g (13)g(t) = g (t) (13)
j=

1
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and the convex, piecewise linear functions gj are given by

(t .- a.)l. if t .•a 
g.( = J J J i J (14)

J J = (tj-aj)c. if t .>a
J ii J J

(see Figure 2).

gj(tj)slope 
Xts lslope = Ij

slope= cj

aj tj

Figure 2 Graph of gj

Actually gj is the conjugate convex function of fj (in the usual sense of convex analysis [6])

sup { tjxj.-f(xj) }
g j(t X.

J

as the reader can easily verify (see also [8]).

We now write the dual problem (3) in a form which is symmetric to (P)

Minimize , g j(t) (D)
j=1

subject to (p, t) E C'

where C' is the subspace

C ± (p, t t) = eiPi (15)



Problems (P) and (D) are symmetric in that they both involve minimization of a separable

function over a subspace, C and C' can be easily verified to be orthogonal subspaces, fj and gj are

conjugates of each other, while the conjugate convex function of 6 is the zero function. In fact

(P) and (D) constitute a pair of dual monotropic programming problems as introduced in

Rockafellar [7]. It was shown there in a more general setting that these programs have the same

optimal value and their solutions are related via the conditions (7)-(10). An important special

property of these programs is that at each nonoptimal point it is possible to find descent

directions among a finite set of directions -- the elementary vectors of the subspace C [in the case

of (P)] or the subspace Cl [in the case of (D)]. The notion of an elementary vector of a subspace is

dealt with extensively in [8] (see also [7]) where it is defined as a vector in the subspace having

minimal signed support (i.e. a minimal number of nonzero coordinates). We are interested in

the elementary vectors because they can be very efficiently generated by a tableau pivoting

technique and because they provide us with the necessary generalization of coordinate vectors

in the price space. In the special case of network flow problems for which the tableau pivoting

may be implemented by means of labeling, the generalized coordinate descent approach yields

an algorithm that is superior to the primal simplex method, which for many years has been

considered as the most efficient method for linear network flow problems [1], [2].

In the next section we give an overview of the relationship between the elementary vectors

and certain tableaus, called the Tucker tableaus, and describe a pivoting algorithm, called the

Painted Index algorithm, for generating Tucker tableaus with special sign patterns [8]. In

Section 3 we characterize the descent directions in terms of the Tucker tableaus and show how to

use the Painted Index algorithm to generate dual descent directions. In Section 4 we introduce a

class of generalized coordinate descent algorithms for solving (D) where descent directions are

generated by the Painted Index algorithm. A numerical example is given at the end of Section 4.
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In Section 5 we address the issue of finite convergence of these algorithms. In Section 6 we

report on computational experience.

2. Tucker Tableau and the Painted Index algorithm

In order to use elementary vectors in our algorithm we need a suitable characterization of the

elementary vectors of the extended dual subspace C' and a method for generating them. In the

special case of network constraints, the elementary vectors of C' are characterized by the

cutsets of the network. In the general case of arbitrary linear constraints, the elementary vectors

of C and C' are characterized by the Tucker representations of C and C' and to generate them

we will use a generalization of node labeling for network problems called the Painted Index

algorithm (see [8],Chap. 10).

We will first give a brief overview of Tucker tableaus and then discuss the algorithm for

generating them. Consider a linear homogeneous system

Tx = O

where T is a matrix of full row rank. Each column of T has an index and we denote the set of

indexes for the columns of T by J. Since T has full row rank, we can partition the columns of T

into [ B N ], where B is an invertible matrix. Then Tx = 0 can be expressed as

B -1NXN where x x= -B Nx where x IB~~~~~I XN
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This way of expressing Tx = 0 is a Tucker representation of S, where the subspace S is given by

S = { x I Tx = O }. Similarly,

tN = (B-N)Tt where t= tj

is a Tucker representation of S5 , where 51 is the orthogonal complement of S , given by

SI= {tit = TTp for some p 1. The matrix -B'1N is a Tucker tableau. The columns of -B-'N are

indexed by the indexes of the columns of N. The rows of -B-'N are indexed by the indexes of the

columns of B. (see Figure 3) With respect to a given tableau, an index is basic if its corresponding

xN = column variables

XB = row 
variables -BN

Figure 3 Tucker tableau corresponding to a partition

of Tx= 0 into BxB + NxN =0

variable is a row variable and nonbasic otherwise. Clearly the number of distinct tableaus is

finite. Furthermore, starting from any tableau, it is possible to generate all Tucker

representations of S and S5 by a sequence of simplex method-like pivots (see Appendix C for the

pivoting rule).

A fundamental relationship exists between the Tucker representations and the elementary

vectors of S and S1: Each column of a Tucker tableau yields in a certain way an elementary

vector of S., and conversely, every elementary vector of S is obtainable from some column of

some Tucker tableau. In a similar way, rows of Tucker tableaus correspond to elementary vectors

of the dual subspace SL :
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Proposition 1 ([8],Chap. 10) For a given Tucker tableau and for each basic index i and nonbasic

index j let aij denote the entry of the tableau in the row indexed by i and the column index by

j . The elementary vector of S corresponding to column j* of the given tableau has the

normalized form

1 if j=j (16)
z = (...z....)j where z. = if j isbasic

0 else

The elementary vector of 51 corresponding to row i* of the given tableau has the normalized

form

1 if j=i (17)

v -- ( ... )...J where v.= { -a. if j isnonbasic

0 else

By a painting of the index set J we mean a partitioning of J into four subsets (some possibly

empty) whose elements will be called "greeh", "white", "black", and "red", respectively.

For a given tableau, a column, indexed by say s, of the tableau is said to be column compatible

if the colour of s and the pattern of signs occuring in that column satisfies the requirements

shown in Figure 4. Note that a column whose index is red is never compatible. The requirements

g w b r

r 0 O O arb = arbitrary

b 0 <0 -0
inc

w 0 >O i nc = incompati ble

9 arb arb arb

Figure 4 Column compatibility for Tucker tableau
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for a compatible row are analgously shown in Figure 5.

g w b r

r 0 0 0 arb arb = arbitrary

b 0 0 0 arb

w 0 0 0 arb inc = incompatible

g inc

Figure 5 Row compatibility for Tucker tableau

The Painted Index algorithm takes any painting of the index set J and any initial Tucker

tableau and performs a sequence of pivoting steps to arrive at a final tableau that contains

either a compatible column or a compatible row. More explicitly, for any given index s that is

black or white, the algorithm produces a final tableau having either a compatible column

"using" s or a compatible row "using" s (we say that a column (row) uses s if s is either the

index of the column (row) or the index of some row (column) whose entry in that column (row) is

nonzero). We describe the algorithm below:

Painted Index algorithm ([8], Chap. 10)

Start with any Tucker tableau. Let s be a white or black index that corresponds to

either a row or a column (s will be called the lever index).

If s corresponds to a row, check whether this row is compatible. If yes, we terminate

the algorithm. Otherwise there is an entry in the s row that fails the compatibility test.

Let j be the index of any column containing such an entry, and check whether this column

is compatible. If yes, we terminate the algorithm. Otherwise, there is an entry in column j



that fails the compatibility test. Let k be the index of any row containing such an entry.

Pivot on (k,j) (i.e. make j basic and k nonbasic) and return to the beginning of the

procedure.

If s corresponds to a column, we act analogously to the above, with the word "column"

and "row" interchanged.

The Tucker tableau can be recursively updated after each pivot in a manner similar to that in

the simplex method. This updating procedure is described in Appendix A. When the algorithm

terminates, either a compatible row using s is found or a compatible column using s is found.

The number of distinct Tucker tableaus is finite, thus implying that the number of distinct

compatible columns or rows is also finite. Finite termination of the algorithm is guaranteed

when Bland's priority rule is used [8]: Give to the elements of J distinct numbers (priorities), and

whenever there is more than one index that can be selected as j or k, select the one whose

priority is highest.

3. Dual Descent Directions and the Modified Painted Index algorithm

For a given price vector p and a direction u, the directional derivative of q at p in the

direction of u is given by [cf. (12)]

q'(p;u) = g'(t;v)

where v = ETu and by definition

q(p + hu)-q(p) g(t+ Xv)--g(t)
q'(p;u) = lir ( ) g'(t;v) = lim

Ax O X I O
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Since g is separable we obtain [cf. (13)]

g'(tu) = 7 g(t.)v. + g (t )v.

j3v.<O j)v.>O
J J

where gj* and gj- respectively denote the right and the left derivative of gj. Therefore the

work in evaluating directly q'(p;u) is roughly proportional to the size of the support of v. Thus

we see that by using the elementary vectors of C' as descent directions we are in part

minimizing the effort required to evaluate q'(p;u). Since each gj has the form (14), then gj and

gj+ have the form

+g (t.) if j inactive i. if jinactiveorif j balanced (18)

i li c. if j activeorifj balanced ' J c ifj active
J J

from which it follows that

q'(p;u) = C(v,t)

where t = ETp, v = ETU , and

C(v,t) = I.v.+ c..+ I.v. + c.v.
J.< O u.<O v.>O v.>O (19)

Itfollowsthatq'(p;u) < i f C(vt) < O. Furthermoresince q(p) is piecewiseinear

ltfollowsthatq'(p;u) < 0 if and only if C(v,t) < 0. Furthermore since q(p) isa piecewise linear

convex function we have the following result :

Proposition 2 For a given vector (p, t) in C' and a direction (u, v) in C' there holds

q(p+Xu) = q(p) + AC(v,t) V XE([O,a)
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where a is given by

a= in(a> iv } r min a.-t. min a.-t (20)

j(at) >° | { v.<Oj active v. ' v.>O jinactive u. 

( a is the stepsize at which some column index becomes balanced.)

Proof:

For a fixed v, the quantity C(v,t) depends only on the following four index sets

{j aj > tj vjO, {j aj < tj, vj O, {j aj = t, uj >0 , {j aj = tj, vj < O

as can be seen from (19). By our choice of a it can be easily verified that these four index

sets do not change for all tension vectors on the line segment between t and t + av,

excluding the end point t + av. It follows that

C(v,t+tv) = C(v,t) V TE[O,a)

This combined with the fact

A A

q'(p+Au) = q(p) + J q'(p+uu;u)dI = q(p) + C(v,t+wv)du V A([O,a)
o o

give the desired result. Q.E.D.

An alternative formula for C(v,t) that turns out to be particularly useful for network problems

[2] is obtained as follows. Let x be a primal vector satisfying CS with p. Then by first expanding

the terms in C(v,t) and then using the definition of (CS) we obtain

C(v,t) = O .v. + c.v. + .v.+ c.v
J J J J JJ Jj

v.<O v.<O v.>O v.>O

a. t. a.<t. a. >t. a. <t.
J J J J J J J
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x.v. + I.v+ E c.v.
J J JJ JJ

JJi J J
a.=t. a. =t.
J J J J

m

= xj + y (I.-x.)v.+ (c.-x.)v.
i J J J J J J J

j=1 v.<O v.>O
J J

a.=t. a.=t.
J J J J

Let d be the deficit vector corresponding to x (i.e. d = Ex). Then using the identity uTd = vTx we

obtain

C(v,t) = dTu + E (Ij-x.)v .+ E (cj.-x.). (21)
v.<O v.>O
J J

j: balanced j: balanced

In a practical implementation it is possible to use a data structure which maintains the set of

balanced indices j. Since the number of balanced indices is typically around n or less, it follows

that C(v,t) can be typically evaluated using (21) in O(n) arithmetic operations. This represents a

substantial improvement over the O(m) arithmetic operations required to evaluate C(v,t) using

(19), particularly if m>n. In the case where E is sparse, the use of (21) may allow further

economies as for example in network flow problems (see [2]).

We now describe a particular way to apply the Painted Index algorithm to determine if a price

vector p is dual optimal, and if p is not dual optimal to either a) generate an elementary vector

(u, v) of C' such that u is a dual descent direction of q at p, or b) change the primal vector x

so as to reduce the total deficit.

Modified Painted Index Algorithm
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Let xERm satisfy (CS) with p and let d = Ex. If d = 0, then (x, p) satisfies the optimality

conditions and p is then dual optimal. If d 0, then we select some index s with ds a 0.

In the description that follows we assume that ds < 0 . The case where ds > 0 may be

treated in an analogous manner.

We apply the Painted Index algorithm, with s as the lever index and using Bland's

anticycling rule, to the extended linear homogeneous system
1,2,..,n n + 1,...,n + m

|-I E | | |(22)

where index i (corresponding to w.), i = 1,2,...,n, is painted

white if d. > 0

black if d. < 0

red if d. = 0

and index j + n (corresponding to zj ), j = 1,2,...,m, is painted

green if j balanced and I. < x. < c.

black if j balanced and I. = x. < c.
J J 

white if j balanced and I. < x. = c.
J I I

red if j not balanced

or if j balanced and I. = x = c.

Furthermore, we (i) use as the initial tableau one for which s is basic (one such choice is E

for which the indexes n + 1 to n + m are basic); (ii) assign the lowest priority to index s (this

ensures that s is always basic, see Appendix B for proof of this fact). The key feature of

the algorithm is that at each intermediate tableau we check to see if a dual descent

direction can be obtained from the tableau row corresponding to s. This is done as

follows:

We denote
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aj = entry in s row of tableau corresponding to column variable z .

as, = entry in s row of tableau corresponding to column variable w .

Applying (17) to the extended linear homogeneous system (22) we obtain that the

elementary vector (u, v) of C' using s that corresponds to this tableau is given by

1 ifi=s
u = -a . if w. isacolumn variable

0 otherwise

= a. if z. isacolumnvariable (24)

J 0 otherwise

For this choice of (u, v) we obtain (using (21)) that

C(v,t) = ds- a.d. + A (c.-x.)a . + L j Si . (25)
i a .>0 a .<0

sj Sj
j+n green j+n green

or black or white

If C(v,t) < 0 then the direction u is a dual descent direction and the algorithm

terminates. Note from (25) that if the tableau is such that the sth row is compatible, then

u is a dual descent direction since our choice of index painting and the definition of a

compatible row implies that

d < 0 and a .d. > 0 for all i such that w. is a column variable

and x. = c. for all j such that z. is a column variable, j + n green or black, and

a > 0sj

and x. = I. for all j such that z. is a column variable, j + n green or white, and
i J I

asj <O

which in view of (25) implies that C(v,t) < 0.
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We know that the Painted Index algorithm terminates with either a compatible row

using s or a compatible column using s. Thus we must either terminate by finding a dual

descent direction corresponding to a tableau for which C(v,t) < 0 [cf. (25)] or else

terminate with a compatible column using s. In the latter case, an incremental change

towards primal feasibility is performed as follows:

Let r* denote the index of the compatible column.

Let air* denote the entry in the compatible column corresponding to row variable w.

and let ajr* denote the entry in the compatible column corresponding to row

variable z..

Case 1 If r* = i for some i E{1 ,...,n}and r* is black then set

1 if i=r a * if n+j is basic

wi | a * i is basic z . jr
ir J

0 else 0 else

Case 2 If r* = n + j for some j { 1,...,m) and r* is black then set

a if i is basic 1 if n+j=r
W i ir z* a, * if n +j is basic

0 else r
O else

Case3 If r*=iforsomeiE{1,...,n}and r* is white then set

-1 if i=r -a if n+j is basic

w. -a if i is basic jr

0 else
o else

Case4 If r*=n+jforsomejE{1,...,m}and r* iswhitethen set

-a * if i isbasic if nj= r

w* ir z if n +j is basic
0~ o~J elsjr

0 else 
O else



18

That w* and z* so defined satisfy w* = Ez* follows from applying (16) to the extended

linear homogeneous system (22). Furthermore, our choice of index painting, together

with column compatibility of the column indexed by r*, guarantees that, for 1 > 0

sufficiently small, x + pz* satisfies (CS) with p and that x + pz* has strictly smaller total

deficit than x.

Given the above discussion, we see that the modified Painted Index algorithm will either

produce a dual descent direction u given by (23) that can be used to improve the dual cost, or

produce a primal direction z* as defined above that can be used to reduce the total deficit.

The special case where the initial tableau is E and its sth row yields a dual descent direction is

of particular interest and leads to the coordinate descent interpretation of our method. In this

case the dual descent direction is [cf. (23)]

1 i f i= s

w {| 0 otherwise

so the algorithm will improve the dual cost by simply increasing the sth price coordinate while

leaving all other coordinates unchanged. If the dual cost were differentiable then one could use

exclusively such single coordinate descent directions. This is not true in our case as illustrated in

Figure 1. Nonetheless the method to be described in the next section generates single

coordinate descent directions very frequently for many classes of problems. This appears to

contribute substantially to algorithmic efficiency since the computational overhead for

generating single coordinate descent directions is very small. Indeed computational

experimentation (some of which reported in [1], [2]) indicates that the use of single coordinate

descent direction is the factor most responsible for the efficiency of the relaxation method for

minimum cost network flow problems.
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4. The Relaxation Algorithm for Linear Programs

Based on the discussions in Sections 2 and 3, we can now formally describe our algorithm. The

basic relaxation iteration begins with a primal dual pair (x, p) satisfying (CS) and returns another

pair (x', p') satisfying (CS) such that either (i) q(p') < q(p) or (ii) q(p') = q(p) and (total deficit

of x') < (total deficit of x).

Relaxation Iteration

Step 0 Given (-d, x)E C and (p, t)E C such that (x, p) satisfy (CS).

Step 1 If d = 0 then x is primal feasible and we terminate the algorithm. Otherwise choose

a row index s such that d is nonzero. For convenience we assume that d < 0.

The case where ds > 0 may be analogously treated.

Step 2 We apply the modified Painted Index algorithm with s as the lever index to the

extended system

|_I E 1|z)

as described in Section 3. If the algorithm terminates with a dual descent direction

u we go to Step 4. Otherwise the algorithm terminates with a compatible column

using s, in which case we go to Step 3.

Step 3 (Primal Rectification Step)

Compute:
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min c.-x. min.-x mi - d.
J J J J t

lr = min
z.>O z .z <O J z. z. w*

J J i

where z*, w* are as described in Section 3. Set

x - X+lJZ* , d --d + pw*

and go to the next iteration. (The choice of p above is the largest for which (CS) is

maintained).

Step 4 (Dual Descent Step)

Determine a stepsize X* such that

q(p±, u) mmin {q(p+Xu)}
q(p + u) =

X>O

Set (p, t) -- (p, t) + A*(u, v) ,update x to maintain (CS) with p,and go to the

next iteration.

Validity and Finite Termination of the Relaxation Iteration

We will show that all steps in the Relaxation iteration are executable, that the iteration

terminates in a finite number of operations, and that (CS) is maintained. Since the modified

Painted Index algorithm (with the priority pivoting rule) is finitely terminating, the relaxation

iteration then must terminate finitely with either a primal rectification step (Step 3) or a dual

descent step (Step 4). Step 3 is clearly executable and finitely terminating. Step 4 is executable
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since a dual descent direction has been found. If Step 4 is not finitely terminating then there

does not exist a stepsize A* achieving the line minimization in the direction of u. It follows from

the convexity of q that

q'(p+Xu;u) < 0 forall A > 0

which implies that

l.v + E c.v. < 0
JJ JJ

v.<O v.>O
J J

in which case the assumption that (LP) is feasible is violated. (CS) is trivially maintained in Step 4.

In Step 3, the only change in the primal or dual vectors comes from the change in the value of

some primal variables whose indexes are balanced. Since the stepsize p is chosen such that

these primal variables satisfy the capacity constraints (2) we see that (CS) must be maintained.

Implementation of the line search in Step 4

It appears that usually the most efficient scheme for implementing the line search of Step 4 is

to move along the breakpoints of q, in the descent direction u, until the directional derivative

becomes nonnegative. This scheme also allows us to efficiently update the value of C(v,t).

Algorithmically it proceeds as follows:

Step 4a Start with p and u such that C(v,t) < 0.

Step 4b If C(v,t) > 0 then exit (line search is complete). Else compute a using

(20) ( a is the stepsize to the next breakpoint of q from p in the

direction u ) . Then move p in the direction u using stepsize a and

update t and x as follows:

Increase pi by aui V i

Set xj - Ij V balanced j such that vj <0

Set xj --cj V balanced j such that vj>0
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Increase tj by avj Vj

Update C(v,t) by

C(u,t) C(,t)- E (X -I.)vi - (xj-cj)v.
J ii J ii

a .=t a.=t.

v.<O u.>O
J J

Return to Step 4b.

It is straightforward to check that the updating equation for C(v,t) is correct and that (CS) and

the condition t = ETp are maintained.

Numerical Example

We now give a numerical example for the relaxation algorithm just described. To simplify the

presentation we will make no explicit use of Bland's Priority pivoting rule. Consider the

following linear program:

Min xl + x2 - x3 + 2x 4 - x5

0 -1 0 1 0 subject to [ 1 - 0

0 <x 1 <1, 1-x22 , 1xx3•<2 , 1<2 -1 <x 5 < 0

The cost vector for this example is a = (1, 1, -1, 2, -1). Let the initial price vector be the zero

vector. We obtain the following sequence of relaxation iterations:

Iteration 1

p= (0, O0) t = ET p = (00, O 0, 0) a-t = (1, 1,-1,2,-1) x=(0, 1,2, 1, O0) d = (0, -1)
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Initial Tucker tableau:

z, z2 z 43 z z r = red

r r r r r w = white

b = black
w1 r 2 -1 0 1 0

g = green
lever row - w2 b 0 1 -1 0 1

Row 2 is compatible, so a dual descent step is possible with descent direction given by:

u = (0, 1) v=(0, 1,-1,0, 1)

and stepsize given by:

a -- min (a 2-t2) /v 2 , (a 3-t3) /v 3 } = 1.

x is unchanged. The new price vector and tension vector are:

p -- p + au = (0,1) t -t+av = (0,1,-1,0,1)

Iteration 2

p = (0, 1) t = ETp = (0, 1, -1, 0, 1) a-t = (1, 0, 0, 2, -2) x = (0, 1,2, 1, O) d = (0, -1)

Initial Tucker tableau :

Z1 Z2 Z3 Z4 Z5

r b w r r

w1 r 2 -1 0 1 0

lever row - w2 b 0 1 -1 0 1

Row 2's compatibility is violated in columns 2 and 3. We pivot on row 1, column 2:

Next Tucker tableau:
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r1 W1 Z3 Z4 Zs

r r w r r

Z2 b 2 -1 0 1 0

lever row - w2 b 2 -1 -1 1 1

Row 2's compatibility is violated in column 3 and column 3 is compatible. The primal

rectification direction is then given by:

z* = (0,0,-1,0,0) w* = (0,1)

and the capacity of rectification is given by:

A <- m'in{ (I3-x3 )/z* 3 -d2/w* 2 } = 1

p and t are unchanged. The new primal vector and deficit vector are:

d v- d + Pw* = (0,0) x -x + pz* = (0,1,1,1,0)

The algorithm then terminates. The optimal price vector is (0, 1). The optimal primal vector is

(0, 1, 1, 1,0).

5. Finite Convergence of the Relaxation Algorithm

The relaxation algorithm that consists of successive iterations of the type described in the

previous section is not guaranteed to converge to an optimal dual solution when applied to

general linear programs due to the following difficulties:
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(a) Only a finite number of dual descent steps may take place because all iterations after a

finite number end up with a primal rectification step.

(b) An infinite number of dual descent steps takes place, but the generated sequence of

dual costs does not converge to the optimal cost.

Difficulty (a) may be bypassed by choosing an appropriate priority assignment in the relaxation

algorithm and showing that the number of primal rectification steps between successive dual

descent steps is finite under the chosen assignment.

Proposition 3 If in the relaxation algorithm the green indexes are assigned the highest

priorities and the black and white indexes belonging to {1,2,...,n}, except for the lever index, are

assigned the second highest priorities, then the number of primal rectification steps between

successive dual descent steps is finite.

Proof: See Appendix C.

Proposition 3 is similar to Rockafellar's convergence result for his primal rectification

algorithm ([8], Chap. 10). However his algorithm is an out-of-kilter implementation and requires,

translated into our setting, that each row index once chosen as the lever index must remain as

the lever index at successive iterations until the corresponding deficit reaches zero value. We do

not require this in our algorithm.

Difficulty (b) above can occur as shown in an example given in [9]. To bypass difficulty (b) we

employ the £-complementary slackness idea which we introduced in [2] for network flow

problems. For any fixed positive number E and any tension vector t define each column index

jE{1,2,...,m}to be
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s-inactive if tj < aj-e

s-balanced if aj- < tj < aj+ e

e-active if tj >aj+e

Then for a given primal dual pair (x, p) and t = ETp we say that x and p satisfy C-complementary

slackness if

Xj = Ij V c-inactive arcs j

Ij < xj < cj V s-balanced arcs j (s-CS)

Xj = C1 V e-active arcs j

When e = 0 we recover the definition of (CS). Define

C(u,t) = .v + I. c.v. + c.u.
J J JJ J J JJ

j :-inactive v .< O j:e-active v .> 0O
J J

j: -balanced j: e-balanced

For computational purposes we may alternately express Ce(v,t) in a form analogous to (21): For

a given p let x satisfy s-CS with p and let d = Ex. Then using an argument similar to that used

to derive (21) we obtain

Ce(v,t) = dTu + ' (. -x)v. + (c. -xU (26)
v.<O .> O

J J
j: C-balanced j:e -balanced

We note that, for a fixed v and t, CC(v,t) is monotonically increasing in e and that C(v,t) = C°(v,t).

Proposition 4 If in the relaxation iteration of Section 4 we replace (CS) by (s-CS) and C(v,t) by

CI(v,t) then the number of dual descent steps in the relaxation algorithm is finite.
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Proof:

First we will show that each iteration of the modified relaxation algorithm is

executable. Let (x, p) denote the primal dual pair that satisfies c-CS at the beginning of

the iteration and let t= ETp. It is straightforward to verify, using (26), that with (CS)

replaced by (e-CS) in the painting of the indexes every compatible row yields a (u, v) [cf.

(23), (24)] that satisfies CE(v,t) < O. Therefore the iteration must terminate with either a

compatible column or a (u, v) such that Ce(v,t) < 0. In the former case we can perform a

primal rectification step identical to that described in Section 4. In the latter case, since

C(v,t) = C°(v,t) < C6(v,t), it follows that u is a dual descent direction at p so that the dual

descent step (Step 4) can be executed.

Next we will show that the line minimization stepsize in the dual descent step is

bounded from below. Using the definition of CI(v,t) we have that a dual descent is made

when

C(V,t)= E t.v.+ E L.v . + CV. < O (27)
a.-t. >e v.< 0 a.-t. <- v.>O
J J J J J J

laj-t/ < e I aj-tjl - e

Let

= - (28)
max ivjl

and let p' =p' + 'u , t'= t + e'v. Let x' be a primal vector satisfying (CS) with p'. Then

(28) implies that

a.-t. > e = a -t'. > 0 and a.-t. < -e > a.-t'. < 0
J J J J J J J J

so that

a.-t. > e = X'.=l. and a.-t. < -e = X'.-C. (29)
JIJ JI J J J J J
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Using (29) and (19) we obtain that

C(v,t) = I.v + X'V. + C.V. + X'.V. (30)
jvj J y J J JJ

a.-t. > v.< 0 a-t. <-e v.> O
JJ J J J J

l aj-tj ce ja -tj j

Subtracting (27) from (30) we obtain that

C(v,,')-C t) = (x'j-j)v + (x'j-cj)j (31)
v.<O v.>O
J J

la-tjl <e a.-ttI <e

Since the right hand side of (31) is nonpositive it follows that C(v,t') _ C8(v,t) < O so that u

is a dual descent direction at p+ e'u, implying that the line minimization stepsize is

bounded from below by C'.

Consequently the line minimization stepsize at each dual descent step is bounded from

below by eL where L is a positive lower bound for 1/max Ivjl I jE{1,2,..,m} ) as v

ranges over the finite number of elementary vectors (u, v) of C' that can arise in the

algorithm. Since the rate of dual cost improvement over these elementary vectors is

bounded in magnitude from below by a positive number we see that the cost

improvement associated with a dual descent (Step 4) is bounded from below by a positive

scalar (which depends only on £ and the problem data). It follows that the algorithm

cannot generate an infinite number of dual descent steps. Q.E.D.

Using Proposition 4 we obtain the following convergence result:
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Proposition 5 If the conditions of Propositions 3 and 4 are satisfied, then the relaxation

algorithm terminates finitely with a primal dual pair (x, p) satisfying e-complementary slackness

and Ex=0.

Proof:

That the relaxation algorithm terminates finitely follows from Propositions 3 and 4

(note that the introduction of c-CS does not destroy the validity of Proposition 3). That

the final primal dual pair satisfies c-complementary slackness follows from the

observation that c-complementary slackness is maintained at all iterations of the

relaxation algorithm. That the final primal vector satisfies the flow conservation

constraints (1) follows from the observation that the relaxation algorithm terminates only

if the deficit of each row indexe is zero. Q.E.D.

The next proposition provides a bound on the degree of suboptimality of a solution obtained

based on c-CS.

Proposition 6 If (x, p) satisfies c-complementary slackness and Ex = 0 then

m

o c fjx)+q(p) < ec (C.-Il.)
j=1

Proof:

Let t = ETp. Since Ex = 0 we have that

T (atT(32)a x = (a-t)Tx

Using (32) and the definition of e-complementary slackness we obtain

a x (a -t)l. + (a.-t.)c. + (a.- t.)x. (33)
a j JJ j- J J J J J 

a.-t.>h a .- t .< -2 -e aa.-t.-<
J J J J J J

On the other hand we have [cf. (12), (13), and (14)1
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q(p) - ( (aj-tj)lj + (a-t)C. (34)
a.-t.>O a.-t.<O
J J J J

Combining (33) with (34) and we obtain

aTx + q(p) = (a.-t.)(xj--) + a (aj-tj)(xj-C)
O<a .- t .< -e a .- t .<0

J J J J

from which it follows that

m

aTx + q(p) < E (Cj-I .)
j=1

and the right hand inequality is established. To prove the left hand inequality we note

that by definition

Minimize (a - t)T~

subject to I-< -< c

from which it follows that

- q(p) < (a-t)Tx = aTx

where the inequality holds since I 5 x c c and the equality holds since Ex = O. Q.E.D.

A primal dual pair satisfying the conditions of Propositon 6 may be viewed as an optimal

solution to a perturbed problem where each cost coefficient a. is perturbed by an amount not

exceeding e. Since we are dealing with linear programs, it is easily seen that if e is sufficiently

small then every optimal solution of the perturbed primal problem is also an optimal solution of

the original primal problem. Therefore, for sufficiently small e , the modified relaxation

algorithm based on e-CS terminates in a finite number of iterations with an optimal primal

solution. It is not difficult to see that the required size of e for this to occur may be estimated by

min { a Tx-a Tx x a basicfeasiblesolution of(LP) , a x-a Tx * }
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where x* is any optimal primal solution. However such an estimate is in general not computable

apriori.
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6. Computational Experience

To assess the computational efficiency of the relaxation algorithm we have written three

relaxation codes in FORTRAN and compared their performances to those of efficient FORTRAN

primal simplex codes. The three relaxation codes are : RELAX for ordinary network flow

problems, RELAXG for positive gain network flow problems, and LPRELAX for general linear

programming problems. All three codes accept as input problems in the following form

m

Minimize ~ a.x.
j=l

m

subject to E e.jx. = b. , i=1,2,...,n
j=1

0 - x. ' c. ,j= ,2,... mn
J J

For RELAXG, the matrix E is required to have in each column exactly one entry of + 1, one

negative entry, while the rest of the entries are all zeroes. For RELAX, the negative entries are

further required to be -1. Three primal simplex codes - RNET [11] for ordinary network flow

problems, NET2 [10] for positive gain network flow problems, and MINOSLP (Murtagh and

Saunders) for general linear programming problems - were used to provide the basis for

computational comparison. The test problems were generated using three random problem

generators - NETGEN [13] for ordinary network problems, NETGENG [12] (an extended version of

NETGEN) for positive gain network problems, and LPGEN for general linear programming

problems. NETGEN and NETGENG are standard public domain generators, while LPGEN is a

generator that we wrote specifically for the purpose of testing LPRELAX and MINOSLP. All codes

were written in standard FORTRAN and, with the exception of RNET, were compiled on a

VAX1 1/750 (operating system VMS 4.1). They were all ran under identical system load condition
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(light load, sufficient incore memory to prevent large page faults). For RNET we only obtained

an object code that was compiled under an earlier version of VMS. The timing routine was the

VAXi 1/750 system time routine LIB$INITTIMER and LIB$SHOW TIMER. The solution times did

not include the time to set up the problem data structure. In both RELAX, RELAXG, and

LPRELAX, the initial price vector was set to the zero vector.

RELAX is an ordinary network flow code that uses a linked list to store the network topology.

It implements the modified Painted Index algorithm by means of a labeling technique similar to

Ford-Fulkerson labeling. Detailed description of RELAX is given in [2]. RNET is a primal simplex

code developed at Rutgers University over a span of many years. In RNET the FRQ parameter was

set at 7.0 as suggested by its authors. Preliminary testing with RELAX and RNET showed that

RELAX performs about as well as RNET on uncapacitated transhipment problems but

outperforms RNET on assignment problems, transportation problems, and capacitated

transhipment problems (up to 3 to 4 times faster). Here we give the times for the first 27 NETGEN

benchmark problems in Table 1 (computational experience with other NETGEN problems is

reported in [21 and [9]). The superiority of RELAX over RNET is less pronounced on very sparse

problems where the ratio m / n is less than 5. This may be explained by the fact that sparsity

implies a small number of basic feasible solutions. Although the results presented are only for

those problems generated by NETGEN we remark that similar results were obtained using a

problem generator that we wrote called RANET. Since RANET uses a problem generating scheme

quite different from that used by NETGEN, our computational results seem to be robust with

respect to the type of problem generator used. Typically, the number of single coordinate

descent steps in RELAX is from 2 to 5 times that of the number of multi-coordinate descent steps

while the contribution made by the single coordinate descent steps in improving the dual cost is

anywhere from 9 (for tightly capacitated transhipment problems) to 20 (for uncapacitated

transportation problems) times that made by the multi-coordinate descent steps (see [9], Tables

2.2 and 2.3). Yet the single coordinate descent step is computationally very cheap. In the range
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of problems tested, the average number of coordinates involved in a multi-coordinate descent is

found to be typically between 4 and 8 implying that even in the multi-coordinate descent steps

the computational effort is small. Furthermore this number seems to grow very slowly with the

problems size.

RELAXG is a positive gain network code developed from RELAX. It implements the modified

Painted Index algorithm by means of a labeling technique similar to that used by Jewell [5]. The

total storage requirement for RELAXG is : five m-length INTEGER*4 arrays, five n-length

INTEGER*4 arrays, five m-length REAL*4 arrays, four n-length REAL*4 arrays, and two

LOGICAL*1 arrays. Line minimization in the dual descent step is implemented by moving along

successive breakpoints in the dual functional. Labeling information is discarded after each

iteration. When the number of nodes (corresponding to row indexes) of nonzero deficit falls

below a prespecified threshold TP, RELAXG switches to searching for elementary descent

direction of "maximum" rate of descent and using as stepsize that given by (20), but with

"active", "inactive" replaced by "e-active", "e-inactive" respectively.

To measure the efficiency of the gain network algorithm we compared RELAXG with the code

NET2 of Currin [10]. NET2 is a FORTRAN primal simplex code developed on a CDC Cyber 170/175

computer operating under NOS 1.4 level 531/528. In the computational study conducted by its

author [10] - experimenting with different data structures, initial basis schemes, potential

updating and pivoting rules - NET2 was found to be on average the fastest (NET2 uses forward

star representation). In addition to NETGENG we also tested RELAXG and NET2 on problems

generated by our own random problem generator RANETG - an extension of RANET for

generalized networks. The times with RANETG are roughly the same as with NETGENG - which

shows that our computational results are robust with respect to the type of problem generator

used. Table 2 contains the specification of the NETGENG benchmark problems described in [10]

and [12] and the corresponding solution times from RELAXG and NET2. The fourth benchmark



35

problem turned out to be infeasible in our case (as verified by both NET2 and RELAXG) - perhaps

because we used a slightly different version of NETGENG or because the random number

generator in NETGENG is machine dependent, as was the case with NETGEN. Table 3 contains

the specification and the solution time for additional NETGENG problems. The solution times

quoted for both NET2 and RELAXG do not include the time to read the input data and the time

to initialize the data structures (these times were in general less than 8% of the total solution

time).

Initial testing shows that out of the 18 benchmark problems RELAXG (with TP set to

(#sources + #sinks)/2) is faster than NET2 on 11 of them. However out of the 7 problems where

RELAXG1 performed worse, it sometimes performed very badly (see problem 9 of Table 2).

Overall it appears that RELAXG tends to perform worse than NET2 on lightly capacitated

asymmetric (the number of sources is either much greater or much smaller than the number of

sinks) problems while RELAXG outperforms NET2 considerably on symmetric transportation and

capacitated transhipment problems (see Tables 2 and 3). However it should be noted that NET2

was written on a different machine and under a different operating system. Computational

experience with RELAXG and NET2 on other NETGENG problems is reported in [9].

LPRELAX is the relaxation code for general linear programming problems. LPRELAX does not

use any sparsity information and is therefore more suited to dense problems with a small number

of rows. At each iteration, LPRELAX first checks if the lever index corresponds to a single

coordinate descent direction and performs a dual descent step with line search accordingly. It

then applies the Painted Index algorithm to find either a compatible row or a compatible column

using the lever index. In the former case a dual descent step, with stepsize given by (20) where

"active" is replaced by "e-active" and "inactive" is replaced by "e-inactive", is performed. In the

latter case a primal rectification step is performed. Experimentation showed that using the

tableau left from the previous iteration as the initial tableau for the current iteration (an
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additional pivot may sometimes be required to make the lever index basic) is computationally

beneficial and this was implemented in LPRELAX. To avoid unnecessary computation LPRELAX

works with the reduced linear homogeneous system

[-I E'] Z =0

where E' consists of the columns of E whose indexes are e-balanced and z' consists of the

entries of z whose indexes are e-balanced. The only time that the columns that are not

e-balanced are used is during a dual descent step to compute vj (vj given by (24)) for all j not

e-balanced. However this computation can be done at the beginning of the dual descent step

using the fact that

n 1 if i=s
v;= : 4e.Ui U. {i -ai. if i(:s and i is basic

ii= 1 0 otherwise

where as, denotes the entry in the s row of the Tucker tableau (representing the above reduced

system) corresponding to row variable wi; and s is the lever index.

The most critical part of the code, both in terms of numerical stability and efficiency, is the

procedure for Tucker tableau updating. The current version attempts to identify numerical

instability by checking, after every pivot, for unusually large entries appearing in the tableau and

then backtracking if such an entry is identified. The backtracking scheme requires storing the set

of indexes that were basic in the previous tableau. The threshold value for determining whether

a tableau entry is zero was set at .0005 (it was found that if the threshold value was set too low

then the pivots can cycle). For sparse problems some technique for preserving and exploiting the

sparsity structure during pivoting would be needed to make the code efficient. LPRELAX has a

total storage requirement of one n x m REAL*4 array (to store the constraint matrix), one n x 2n

REAL*4 array (to store the reduced Tucker tableau), 5 m-length REAL*4 arrays, 4 n-length

REAL*4 arrays, and 2 n-length arrays.
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MINOSLP is a primal simplex code for linear programs developed by B. A. Murtagh and M. A.

Saunders at the Systems Optimization Laboratory of Stanford University as a part of the

FORTRAN package called MINOS for solving linear programming and nonlinear programming

problems (the 1985 version of MINOS has MINOSLP in a module by itself). To generate the test

problems we wrote a problem generator called LPGEN. Given a number of rows and columns,

LPGEN generates the entries of the constraint matrix, the cost coefficients, the right hand side,

and the upper bound on the variables randomly over a prespecified range. Since MINOSLP has a

sparsity mechanism that LPRELAX does not have, in the tests we generated only dense problems

so that the times will more accurately reflect the relative efficiency of the algorithms themselves.

Note that since the relaxation algorithm uses tableau pivoting it can readily adopt any sparsity

technique used by the primal simplex method. In both LPRELAX and MINOSLP we count the time

from when the first iteration begins to when the last iteration ends (the time to read in the

problem data is not counted).

Initial testing shows that LPRELAX is roughly 10% faster than MINOSLP on problems where the

ratio m/n is greater than 10 but two to three times slower if m/n is less than 5 (see Table 4 for

problem specifications and solution times). On the larger problems MINOSLP experienced severe

problems with page faults - the reason of which is not yet understood. We also considered other

measures of performance - in column nine and twelve of Table 4 we give the total number of

pivots excuted by LPRELAX and MINOSLP respectively. However since LPRELAX does not work

with the full n x m tableau we considered another measure, denoted by PB. For LPRELAX, PB is

simply the number of columns in the reduced tableau summed over all pivots (so that PB x n is

the total number of times that LPRELAX updates a tableau entry). For MINOSLP, PB is the

number of iterations times n (so that PB x n is roughly the total number of times that the revised

primal simplex method updates a tableau entry). In essence PB provides us with a measure of the

relative efficiency of relaxation and revised primal simplex, assuming that tableau updating is
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the most time consuming task in either method. The cost of the primal solutions generated by

LPRELAX and MINOSLP always agreed on the first six digits and on capacitated problems the cost

of the dual solution generated by LPRELAX (with e= .1) agreed with the primal cost on the first

four or five digits (i.e. duality gap is less than 0.1%). However on uncapacitated problems, even

with e taken very small (around .01) this dual cost is typically very far off from the primal cost

which is somewhat surprising given that the corresponding primal cost comes very near to the

optimal cost. Decreasing e sometimes increases the solution time and sometimes decreases the

solution time. The total dual cost improvement contributed by the single coordinate descent

steps is between 50 to 75 percent of the total on the set of problems tested (n between 20 and

50, m between 80 and 500) - a significant reduction from the 93 to 96 percent observed for the

ordinary network code RELAX.

In terms of alternate implementations for LPRELAX, we may consider working with only a

subset of the rows in the Tucker tableau (for example, the rows of green indexes may be ignored

in then modified Painted Index algorithm and be subsequently reconstructed only when a primal

rectification step is made), or checking the lever row in the Tucker tableau every few pivots for a

dual descent direction, or using line search in a multi-coordinate descent step if the number of

coordinates involved in the descent is below a certain threshold. There is also freedom in

selecting the lever index at each iteration of the relaxation algorithm - for example, we may

choose to use the previous lever index if the previous iteration terminated with a dual descent

step.

Our computational experience can be summarized as follows: on ordinary network problems

the relaxation method is superior to the primal simplex method; on gain network problems the

relaxation method is at least as efficient as the primal simplex method except for asymmetric

lightly capacitated problems; on dense linear programming problems the relaxation method is

at least as efficient as the primal simplex method for problems where m > 5n. However given
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that both RELAXG and LPRELAX are codes still in the initial stage of development we have hopes

that their solution times will be reduced further with improved coding and data structure.
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No. No. RELAX RNET
nodes arcs

Trans- 200 1300 1.79 3.24
portation 200 1500 1 37
Problems 2 2 1.67 4.43

200 2200 2.22 5.05
20 0 290 2.48 725
2 .O 3150 3.73 9.34
200 4500 4.53 12.59
200 5155 4.63 15.10
200 6075 5.45 18.65
2_ . 6300 3.73 16.76

Assign- 400 1500 1.11 4.82
ment 400 2250 1.27 6.57
Problems 400 3000 1.69 880

400 3750 2.29 9.82
a400 4s0500 2.5 T 9.94

Uncap- 400 1306 2.44 2.82
acitated & 4[00 2443 2.48 3.42
Lightly '400 1 306 2.15 2.62
Capaci- 400 2443 2.38 3.61
tated 400 141T6 3.00 3.06
Problems 400 2836 3.03 4.50

·05- 1416 Z-2.82 2.86
400 2836 4.57 4.56
400U 1382 .17 2.69
400 2676 1.83 5.95
400 1382 1.98 2.53
400 2676 1.93 3.58

Table 1 Times for Benchmark NETGEN problems with

arc cost E [1,100]. Time in CPU seconds. RELAX compiled

under VMS 4.1. RNET compiled under an earlier version of

VMS. Both methods ran under identical conditions.
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Appendix A

In this appendix, we explain and describe the rule for Tucker tableau pivoting, as given in [8]

Chap. 10. Tucker tableau pivoting is similar to simplex tableau pivoting - we partition the linear

homogeneous system of full row rank

Tx= O

into

BxB + NxN = 0

where B is invertible. The Tucker tableau given by this particular partitioning is

_B-1N

where x8 is called the row variable and x N is called the column variable. Let aij denote the

(i,j)th entry of the above tableau. If the pivoting column is I and the pivoting row is k ( ak, is

necessarily nonzero ) then the new tableau after the pivoting operation has xk as a column

variable and xl as a row variable.

Let aij denote the (i,j)th entry of the old tableau -B''N and let bij denote the (i,j)th entry of

the new tableau. Then the entries in the new tableau are obtained from those in the old tableau

by the following pivoting rule :

1/akl if i=k, j=l

Ib. - ail/akl if i-tk,j=l

ij - akjlakl if i=k, j-l1

aI-al. akl if i:fZ k, j-l

In other words, the new tableau is obtained by performing row operations to -B-'N to make the

(k,l)th entry of the tableau a 1 and all other entries in the Ith column of the tableau O's, and

then replacing the Ith column of the resulting tableau by the kth column of the identity matrix

to which the same row operations have been performed.
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Appendix B

In this appendix, we show that if (i) the lever index s is painted black or white and (ii) s is in

the row of the initial Tucker tableau and (iii) s is assigned the lowest priority (in the context of

Bland's priority pivoting rule), then the (modified) Painted Index algorithm with Bland's pivoting

rule either a) keeps s in the row of the Tucker tableau throughout the algorithm or b)

produces a compatible column using s immediately after pivoting s into the column of the

Tucker tableau.

Proof:

If s remains in the row of the Tucker tableau throughout the algorithm then we have

case a). Else we examine the Tucker tableau just before s is pivoted into the column for

the first time. Let j denote the index of the pivoting column. By the pivoting rule, j must

be green (if j is black or white, then j can be chosen as a pivoting column index only if the

sign of asj violates the row compatibility of row s, in which case s cannot be chosen as

the pivoting row index since the sign of asj then does not violate the column compatibility

of column j). Then by our assignment of lowest priority to s, the row entries of column j

whose indices are red, white, or black (except for the entry indexed by s) must all have

zero value. Therefore the tableau must have the following form ( asj denotes the entry in

column j and row s of the tableau)
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Green
column j

s Black or White

row S asj O0

Red O

White O

Black 0

Green arb

The next tableau, after pivoting on asj, is then of the form

Black or White

j Green column s

row j .. - 1/a .

Red 0

White O

Black 0

Green

where the shaded areas indicate those entries whose value have been changed during the

pivot. In this tableau, column s is clearly compatible and therefore we have case b).

Q.E.D.
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Appendix C

In this appendix we prove Proposition 3 - that the number of primal rectification steps

between successive dual descent steps is finite in the relaxation algorithm if the green indexes

are assigned the highest priorities and the black and white indexes belonging to {1,2,..,n} are

assigned the second highest priorities.

Before beginning the main body of the proof it would be helpful to briefly review how each

primal rectification step comes about. At the beginning of the relaxation iteration we have on

hand a primal vector x satisfying complementary slackness with p. We pick a row s such that

ds 0 O as the lever index and apply the modified Painted Index algorithm, using Bland's priority

pivoting rule, to the following linear homogeneous system ( we index the columns of [-I E ]

from 1 ton+m)

1,2,..,n n+1,...,n+m

-I E W (C.1)

The initial Tucker tableau is chosen such that s is initially basic and the index colouring rule is:

For 1 <i < n, i red if di=O

i white if di>O

i black if di<O

For 1 < j < m, j+n red if j is not balanced

j+n white if j is balanced and xj=cj

j+n black if j is balanced and xj=lj

j+n green if j isbalanced and Ij<xj<cj
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and the priority assignment is : the green indexes are given the highest priorities, the white or

black indexes belonging to {1,2,...,n} except for s are given the next highest priorities, s is given

the lowest priority. A primal rectification step is taken when the modified Painted Index

algorithm terminates with a Tucker tableau that contains a compatible column using the lever

index, in which case a primal rectification direction, say z*, is computed from the compatible

column [cf. discussion at the end of Section 31 and z* satisfies

w. < O X d. > 0 z. < 0 x.>l.

. > 0 d.<O z > 0 < C.

where w*=Ez*. The primal rectification step is then effected by setting x v- x + pz*

d e- d + pw*, where the capacity p is given by

min l.-x. min c.-x. min -d.

p | min iz.<O * >0 w.:t OW
z. z. I .

The deficit vector d (d= Ex) is monotonically decreased in magnitude during the primal

rectification step.

We now proceed to prove that the number of primal rectification steps between successive

dual descent steps is finite : We will argue by contradiction. Suppose that there exists an

infinite succession of relaxation iterations each of which terminates with a primal rectification

step. In what follows we will be considering only these iterations. We first note that the set of

red indexes is fixed (since index i is red either because i n and di = 0, in which case i will

remain red during primal variable changes; or because i =j + n and j is not balanced , in which

case i will remain red since j does not become balanced during the primal rectification steps).

Also we note that if i s n and i is white (black) then after a while i always remains white (black).
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This is true because if i changes colour, i must become red first (corresponding to di = 0) , in

which case i will remain red from then on.

Now, each primal rectification direction z* has either (i) j + n green for all j such that zj* * 0,

or (ii) j + n black or white for some j such that zj* * 0.

Proposition C. 1 Case (ii) can occur in only a finite number of primal rectification steps.

Proof:

Suppose that the modified Painted Index algorithm generates a primal rectification

direction z* such that, for some j, index j + n is black or white and zj* * 0. Since the initial

tableau (namely E) has j + n nonbasic, this implies that j + n must be the pivoting column

in some intermediate Tucker tableau T. Then, given that the black and white indexes in

{1,2,...,n} and the green indexes all have priorities higher than that of j + n, T must have

the following sign pattern ( without loss of generality we will assume that the lever index,

say s, is white) :

black or white green index white index black index
index of the form of the form of the form of the form
j + n ,jE{1,2,...,m} j + n ,jE{1,2,...,m} i, iE{1,2,...,n} i, iE{1,2,...,n} red index

(lever
(lerow) _ any sign O O ... 0 0. . O O >0 0. . 0 any sign

s white

Tucker tableau T
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Denote the entry in T corresponding to row s and column index k by ask . Then

d = E ak x. + a akd. + a d. + E a x.
k=j+n k=i k=i k=j+n

k black or white k white k black k red

or equivalently

d + -asd +A E i ask diE askx. + E askX (C.2)
k=i k=i k=j+n k=j+n

k white k black k black or white k red

Since xj = Cj if j + n is coloured white, xj = Ij if j + n is coloured black, and xj = cj or Ij if

j + n is coloured red, then the right hand side of (C.2) can assume only a finite number of

distinct values. The left hand side of (C.2) however is strictly decreased after each primal

rectification step with s as the lever index ( also note that since s is white, every term on

the left hand side of (C.2) is nonnegative and is nonincreasing ). Therefore the number of

primal rectification steps in which case (ii) occurs must be finite. Q.E.D.

Proposition C.1 says that if the number of primal rectification steps is infinite, then after a

while only primal rectification directions of the form (i) can appear. In other words, the

relaxation method must produce an infinite sequence of successive primal rectification directions

{Zt }t=0,l,.. such that, for t=0,1,..., zt 7 0 and j +n is green for all j such that Zjt * 0.

However this is not possible since in this sequence, after each primal rectification step, some

green index of the form j + n (j({1,2,..,m}) must become white or black (since after a while no

index of the form i , iE(1,2,..,n}, changes colour ). This index then cannot be involved in any

subsequent primal rectification steps. So in at most m primal rectification steps, every index of

the form j + n, j {1,2,..,m), must be coloured black or white, implying that the following primal

rectification direction z (z ; 0) cannot have + n green for all j such that zj O 0, a contradiction.

Q.E.D


