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Abstract: Identification of the p poles and q zeros of an autoregressive mov-
ing average process ARMA(p,q) is considered. The method described departs from
approaches frequently reported in the litterature in two main respects. First, it
substitutes the sample covariance lags by the sequence of estimated reflection coef-
ficients. Second, it provides a direct estimation procedure for the MA component,
which is not contingent upon prior identification of the AR structure. In distinc-
tion to current practice, both tasks are directly addressed, avoiding that errors in
one contaminate the other. The algorithm explores the linear dependencies between
corresponding coefficients of successively higher order linear filters fitted to the time
series: linear predictors are used for the estimation of the MA component and linear
innovation filters for the identification of the AR part. The overdimensioned system
of linear equations derived from these dependencies provides statistical stability to
the procedure. The paper establishes these dependencies and derives from them a
recursive algorithm for ARMA identification. The recursiveness is on the number of
(sample) reflection coefficients used. As it turns out, the MA procedure is asymp-
totic in nature, the rate of convergence being established in terms of the second
power of the zeros of the process. Simulation examples show the behavior of the
algorithm, illustrating how peaks and valleys of the power spectrum are resolved.
The quality of the estimates is established in terms of the bias and mean square
error, whose leading terms are shown to be of order T-', where T is the data lenght.

1 The work of the first author was partially supported by INIC (Portugal). The work of the second author was

supported by the Army Research Office under contract DAAG-29-84-k-005.

2 Teaching Assistant, CAPS, Instituto Superior Ticnico, Lisbon, Portugal.

3 Professor, Department of Electrical and Computer Engineering, Carnegie-Mellon University. The work was carried

out while visiting the Massachusetts Institute of Technology and Laboratory for Information and Decision Systems,

on leave from Instituto Superior Tecnico, Lisbon, Portugal.



1. lNVRODUCTION

In many problems an important question is that of fitting models to

a series of measurements points. Tha available a priori information and the

ultimate purpose of the model may change with the specifics of each

application. Accordingly, there are alternative standard classes of models

to fit the time series. The Autoregressive Woving-Average processes with p

poles and q zeros, ARMA(p,q), plays a relevant role in the study of

stationary time series with rational spectrum. The ARMA process is the

output of a linear discrete time invariant system driven by an uncorrelated

sequence of Gaussian random variables. The system exhibits a feedback or

Autoregressive part AR(p) and a feedforward or Moving-Average part MA(q). In

the absence of the moving-average component (q=0), the work of several

authors shows that the estimate of the process parameters has well

established methods, see for example appropriate comments in [13, [2), [3].

These methods explore the linear dependence between (p+l)-successive

autocorrelation lags of the process (Yule-Walker equations). Taking into

account the Toeplitz structure of the associated autocorrelation matrix,

when a new lag is available, the Levinson algorithm updates the AR

parameters via a numerically efficient recursion. The Burg modification (4)

of the Levinson algotithm substitutes the knowledge of the autocorrelation

lags by the estimation of the reflection coefficients.

When the NA component is present, the moving-average parameters are

nonlinearly related to the autocorrelation lags. The methods reported in the

literature either require nonlinear optimization techniques, or first

estimate the AR parameters, then remove the (estimated) AR component, and

finally obtain the MA parameters by factorization of the spectrum of the

residual process. Whatever procedure used, experience has shown that the MA

parameter estimates are as a rule of lower quality as compared to the AR

estimates, e.g. [1], [2], [3].

By the Mold decomposition [5], [63, [7], a finite order ARMA(p,q) is

equivalent to an MA(co) or an AR(co). The presence of zeros may be traded

for the inclusion of higher order poles. This is particularly penalizing in

narrowband applications, where an acceptable accuracy of the spectral

notches may require a larger number of poles. Albeit contradicting the

parsimony principle of statistics, this is a common procedure in practice.

Noting that the Burg recursion provides at intermediate stage i the 'best"



(in the mean square sense) ith order linear predictor approximation to the

process, higher order AR models are successively fitted to the time series,

till a 'reasonable' approximate model is found.

The aim of the present paper is to discuss a method where the AR and

MA component of a multivariable ARMA(p,q) process are estimated by a

dualized type algorithm. This dualization is in the sense that the mechanics

of the MA estimation algorithm parallel those of the AR part. Actually, the

proposed equations do not use the autocorrelation lags, but the elements of

a conveniently defined square root of the Toeplitz matrix of autocorrelation

lags associated with the process. The algorithm accomplishes the following:

i) The MA coefficients are determined from the linear dependence

exhibited by corresponding coefficients of successively higher order

linear predictor filters.

ii) The AR coefficients are determined from the linear dependence

exhibited by corresponding coefficients of successively higher order

innovations filters.

The above statements need clarification. In point i) the

coefficients of the alluded linear dependence are not the MA parameters. The

important fact is that asymptotically they converge to the MA parameters

(Corollary 1). The quality of the procedure is connected to the rate of this

convergence (Theorem 3). In point ii) the coefficients of the linear

dependence are in fact the AR parameters. From a different perspective, this

explains why the MA determination may have lower quality than the AR

estimation.

In order to establish the linear dependence mentioned in i) and ii)

above, the ARMA model is given in Section 2 an internal description (state

variable framework). The model fitting becomes a linear prediction problem

of the Kalman-Bucy type [8], where the measurement noise is completely

correlated with the driving noise sequence. For this problem, Section 2

adapts the asymptotic results of the associated Riccati equation obatined in

[9), where the limiting behavior is in the sense that the measurement noise

becomes totally correlated with the driving noise. The limiting results of

(9] parametrize the coefficients of the successively higher order linear

predictor and linear innovation filters in terms of the state variable



matrices describing the process in terms of the solution of a

(degenerate) Riccati equation. Section 3 shows how the coefficients of those

filters are linearly related by the MA and AR parameters. Section 4 presents

the details of the dual algorithm for AR and MA estimation. In section 5,

some simulation results are presented together with a discussion of the

performance of the algorithm. Finally Section 6 concludes the paper.

2. MODELLING CLASS

An s-dimensional, zero mean stationary sequence, (..., y(n-1), y(n),

y(n+i),...} is given, being assumed to be a multivariable ARMA process,

output of the linear discrete time invariant (LDTI) system

P q
(n) + E Aiy(n-i) = E Bie(n-i) . (1)

i-= i=O

Define the z transforms

P q
A(z) = Ai z i, A=I B(z) Bi z. (2)

i=O i=O

The follbwing are in force:

(Hi) {e } is an s-dimensional discrete white Gaussian noise sequence,

with zero mean, and identity covariance matrix,

(H2) pgq, det A p0, det B #0, Bq 0,

(H3) detA(z) is an asymptotically stable polynomial,

(H4) the polynomial matrices A(z) and B(z) are left coprime.

By (H2)

deg(detA(z)) = d = ps . (3)

We will denote by ai, i=O,...,d the coefficients of the characteristic

polynomial,

d

a(z) = det A(z) = E -a. z- 1 , (4)

i=0



and by

u

N(z) = E Ni z i N Bo (5)

i=O

the numerator polynomial of the system transfer matrix, A (z)B(z) written

as o(z)ON(z)/a(z), where, by (H2) and (H4), u-d-(p-q).

With (1), we associate the state-variable model,

IX 1 =F xn + G n n (6)

yn H xa +B 0 en (7)

which, under (H1)-(H4) can be chosen so that,

(M1) - it has minimal dimension d, i.e. xE Rd

(M2) - F is an asymptotically stable matrix,

(M3) - (F,G) and (F,H) are completely controllable and completely

observable pairs,

(M4) - F is nonsingular.

The dimensions of F, G and H follow from (l). The initial state x

is a Gaussian, zero mean vector, with covariance matrix PO, solution of the
discrete Lyapounov equation

P0 = F P F G GT (8)

The Kalman-Bucy filter associated with (6)-(7) leads to

A A A

n+l = F An n Kn (9)
n H n + Vn (10)

where x is the one-step ahead linear prediction of the state vector x at

time n given the past observations and vn is the innovation process. The

gain matrix Kn is given by

Kn F P H + G T) D-1 (11)
n n o n



where

n n 00

is the power of the innovation sequence. The one step ahead prediction error

covariance matrix Pn is given by the Riccati equation

T T TPn+ = F P F - K D KT +GG T 0,1,2,... (13)

P P ' (8)0 0

that corresponds to the prediction problem where the observation and driving

noises are totally correlated. The behavior of this equation can be

established by a straightforward modification of the results of [9], which

considers the prediction problem when there is no noise in the observation.

In particular, we obtain the following three results that will be needed

later on.

Lemma 1: P = 0 is a fixed point of the Riccati equation (13).

Lemma 2: lim Pn = 0 as n goes to infinity.

Proof of Lemma 2: Lemma 1 is obtained by direct verification. By the

controllability and observability properties of (6)-(7), (13) has a unique

nonnegative definite solution. Then Lemma 2 follows from Lemma 1.

Lemma 3: P ( F T) HT = 0 n > j, 1 ( J p-q (14)

K nT F-T) Ha 0 1 ( j I p-q+1, n > j (15)

Proof of Lemma 3: the Markov parameters of the system (1)-(2) satisfy

HF -1 G = Bo - Nd / ad (16a)

H F G = 2 p-q (16b)

where, Nk=O for k>u. The proof of this Lemma then follows by induction using

(13) and (11) together with (16a)-(16b); it is a straighforward modification

of the proof for the scalar case contained in [10]



Define
k T T TY r vect (yi) r<i<k [ Yr . Yk 

and similarly Vk. Considering the normalized variance representation of the
r . _1/2

innovation process, vi= Di vi (*), the input/output relations (9)-(10) may

be writen in a matrix format as

Yo WN VO (17)

where WN is the (N+l)x(N+1) block lower triangular matrix

N = D1/ 2 , (18)

X 12 1/2 0HK D1

HFK D1/ 2 HK D1/2 D1 /2
1 o 1 1 2

HF N-K D1 / 2 HFN-2K D1/ 2 . . . Dl/2
0oo 1 N

each block being a square matrix of order s. The block line i of W (line

and column blocks are numbered starting from zero) is the i order

normalized innovation representation of the process. Conversely, the block

entries on line i of the inverse matrix HN are the ith order normalized

prediction error filter coefficients associated with the process. An

expression of WN1 matrix entries

(*) The square root A11 2 of a matrix A)O is defined as the lower triangular

matrix such that A = A1/2 (AT) 1/ 2.



H;1 -- 1/2
D* _ (19)

-D 11/HKo D-l1 2

-D 2 l/2HFK o . D 1 / 2

-Dh1/2HFCFCK3 2 o10

-D12Hc -D1/2HF c .. F..K D-1/2LN N-l' I t-N "N- " N
where

FC a F - K. H (20)

is the closed loop filter matrix, were presented in [9]. From (17)

RN W ZN ;W~ EYN (Yo)
N N N. 0

where RN is the matrix of the autocovariance lags of the process {y },

truncated at lag N. In the next section, linear relations on the entries of

consecutive lines of ;N and W-1 will be established.

3. LIMEAR DEPENDENCE OF THEE COEFFICIENTS OF SUCCESSIVE ORDER INNOVATION AND
PREDICTOR LINEAR FILTERS

As we recall, block line iO,1,...,N of W represents the i order

predictor filter representation of the ARMA(p,q) process. We want to study

the linear dependence of each collection of u+1l consecutive nonzero elements

in every block column of WN'; A procedure that obtains asymptotically the

coefficients of the transfer matrix numerator polynomial (see equation (5))

from the coefficients of increasing order prediction error filters is

derived, together with the study of its rate of convergence. A dual,

nonasymptotic result is provided, relating each collection of d+1

consecutive elements in every block column of HN and the coefficients of the

system characteristc polynomial (see equation (4)).

Let AN be the lower triangular band diagonal matrix of order (N+1)s,

with block entries



(AN)ij a,..N { ia1 ._jIs 1 i-j < d (21)

i,1jO,...,IN l otherwise

where I s is the identity matrix of order s. Premultiply the normalized

innovation system (17) by AN to get

AN Y- ( ANW ) V (22)
and let

WN N AN (23)

Theorem 1: 0N has the following structure

AN I ·C
.(,, o(,' .

6O.t Qu- ) ...t tO-(U)

o " ·. o 0 %(d) *..n,(d) C(d)

where

(i)= B - a HFm-rP HT} D- 1/ 2 (24)

r-m+d-u+l O<_mu(d, i>d

is a square matrix of order s.

Proof of Theorem 1: From the matrix identity (23), the structure of AN (21)

and the Cayley-Hamilton theorem satisfied by any d+1 consecutive block

entries on each column of WN below its main diagonal, IN is a lower

triangular band diagonal matrix, with block entries

o = ii(
Q iij Q=) O< i-j d i (25)

i,j=O,l, ... N 0 i-j > d

where,



Qm(i ) a E r K 1-- D3- + (an/ad) Nd Bo D (26)m r i-m i-m (26 d ) i-M
r=O Oimid, m1i

is obtained by direct calculation on (23). The proof then follows replacing

(11) in (26) and using the results provided by Lemma 3 and the properties of

the system Markov parameters (see (16a)-(16b)). All the details of the

proof, concerning the scalar case are presented in l10].

Corollary 1: lim Q(i) = Nm as i goes to infinity, O{_mu.

Proof: The corollary follows from the asymptotic behavior of the solution of

the Riccati equation, as given in Lemma 2, and the fact that D. converges to

B BT (see (12)).0oo

Represent by
;i -1
aj =(w N )ij i,j=0...,N (27)

the block entries of the normalized matrix W The structure of the matrix

A and AN in (23) lead to the followingN

Corollary 2: The elements Qm(i) satisfy the following linear recursions

'i 'i-u
0(i) a: + Q(i) ;a + ... + Q a 0 u(djijN, QOjii-d-1 (28a)

%(i) a3 + ({i) ;a-1 + ... + . .(i) a. = a. jI dSiN, i-d<jii (28b)

where the leading coefficient Qo(i)=D/

Corollary 2 states that the set of u+l block elements on each column

of the normalized matrix Wo 1 (dfiiN) satisfies the same linear relations
defined by the (i) coefficients these relations are homogeneous for the

first i-d block columns of Wi (see (28a)), and their left hand side is

defined by the system characteristic polynomial coefficients for the last

d+l block columns of Wi1 . For the reflection coefficient matrices, (the

block elements of the first column of iWi), this result is presented in [93.

Corollary 2 generalizes it to all normalized prediction error filter



coefficients, giving, together with (24), a non-asymptotic relation between

them.

Corollary I gives the asymptotic behavior of the nonzero Qm(i) as i
goes to infinity. We study now the rate of this convergence. Let ,h., the

jth line of H be such that

T L (h -2 T (h I 2 I .. I h F-d)T T js (29)
j i i

is a nonsingular matrix.

Lemma 4: Under the coordinate transformation T (29), the covariance matrix

Pn becomes

where the square matrix of order u=d-(p-q), Qn' satisfies the Riccati

equation
- -T : T - 'PT

QA F22QnF22 + 12 12 - KDK , n2p- (31)
and

F TFT-I= -a I -a2 . . -a d t = F | FiZ (32)
l--j F21 ! F112

H T H T t H H (34a)
11 12

h -a 1 -a 2 ' -ad (34b)

K= (F 2 22 Q W +6; BT)D (35)K 2 ( F12 12 o n

D H Q TH +BBT (36)
we n 12 -i 12 0 0 

where hj is the h line of the matrir H.



Proof of Lemma 4: Under T, Pn=TPnTT. For p-q, equations (31)-(36) follow by

direct evaluation of the Riccati equation (13) under T according to (32)-

(36). For p)q, and by Lemma 3,

TP ~ =t Q I (Q1 )TT n2_p-q (37)[ ( Qn
and

P TT I Q2 n]p-q (38)
n n

where is uxd and Q2 is dxu. Multiplying (37) by TT on the right, and (38)n n
by T on the left, equality of results leads to (30). Equation (31) then

follows by the same argument used for p=q.

Having in mind the special structure of the covariance equation

given by Lemma 4, the expression of the Qm(i) given by theorem 1 is

rearranged in the following theorem.

d
T Tr ~r(7~10)2 Oi-pl T? D-1/Z

Theorem 2: QP(i) - { N - ar W(r-m)12 Qi-m H12 i-m39)

r=m+d-u+l

i-m>d-u, 0 < m < u ( d

where W(r-a)12 is defined in (40).

Proof: Starting with equation (24), we note that HP H' is coordinate

invariant. By Lemma 4, it follows that

T _T
HPHT = H2nH12 n > p-q

from which Dn=Dn for np-q. Under the transformation T,

HF (r-m)P mHT HF m) T +d-u+l-r<d.

Defining

hF (r) .- (r-m) * l (r-m)11 I W(r-m)123 , (40)

and from (30) yields

HF ( i-m H Q = r-)12 Q



thus concluding the proof. For the scalar case, the line matrix W(r-m) has

null entries except for its r-m position which is one (10]. On the

sultivariable case, the same structure occurs on line J of W(r-m), under the

coordinate transformation T (29).

Theorem 2 shows that the rate of convergence of the Q (i) to the Nm

parameters is determined by the convergence to zero of Qn. This depends on

the rate by which

Gn
- In- ( p q) J ] W A -n-(p- q) ] (41)

goes to zero, where A-diag(Xi), Xibeing the nonstable eigenvalues of the

Hamiltonian matrix H associated with (41),

H = R) - 1 (RT) 1 HT (B 3T)1 HB (42)
012 0 0 12

0 I R

RF' = 22 - 2 12 (43)

and W is a constant matrix [11],[12],13].

Finally we focus on the asymptotics of the Qm(i).

Theorem 3: II RQ(i) - ND II ~ 0 ( X(i p- ) ) (44)

where 0(.) means it goes to zero at least as the slowest argument and Xj are

the zeros of the original multivariable ARMA process.

Proof: The rate of convergence of the Vm(i)'s depends on the rate by which

Gn----)O, see (41); this convergence is -- function of the nonstable

eigenvalues of the Hamiltonian matrix H. The task is then to evaluate these

eigenvalues. From (42), it follows

A(X)=det(XI-H) e(X) e( - 1 )

where e(X) a det (XI - R) and R is defined in (43) for the reduced order

system (F22 G 1 2 ,H 1 2 ,1 o). It is shown in [9] that, in the case of no

observation noise, the asymptotic closed loop poles are the zeros of the

original open loop system, this being actually a dual result for singular



control systems, see t12]. In the context of the fully correlated

observation and input noise model being studied here, this says that

(M) = (detB)-l) det(XI -F22) det[H12( u -x22) ' 12 + Bo] (45)

It remains to show that the zeros of the reduced system coincide

with the zeros of the original system (F,G,H,Bo). For the concept of the

zeros of a multivaribale system see, e.g., t14]. For p-q, the triplet

(F22 G 12 H;12) coincides with (FG,H) and the result directly holds from

(45). For p>q, note that

det[BO+H(XId-F) 'G] detB detlXId-(F-GBO H)] /det(XId-F) (46)

From (32)-(29) and the Markov parameters associated with (6)-(7),

see (16a)-(16b), it follows that

-1 lBoH11 =:0 (d-u)x(d-u) (47)

-- 11 1

F1 2 - GllBo H12 p

and thus

detEXI -(F-GB-1H)J3 =du dettXIU-(F2 -G6B H12) (48d o u 22 12o 12(

By (45), equation (48) can be rewritten as

dettXld-(F-GB-H)] - d-U(detBo) det[Bo+H12(I F22) 12] de(u-F22

(49)

Replacing (49) in (46) yields

det[Bo+H(XId-F) -G] -X d dettB0+H12(Xi -F 22)-l 1 2 /det(xd-

thus concluding the proof.



Theorem 3 gives the very interesting result that the rate of

convergence of the V(i) to the MA coefficients are determined by the zeros

of the process itself. This means that when the zeros are near the unit

circle (narrowband process) the convergence is slowed down; as the zeros get

away from the unit circle (wideband), the convergence is fastened. Note,

however, that the convergence goes with the second power of the zeros, which

preludes a fast convergence in many practical situations.

The AR counterpart of corollary 2 can be obtained from the

normalized innovation system representation (17) and the underlying

structure of the matrices dN as in theorem 1, AN as in (22), and WN as in

(18). From the matrix identity (23), obtain:

Corollary 3: The block coefficients of successively higher order linear

predictors are related by:

ali- + ai2 + .. +a d a or d(i(N O<j(i-u-l (50a)a1
- 1 + a 2

- 2 + ... + ad - d,

a + a2 2 ... + ad d = i ji) d(i<N, i-u(j(i (50b)

where NW=(W (ij=O,...,N) is the block entry ii of the block triangular

matrix WN, which is zero for i)j.

Equation (50a) above means that the increasing order normalized

innovation filter coefficients contained in the first i-u columns of Wi.

satisfy a set of linear relations defined by the system characteristic

polynomial coefficients.

Both (28a) and (50a) are used in section 4 to define an

'overdetermined Yule-Walker' type algorithm which independently estimates

the AR and MA components of a stationary multivariable ARMA process with

known orders. Simulation results of such an algorithm that applies the Burg

technique (4] to estimate the reflection coefficients directly from data are

presented, for the scalar case, in Section 5. Some examples are also presen

ted in (10] and will be extensively discussed in [15].



4. MESA ISTIMATION ALGORITHM

In this section the estimation algorithm for both components of a

multivariable ARMA(p,q) process is presented.

The {Ni}, (i=O,...,u) coefficients of the transfer matrix numerator

polynomial are asymptotically determined from the linear dependence

exhibited by the corresponding coefficients of successively higher order

linear predictor filters. The {ai} coefficients of the system characteristic

polynomial are obtained from the linear relations satisfied by the

corresponding coefficients of the higher order linear innovation filters.

The MA and AR components are thus estimated by decoupled dualized

procedures. Further, the {ai } coefficients may be obtained by a recursive

scheme whose structure resembles that of an adaptive algorithm. The moving

average counterpart result is asymptotic in nature.

4.1. AUTOREGRESSIVE ESTIMATION

The coefficients of the system characteristic polynomial {ai} are

given as the solution of.a set of linear (algebraic) equations, established

from the linear, matricial relations presented in Corollary 3.

Let

A= t aI a2is ... adIs T (51)

be a block matrix defined by the coefficients ai, i=l,...,d, and rewrite

(SOa) as

I[ wi. I J-2 A = - w d(i<N O<j<i-u-1 (52)

where it is assumed that (52) is not verified when j belongs to an empty

set. For a fixed pair (i,j), the equation (52) represents a system of 52

linear, scalar relations defined by the corresponding entries of the block

matrices j, ... , -Wd ; for each entry of those matrices, (52) is rewritten

as

[ {W )km )km .. ( ) a = - (Wi) di(_N Oijli-u-1 (53)

1 k,m s

where (W.)km is the element on line k (k=l,...,s) and column m (m=l,...,s)

of W., and



A't a1 aZ ae a d ]' (54)

The number of equations in (53) is

N

52 ·E ( i - u ) 5 (N+1-d) (N+d-2u)/2 (55)

ind

which is much larger than the number d of unknown transfer matrix

denominator polynomial coefficients.

If the coefficients of the normalized innovations filters were

exactly known, the (a i) could be determined by solving jointly any d of the

preceeding equations (53). However, in the presence of a finite sample of

the observation process, the exact value of WN is not available.

Accordingly, on what follows it is assumed that WN is replaced by a suitable

estimate. It is then of interest to obtain a recursive scheme for the

solution of (53) as N is increased.

Definition: Let a(m) be the least-squares solution of the system of all the

linear equations (53) established for dii<m.

A recursive solution of the oversized system of equations (53) is

provided by the following theorem.

Theorem 4: The autoregressive coefficients are recursively estimated by

a(N) = a(N-1) + M(N) 1 [ fN - a(N-1) (56)

A, A
where a(N) and a(N-1) were defined above,

CN i -d (57)

N-i1 'N-d

N-1 -N-u-i
"N-1 . N-u-1· -u-1 ... S-u-l



j ' [ (H) I (W)2 1 ...i I (i)Ts T (58)

xi E f P-102i
where ).k is the column k of the square matrix of order s, W., and

fN - [ 'N T 'N T ' N T (59
fN () N T 

The did matrix M(N) is defined by

M(N) CT(N) C(N) (60)

and the block matrices C(N) and f(N) equal

(N) Cd CT CT T T 61
d d+l N-1 N

$(N) s [ fd fd+ fN-1 fN (62)

the Cj and fj being defined similary to (57), (59).

Remark: In the above theorem, the recursion stands for the

normalized innovation filter order.

Proof of Theorem 4: Write the set of linear equations (53) in matrix format

as

e(N) a(N) = 1(N) (63)

Partitioning,

e(N) = [e(N-1)T I CT IT (64)

f(N) -= f(N-1) T I f ]T (65)

where C(N-1), f(N-1) accounts for the linear relations (53) using the

innovation filters up to order N-11, and CN, fN (57)-(59) stands for the

contribution of the N-th order innovation filter. Hence,

e(N-1) a(N-1) = '(fN-I). (66)



Using the definition (60), the least-squares solution of (63) is

a(N) a M(N)- 1 eTu) 1(N).

From the partition (64), it follows further

a(N) a M(N) Eur1U (N-l) f(N-1) + CT f+ . (67)

From (66),

cT(H-1) '(N-1) 1 4(N-1) a(N-1) (68)

which substituted in (67) leads to

-1 T
a(N) = M(N) [M(N-1) a(N-1) + CN fN] . (69)

Realizing that

WfN-1) = M(N) - CN CN N

the autoregressive estimation 'at time instant N" is

a(N) = a(N-1) + M(N) f C T C a(N-1)] (70)

directly leading to (S6).

The initial condition for the above recursion can be established for

an arbitrary value of N,(N)d), using a nonrecursive scheme based on (53).

4.2. MOVING-AVERAGE ESTIMATION

The proposed moving-average estimation algorithm paralells the AR

scheme presented in section 4.1.. There are however some differences that

will be pointed out in this section.

The moving-average component I{N) is asymptotically evaluated from

the { Q,(i)) coefficients. These are obtained as the solution of a set of



linear equations established from (2Ba). Thus, the duality of both

estimation schemes becomes apparent.

Let

S(i) M= [ Q1(i}) Q2.(i) ... (i ] (71)

which, together with Qo(i), converges the MA coefficients (Nm} (see

Corollary 1). Represent by

.'i- T i-2? -T ;u)T T _D/2 ;i(i) (a ( 3= -D (72)
- j i 3

daiL N, O0jSi-d-1

the set of matricial equations (28a), satisfied by the time-varying

coefficients {Q (i)} (O<m(u), the leading coefficient Q0(i) being

S0(i) = Di12 (73)

For j=O, equation (72) states that the normalized reflection matrix

coefficient sequence a satisfies, asymptotically, a difference equation

determined by the numerator polynomial of the system transfer function.

First presented in ([9, this result is generalized by (72) to the first N-d

block columns of the matrix ;N-1

The time-varying behavior of the Qm(i) coefficients prevents its

estimation using linear relations established for different values of i. For

i~u+d, one can use at least u from the i-d linear relations (72) to evaluate

the Qm(i) coefficients. However, if the order N of the matrix WN is large

so that Q (N) are sufficiently close to the corresponding Nm (convergence

has been attained), a recursive scheme to update the HA parameter estimates

may be derived. This parallels the recursive AR procedure presented in

Theorem 4. Assuming that the convergence is attained for the prediction

error filter of order N , the moving average component can be recursively

estimated by

A A = AT ^T(he) N(k-1) + r fi CE _N(k-l) Ck k) (74

where N(k) stands for the estimation of the block matrix



' [ NM N2 ... u ]

using all the linear relations (72) for N* iCk, and

Ck a0 a1 . ak-d- (75)

;k-2 ;k-2 ;k-2
0 1 k-d-l

;k-u ;k-u ik-u
0g al ' k-d-1

D12 ' k ;k k
fk L - k 0 1 30 akdld-

The matrix M(k) is defined in a similar way as in (60) using Ck.

5. SIMULATION RESULTS

In this section we present some simulation results concerning the

dual estimation algorithm discussed in the previous section, for the

particular case s=1, i.e. for a scalar process Eyn].

The AR component estimation uses the recursive scheme (70), while

the MA parameters are obtained as the least squares solution of the linear

system of equations (72). Both component estimated values are based on a

finite sample of the process with lenght T.

In the presence of a finite sample of the observation process, the

exact values of WN and WN are not available. Accordingly, the algorithm

requires suitable estimates of both matrices-. We use the Burg technique [43

to estimate the reflection coefficients directly from data, and the Levinson

algorithm to recursively obtain the increasing order one-step ahead

prediction error filter coefficients. This procedure obtains the estimated

value of the matrix H1. A recursive inversion of this lower triangular

matrix leads to the estimation of the normalized innovation filter

coefficients, i.e. to an estimated value of WN, for increasing values of N.

It is now evident that the use of an oversized system of equations

to obtain the AR and kA component estimates (see (70) and (72)) has an

important statistical relevance, compensating the errors in the estimation



of the reflection coefficients and consequently in the overall elements of

N and W.

An alternative procedure based on a sample covariance estimator

could have been used to estimate RN, followed by a Cholesky factorization

and a recursive inversion of the factors.

All the simulation examples presented in this section are obtained

for an ARMA(6,4) scalar process, with pole-zero location displayed in Table

1.

Poles Zeros

Ampl. Angle Ampl. Angle

0.95 ±90° 0.85 ±67.50

0.85 +450 0.85 +112.50

0..85 +135 °

Table 1

The orders p=6 and q=4 are assumed known, and bt, the leading coefficient of

the transfer function numerator polynomial is equal to one. The notation

used for the real and estimated pole-zero pattern is the following:

x - real pole

# - estimated pole

o - real zero

O - estimated zero

Figure 1 shows, for T=1000 data points, the evolution of the

estimated pole-zero pattern and the estimated spectrum as the order of the

filter N increases. From figure 1, one sees that, as the order N increases,

the algorithm leads to better zero. estimates, and consequently the deep

valeys of the spectrum are better resolved. As we increase the sample size

T, we obtain increased performance. This is shown is figure 2, for T=500,

1000 and 5000 and N=15.
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For small sample size, depending on the pole-zero pattern, the

errors in the prediction error filter coefficients or innovation filter

coefficients induce biasing errors in the pole-zero estimates. Following the

analysis in E16] and [17], one can show that the bias on the coefficients

{ai), i=l,...,p, based on the estimated innovation filter coefficients up to

order N is given by

E;(N)]-A = - (CC N)1 [C E[6CN] + E(V1) - C E(V2)] a + o(T 1) (76)

where CN is given in (54),

a [ 1 a1 a2 ... T (77a)

5CN = CN - CM (77b)

CN = [ -fN . I CN (77c)

with fN as in (59), and

6CN CH- CN (77d)

V1 = 6C I CT ( -lC T ) 6CN (77e)

V2 §6C (CT C) - 1 CT 6C (77f)

From [17] and [E1], one can show that the bias and the error

covariance on the elements of CS, obtained through the Burg technique is

given by

E [(6C)i ] T-1 Qi + o(T1) (78)

E [(6C}ij (6C)kr ] - T + o(T) (79)N [(6C ii N kr ~)~I 1 ij,kr

with Qi~j Sij,kr conveniently defined matrices. Consequently the bias on

the autoregressive component estimation (76) is of order T-1 , meaning that



the estimator is asymptotically unbiased. A dual analysis, leading to
similar conclusions could have been presented for the MA component.

The bias effect is shown in the examples presented in figures 3 to 5
which represent the mean estimated spectrum obtained, for different values
of N and T, with 100 Monte-Carlo runs.

20. - _20 . -
N=11 N=14

10. I 10o.

_1 -i ~ 1' -I1 I I 1 I-' O.I I .. .....0 .00 0.25 0.50 0.75 .00 .00 0.25 0.50 0.75 1 .00

20 . I - 20 . -

N=18 N=25

10. 10. -

0. e. _

-1. I -10 -

0 .00 0.25 0.50 0.75 1.00 0 .00 0.25 0.50 0.75 1 .00

Fig.3 - Real and mean estimated spectrum obtained with 100 Monte-Carlo
runs for T=500, N=11, 14, 18 and 25.
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20 . 20. -
N=l9 N=40

I20. 10.

-10 . -10 .

0 .00 0.25 .s50 0.75 1 .00 0 .00 0.25 0. 50 0.75 1 .00

Fig.5 - Real and mean estimated spectrum obtained with 100 Monte-Carlo

runs for T15000, N=11, 15, 19 and 40.
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Fig.4 - Real and mean estimated spectrum obtained with 100 Wonte-Carlo
runs for T=1000, N=ll, 15, 18 and 40.



Comparing the mean estimated spectrum obtained for N=11 in figures

3, 4 and 5, one sees that the bias decreases as the number of sample data

points increases; the same is observed, for example, in figures 4 and 5 with

N=15. This is in accordance with (76). However, for a fixed value of T, the

increase of N does not always leads to a better performance.

In figure 3, and for N>14, the bias in the parameter estimates

dominates the estimation error, thus leading to a worst performance for

higher values of N. The same effect is evident in figure 4 for N>18. In

figure 5, which is obtained for a higher value of T than the previous ones,

the bias effect is not significant till N=40.

Following again the analysis in [17], the error covariance for the
-1AR component estimation is also of order T 1

6. CONCLUSIONS

The work describes a method where the AR and MA components of a

multivariable ARMA process are estimated by a dualized type algorithm. The

estimation scheme provides a distinct Yule-Walker type equations for each

component.

The estimation algorithm assumes that the orders p and q of the ARMA

process are known. If they were unknown, the algorithm is still useful in

fitting several classes of ARMA(pi,qi) to the data. A conveniently defined

stopping rule picks up the "best" (in a certain sense) class. This is

presently under experimentation.

In [19]-[203 an ARMA identification algorithm which is recursive on

the orders is presented. Ours is different from the one in [19]-[20] in

several regards. As mentioned before, the procedure studied here uses

estimates of the coefficients of successively higher order linear predictors

and innovation representations of the process, both of which can be obtained

from the reflection coefficient sequence, avoiding the necessity of

obtaining sample autocorrelations as in [193-[203. Also, the scheme dualizes

the estimation of the AR part and of the MA part, without one interfering

and degrading the other.

The AR coefficients are determined from the linear dependence

exhibited by corresponding coefficients of successively higher order linear



innovations filters. A recursive implementation of the AR estimation

algorithm is also presented. In a pratical situation where the AR

coefficients have to be estimated from a finite sample of the observation

process, the algorithm requires suitable estimates of WN and WN1. Because it

simultaneously uses all the innovations filters coefficients, the numerical

accuracy is then improved.

The MA coefficients are asymptotically determined from the linear

dependence exhibited by corresponding coefficients of successively higher

order linear predictor filters. The quality of the procedure is connected to

the rate of this convergence, which is proved to go with the second power of

the zeros of the original system.

Some simulation results together with a brief statistical and

performance analysis are presented.
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