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1. INTRODUCTION

Decisionmakers in a distributed system have access to specified

information and control specified resources. Usually, even in a simple

organization, there is more than one path through which information can be

processed. Decisionmakers can choose the path. There is no general rule

for predicting which path will be chosen, because each individual

decisionmaker (DM) has a different personality, different skills and reacts

differently to different circumstances.

There are many measurements of performance of distributed

decisionmaking (DDM) systems. One of the most important is the time

interval from the moment a stimulus is received by a system to the moment a

response is made. This time delay is one indicator of a system's ability

to respond to events in a timely manner (see Cothier and Levis, 1985).

To evaluate the time delay in DDM systems, all possible information-

processing paths must be identified and then the time delay associated with

each path can be computed. A DDM system is often a large-scale system

which contains many decisionmakers and decision support systems with

complicated interconnections. For these systems, scanning all possible

paths and computing time delays can become difficult or even impossible.

An algorithm is required to solve the problem. Then, protocols that

reduce the time delay in the operation can be designed, so that the

effectiveness of the system can be improved [Jin, 1985].

In this paper, such an algorithm for computing time delay of DDM

systems is developed, which scans all paths and computes conditional

probabilities and time delays associated with these paths. From these

results, a tree can be established to show all possible paths explicitly,

the probability that each possible path occurs is easily calculated, and

the expected delay of the overall system can be obtained.

The algorithm is developed by using the Petri Net representation of

decisionmaking organizations [Tabak and Levis, 1985] which shows explicitly
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the interactions between DMs and the sequence of operations in the system.

Figure 1 shows the Petri Net representation of a two decisionmaker system;

details of the procedure for constructing the Petri Net can be found in

Tabak and Levis (1985).
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Figure 1. An Example of a Two Decisionmaker System
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2. COMPUTATION OF TIME DELAYS

2.1 DEVELOPMENT OF AN INTERCONNECTION MATRIX

The information contained in a Petri Net can be summarized in the

system matrix As, which is relatively complicated because of its compact

form. Therefore, it is not convenient for scanning for all possible paths.

An interconnection matrix, Cs, is needed that -indicates the inter-

connections between DMs in an explicit way so that all possible paths can

be found using a simple algorithm. The interconnection matrix is obtained

by scanning the system matrix and storing the relevant interconnection

information in a new format. The interconnection matrix indicates

whether the components are connected (+1, -1) or not connected (0); and, if

connected, how they are connected.

The elements of the interconnection matrix, C., are defined as

follows:

1. C3 has a dimension of m x n, where m is the total number of arcs
(or links) in a Petri Net and n is the total number of
transitions.

2. An element of Cs, {cii), gives the connection status of the j-th
transition to the i-th arc;

3. The element cij can take the values of -1, 0, +1:

-1, when there is an output from the j-th transition
to the i-th link;

cij O, when there is no connection between the j-th
transition and the i-th link;

+1, when there is an input from the i-th link to
the j-th transition.

As an example, Table 1 shows the system matrix As for the two-

decisionmaker organization of Figure 1. In the system matrix, each

decisionmaker is considered as a subsystem. The information source (AIN)

and the response sink (AOU) are also subsystems. Therefore, the total

number of subsystems in a DDM system with n DMs is n+2. Each transition of
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a Petri Net is modeled as a column in a submatrix, which contains the input

and output information for the transition.

Table 1. The System Matrix of the Two DM System

AIN 1 0 0 0
0 0 0 0
0 0 0 0

1111 0 0 0
2 0 0 0
1 0 0 0

1.12 0 0 0
2 0 0 0
1 0 0 0

Al 1 1 1 1
3333 3333 2 0

1 1 1 0
0 0 0 2

As = 0 0 0 2

A2 1 1 1 1
3333 1 0 0
1 4 0 0
1 0 4444 4444
3 0.12 1 1

AOU 1 0 0 0
2 0 0 0

3.12 0 0 0

: 0 0 0 0

The elements of each column indicate the origins of the inputs to that

transition and the destination of its outputs. For example, column 1 in

AIN (Table 1) indicates that the delay of this transition is one unit; the

second element shows that there are no inputs and hence the third, which

would otherwise indicate the source, is also zero. The fourth entry, 1111,

is a code indicating multiple outputs. There are 2 outputs (fifth entry);

the first output is routed to decisionmaker #1 (1 in position 6), to his

first transition which is a two-way switch (the seventh entry, 1.12). The

other output goes to decisionmaker #2 and, specifically, to his first

transition (eight and ninth entries). For details, see Tabak and Levis

(1985). The corresponding interconnection matrix is given in Table 2.
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Table 2. The Interconnection Matrix for the Two DM System

-1 1 0 0 0 0 0 0 0 0
-1 0 1 0 0 0 0 0 0 0
-1 0 0 1 0 0 0 0 0 0

O -1 0 0 1 0 0 0 0 0
O O -1 0 1 0 0 0 0 0
0 0 0 0 -1 1 0 0 0 0

Cs = 0 0 0 0 0 -1 1 0 0 0
O o 0 -1 1 0 0 0 0 0
O O 0 -1 0 0 1 0 0 0
O 0 0 0 0 0 -1 1 0 0
O O O 0. 0 0 -1 0 1 0
O O 0 0 0 0 0 -1 0 1
0 0 0 0 0 0 0 0 -1 1

After Cs is established, it is necessary to check whether the sum in

each row is zero. If it is not, there must be an error because each row of

C5 stands for only one link which connects two vertices in a certain

direction. Therefore, there must be a -1 to indicate that link is an

output of one of the vertices and a +1 to indicate that it is an input of

the other vertex.

2.2 SCANNING ALL POSSIBLE PATHS

The scanning problem is formulated as finding all possible paths from

the vertex that represents the input source to the vertex that is the

output sink. The paths form a tree with the input source as the main root

of the tree. Every path is a branch of the tree.

The Algorithm

Let P(m,z) be the z-th subpath ending at the m-th vertex and Dm be

the time delay associated with this subpath. The elements of Cs are

partitioned into four subsets: S1 and S, = Cs - S,. S. and S, = Cs - S2

with Sx = {1} and S, = (-1}.

The elements of Cs have the following properties:
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(1) If cij = -1 and Cik = 1, vertices j and k are connected

and Vj precedes Vk.

(2) If there are more than one (-1) in column j of Cs,

vertex Vj is a root or a subroot.

(3) If there are n (+1) in column j, then n paths converge

into the same path after they reach vertex Vj.

Scanning is done backwards, that is, it starts from the last vertex of

the output sink, Vi, in which there are usually more than one input. The

first positive one (+1) in the i-th column of Cs is the first input to Vi ,

and it is processed first. The processing stops when a multi-input vertex,

Vj, is found, i.e., there are several paths converging into transition Vj.

To avoid iterative computation, Vj is stored as a subroot and is marked as

the end of some subpaths. Then scanning goes back to the second input of

Vi . The previous procedure is repeated until a new convergent vertex, say,

Vk, is found. After all inputs of Vi are processed, the same procedure is

repeated for all the subroots. When the subpaths of the last subroot end

with V,, which is the first transition of the source, scanning is

completed.

After all subpaths are found, they are assembled into paths by

matching the last vertex Vk in the subpath P(i,j) to the first vertex Vk in

P(k,z). When the last vertex of a subpath is V1, a path is completed.

The algorithm depends on the following rule.

Let cmk e SX and Chj a S., i.e., cik = +1 and chj = -1.

If i = h

then there is a path from Vj to Vk, i.e.,

P(j,z) = Vj -Vk
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and the delay associated with this path, Djz, is

Djz = Dj + Dk.

the sum of the delays of the two vertices in the path.

One important rule of the algorithm is that no loop is allowed in any

path. If a vertex appears in one path more than once, scanning stops. An

error message is given.

Consider the system in Fig. 1; its system matrix As and

interconection matrix Cs were given in Tables 1 and 2. There are 10

vertices and 13 edges. All paths are scanned using the algorithm.

Related subpaths are then joined together to complete possible paths. The

subpaths ending with the n-th vertex are connected to the subpaths starting

on the n-th vertex to form intermediate paths. Table 3 lists all subpaths

and intermediate paths for this example.

Often some possible paths are active simultaneously, i.e., in

parallel. Therefore, to avoid confusion, intermediate paths are defined as

follows:

An intermediate path is a single path which starts from the source

vertex and ends at the sink vertex.

Then, a possible path can be represented by a 'sequence' of intermediate

paths. Figure 2 shows a tree which displays all possible paths as

sequences Qf intermediate paths. Notice that even though intermediate

paths are shown in sequence, this does not mean that they occur one after

another, but instead, they may be simultaneous. The tree representation

shows all possible paths explicitly.
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Table 3. All Subpaths and Intermediate Paths of 2 DM System

Subpaths Index of Vertex

P(10,1) 10, 9, 7

P(10,2) 10, 8, 7

P(7,1) 7, 4, 1

P(7,2) 7, 6, 5

P(5,1) 5, 4, 1

P(5,2) 5, 3, 1

P(5,3) 5, 2, 1

Intermediate Paths Index of Vertex

P(I) 10, 9, 7, 4, 1

P(2) 10, 8, 7, 4, 1

P(3) 10, 9, 7, 6, 5, 4, 1

P(4) 10, 9, 8, 6, 5, 4, 1

P(5) 10, 9, 7, 6, 5, 2, 1

P(6) 10, 9, 7, 6, 5,3, 1

P(7) 10, 8, 7, 6, 5, 3, 1

P(8) o10, 8, 7, 6, 5,2, 1

P(no P(2)

P(3) / \P(4) P(3 P (4)

P(5) f 8) P(5 P(8) (5 < P(8) P P(8)

6) P(7 (6 P(7 P(6 Pt7 (6 P(7

Figure 2. A Tree Showing All Possible Paths of the System
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2.3 COMPUTATION OF TIME DELAY FOR ALL PATHS

To compute the delay for each path, the only calculation needed is to

add the delays associated with the vertices which constitute a path. The

algorithm for the computation of delays is:

(a) Let n be the number of transitions in the j-th subpath ending at

vertex i, P(i,j). Assume that a transition has a delay of tk. Then

the delay of P(i,j) is

n

Di = t (1)

k=1

(b) Let Dix, Dis, Di3 be time delays associated with three subpaths

P(i,1), P(i,2), P(i,3). Then the delay of all subpaths with the end

vertex Vi is

D(i) = max(Di1, Dis, Di) (2)

For instance, consider the example in Table 3. There are four distinct

subpaths ending at V?:

P(7,1) = 7,4,1

P(7,2) = 7,6,5,2,1

P(7,3) = 7,6,5,3,1

P(7,4)-..= 7,6,5,4,1

The associated delays are D7?, = 3, D7 2 = 5, D7 3 = 5, D7 4 = 5. Then the

delay from Vx to V? is

D(7) = max(D17,D 7?,D,73 D7 4) = 5 (3)
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For an intermediate path containing n subpaths, the delay is the sum

of delays associated with the n subpaths. For example, in Table 3,

intermediate path P(1) contains subpaths P(10,1) and P(7,1). Then, the

delay of P(1) is D(1)= 3 + 5 - 1 = 7 where 3 is the delay in subpath

P(10,1); 5 is the delay in subpath P(7,1) which is calculated above; and 1

is subtracted because V7 is counted twice.

For a possible path, because all the intermediate paths are

simultaneous, the time delay is the maximal delay of the intermediate

paths. For example, possible path 1 in Fig. 2 consists of intermediate

path P(1), P(3), P(5). The maximal delay is 7, so the delay associated

with path 1 is 7.

After all delays are computed, a shortest path with the minimal time

delay and a longest path with maximal delay can be found. For analyzing

overall system performance, it may be desired to compute the expected delay

of the system.

2.4 EXPECTED DELAY OF A SYSTEM

To calculate expected delay, probabilities associated with each path

need to be calculted first. Then the expected delay of a system can be

computed.

Usually, for a system model, probabilities are given as conditional

probabilities associated with each transition. If transition Vi has only

one input from the previous transition, V., then the conditional

probability p(Vi/Vj) is 1. If Vi is a transition of a decision switch, a

conditional probability p(Vi/Vj) < 1 will be assigned. For a n-way switch,

the sum of n conditional probabilities should be equal to 1, that is

n

p(V./V) = 1 (4)

i-=
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The probability that information processing will follow a certain

intermediate path X with n transitions is given by

n-1
p(X) = p(V1) [ pi(Z/V) (5)

i=-

where X is the path number; Z is a transition which is on the path and V

is the transition preceding Z. Table 4 shows the conditional probability

matrix Ps for the example of section 2.1. Table 5 shows the probabilities

associated with intermediate paths of System A.

Table 4. Probability Matrix Ps of 2 DM System

0.0 0.6 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

P= 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The expected delay can be calculated by the following equation:

Er = piD(i) (6)

i=1

where pi and D(i) are the probability and time delay associated to the i-th

possible path; r is the total number of possible paths in a system.
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Table 5. Conditional Probabilities Associated with Each Intermediate Path

of 2 DM System

Intermediate Path Conditional Probability

P(1) 1 * 1 * 0.7 * 1 = 0.7

P(2) 1 * 1 * 0.3 * 1 = 0.3

P(3) 1 * 1 * 1 * 1 * 0.7

P(4) 1 * 1 * 1 1 * 0.3 * 1 = 0.3

P(5) 0.6 * * 1 * 1 * 0.7 * 1 = 0.42

P(6) 0.4 * 1 1 * 1 * 0.7 * 1 = 0.28

P(7) 0.4 * 1 * 1 * 0.3 * 1 = 0.12

P(8) 0.6 * 1 * 1 *1 * 0.3 * 1 = 0.18

For example, in the 2 DM system, there are 16 possible paths (Figure

2). Path 1 has delay of 7 (Section 2.4) and probability of 0.206. Then

the first term of En is 0.206 * 7. In this particular example, because

the delay, D, of all possible paths is 7,

16

Es = D 2 Pi = 7. (7)

i=1

3. APPLICATION

The delays in two organizations, each one consisting of three

decisionmakers, will be determined using the algorithm described in Section

2. The application is an abstracted and very simplified version of an air

defense problem. In the parallel organization (Fig. 3), the airspace has

been divided into three sectors, with each decisionmaker assigned to one

sector. Each DM can observe and engage threats in his sector. However,

threats may move between sectors; therefore, there is need for

communication - information sharing - between decisionmakers with

adjacent sectors. In the hierarchical organization (Fig. 4), the airspace
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Figure 3. A Parallel Organization

is divided into two sectors, with each one assigned to a single DM. Since,

the workload will be high for each DM, a central region is defined that

stradles the two sectors. A supervisor is introduced who does not observe

the airspace directly, but receives information about threats in the

central region from the two DMs. He then processes the data and allocates

threats in the central region (command inputs) to either one of the DMs

depending on the trajectory of the threat.
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Parallel Organization

Using the algorithm interconnection matrix, all intermediate paths,

the conditional probability and time delay associated with each

intermediate path, and the expected delay of overall system are computed.

The interconnection matrix and labels of transitions or vertices are shown

in Table 6.

In the results, Table 7, intermediate paths are indicated by the

sequence of indices of the vertices which represent transitions. The

symbol 'SW* denotes that the following vertex (transition) belongs to a

decision switch. The symbol '/ / indicates that the following subpath is

parallel to other subpath(s).

Table 6. Interconnection Matrix for Parallel Organization

INTERCOItrNECTION MATRIX : COLUtN='FRANSITON ROW=LINK

- 1 C) ) O : C) O O) CO) ) : C)t o O : t
-1 ) 1 0C) C t C t C) C 0 C ) C) :) O C ) O
- 1 C) ) 1 Ct O : ) ( ) C) C :) i:) O) C0) C
-1 ) C) 1 ) C C) C) C C) : C) (0
C) - 1 C) O C O C O O ) O) C) C) O O 
C -1 C 0 0 0 1 C ) 0 O C0 0 0 0
C ) 0 C C) 0 -1 1 0) t Ct C) 0 0 0 0 0 0

Ct C0 C) O Ct 0 0 0- 1 Ct C0 0 0C C0 0 0
:) C) ) C) ) ) - 10 1 ) ) C) ) C) 

) C) C 0 O O -1 C 1) 1 O C) C C CO:
C ) -1 C C 1 O O C )O C ) O C C C)O C :) - 1 C C C:) I C:) C) tC ) C) C) C:) C) C) C:

) C) -1 C) C) O t O C) ) C0 OC
0 ) :) -1 C) O 1 t O C) C) C) 0 ) 
QC. :) C -1 Ct 0 0 0 0 0) 1 C)0 0 0 0t
C C) -1 0 1 C) C) C C) C) C) C0 ) 0 C0 C0
0) - 1 C) C0 1 ) C ) C0 C ) C) C) 
0 C) C :) - 1 0 ) :) C:) 1 C 0 C:)

CO C0 C) ) C) 1 C ) O t: - C C0 CO
C) C C) 0 -1 1 ) C ) C ) C) 0 C) C) C)

C O C ) C-1 Ct CO CO t t 0 O - 1 :) C O 
CO C) C) C) O ) Ct C) C) C) C) C) C 1 C C

0 O O) 0 ) O C)O 1 ) O:) -1 1 )(C) ) t: C: ) ( ) C) C:) ) i C:) C) C:) C) -1 C :

O) C:) O ( C) 0 0 O O O C) O C) -1 O 1
i) 0 O ) ) C ) C) C ) 1 C) C O C0 ) - 1
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Table 7. Paths for Parallel Organization

CONDITIONAL
INTERMEDIATE PATH PROBABILITY DELAY

P( 1)= 10<- SW-O 9<-0 B<-0 7<-//<-0 2<-O 1 0.300 6

P ( 2)= 10<- SW-O 9<-0 8(-0 7<- SW-O 3<-0 1 0.120 6

P( 3)= 10<- SW-O 9<-0 8<-0 7<- SW-O 4<-O 1 0. 180 6

P( 4)= 10<- SW- 11<-0 8<-0 7<-//<-0 2<-0 1 0.700 6

P( 5)= 10<- SW- 11<-0 8<-0 7<- SW-O 3<-0 1 0.280 6

P( 6)= 10<- SW- 11<-0 8<-0 7<- SW-O 4<-0 1 0.420 6

P( 7)= 10<-//<- 13<-0 6<-//<-0 2<-0 1 1.000 5

P( 8)= 10<-//<- 13<-0 6<- SW-O 4<-0 1 0.600 5

P( 9)= 10<-//<- 13<-0 6<- SW-O 3<-0 1 0.400 5

P(10)= 10<-//<- 13<-O 6<-//<-O 5<-O 1 1.000 5

P(11)= 10<- SW- 15<- 14<- 12<- SW-O 3<-0 1 0.200 6

P(12)= 10<- SW- 15<- 14<- 12<- SW-O 4<-0 1 0.300 6

P(13)= 10<- SW- 15<- 14<- 12<-//<-0 5<-0 1 0.500 6

P(14)= 10<- SW- 16<- 14<- 12<- SW-O 3<-0 1 0.200 6

P(15)= 10C- SW- 16<- 14<- 12- SW-O 4<-0 1 0.300 6

P(16)= 10<- SW- 16<- 14<- 12<-//(-0 5<-0 1 0.500 6

EXPECTED DELAY OF THE SYSTEM IS 6
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Table 7, shows that there are sixteen intermediate paths. Some of

these paths are in parallel. For example, P(1) is parallel to both P(2)

and P(3): they have the same subpath after V7. Only decision switches

create different paths. Because some intermediate paths occur

simultaneously, that is, are parallel, consequently, the resulting tree has

128 possible paths.

A delay of unity in each transition is assumed during the computation.

The expected delay of this system is 6 units.

Hierarchical Organization

The interconnection matrix and the transition labels for the

hierarchical organization are shown in Table 8. All intermediate paths,

their conditional probabilities and their delays are shown in Table 9.

There are twenty intermediate paths. Each path has a delay of eight units,

because for a set of parallel paths the delay of the set is the maximum

path delay.

Table 8. Interconnection Matrix- for Hierarchical Organization

I NTERCOIINNECT I ON MATR' I X : COLUMN=TRANS I T I ON ROW=L I N::

- 1 C0 C C0 ) ()0 0 0 0 0 0 0 0 0) c)
-1 Ct) 1 ) C) ) C) C) C) C) C ) C C) C)
0 - 1 O 1 (') 0 0 O 0 0 O 0 0 O
C) -1 0 C) 1 0 0 0 0 ) 0C) C0 C)
C) C} C3 :) -i 1 C) (D C) C) Ct) C) :) C)
0) O C( C)- -1 C C0 ) C C0 C0 C) C)

) ) 0) - 1 Ct :) 1 C) :) ) ) C)
C) ) : 1 - 1 t ) C0 0 0 0:)

C) C) t - 1 C) ) 0 0 1 ) C) C) C C)

) C) C) 0 0 0 C -1 1 0: C) C

:) ) 1 C I C:) ) 0 C - 1 ) 0) 0 C)

:) : :) C) 0 0: C -1 1 ) C) 

Ct ( 0 ( :) - 1 Ct (:) 1 O C

C ) ) C) 1 0 : ( c) 0 ) ) - 1 C) 0
) :) :) C)0 0 0 0 0Ct C) -1 -1 C0

C - 1 1 )0 0 0 0) :) C C0 0 0 C
0 C) -1 C) ) :) 0:) O C C) 1 0) C) 0)

C) 0 :) C :) C ) C :) Ct C 0 0 0 - ! 0 1 
) C) ) :) 0 :) 1 :) 0:) - 1 C)

C) 0 ) C )0 0 0 0 0 0 t Ct C) -1 C) C) 1
0) C) ( ) :) ) 1 i C) () 0 C0 -1
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Table 9. Paths for Hierarchical Organization

s===s============s ~==== ================-

CONDITIONAL
INTERMEDIATE PATH PROBABILITY DELAY

P( 1)0= 7<- SW-0 6<-0 5<-//--0 2<-0 1 0.400 8

P( 2)=0 7<- SW-O 6<-O 5<- SW- 10<-0 9<-0 4<-//<-0 2<-0 1 0.280 8

P( 3)=0 7<- SW-O 6<-O 5<- SW- 10<-O 9<-0 4<-//<-0 3<-0 1 0.280 8

P( 4)=0 7<- SW-O 6<-O 5<- SW- 12<-O 9<-O 4<-//<-0 2<-O 1 0.120 6

P( 5)=0 7<- SW-O 6<-0 5<- SW- 12<-O 9<-0 4<-//<-0 3<-O 1 0.120 8

P( 6)=O 7<- SW-O 8<-0 5<-//<-0 2<-0 1 0.600 8

Pf 7)=0 7<- SW-O 8<-0 5<- SW- 10<-0 9<-0 4<-//<-0 2<-0 1 0.420 a

P( 8)=0 7<- SW-O 8<-0 5<- SW- 10<-O 9<-O 4<-//<-0 3<-0 1 0.420 8

P( 9)=0 7<- SW-0 9<-C 5<- SW- 12<-O 9<-0 4<-//<-0 2<- 1 O. 180 8

P(10)=0O 7<- SW-O 8<-0 5<- SW- 12<-0 9<-O 4<-//<-0 3<-0 I 0.180 8

P(11)=O 7<- SW- 15<- 11<- SW- 10<-O 9<-0 4<-//<-0 2<-0 1 0.350 8

P(12)=O 7<- SW- 13<- 11<- SW- 10<-0 9<-0 4<-//<-O 3<-0 1 0.350 8

P(13)=O 7<- SW- 13<- 11<- SW- 12<-O 9<-0 4<-//<-0 2<-0 1 0.150 8

P(14)=O 7<- SW- 13<- I1<- SW- 12<-O 9<-0 4<-//<-0 3<-O 1 0.150 8

P(15)=0 7<- SW- 1<- 11<-//<-O 3<-O 1 0.500 8

P(16)-O 7<- SW- 14<- 11<- SW- 10<-O 9<-0 4<-//<-0 2<-O 1 0.350 8

P(17)=0 7<- SW- 14<- 11<- SW- 10<-O 9<-O 4<-//<-0 3<-O 1 0.350 8

P(18)=0 7<- SW- 14<- 11<- SW- 12<-O 9<-0 4<-//<-0 2<-0 1 0.150 8

P(19)=0 7<- SW- 14<- 11<- SW- 12<-O 9<-0 4<-//<-0 3<-O 1 0.150 8

P(20)=O 7<- SW- 14<- 11<-//<-O 3<-0 I 0.500 8

EXPECTED DELAY OF THE SYSTEM IS 8
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The resulting tree has 64 different possible paths, and the expected

delay is 8 units.

4. CONCLUSIONS

An algorithm has been developed for computing time delays in DDM

systems. From the system matrix, an interconnection matrix is created,

which consolidates all the information about connections between the

system's components. Scanning of the interconnection matrix results in a

set of intermediate paths. Then, all possible paths can be constructed by

concatenating intermediate paths. The time delay associated with each

intermediate path is calculated by summing the delays of the transitions

contained in that path. A possible path is composed of several

intermediate paths which are active simultaneously. Then, the time delay

associated with a possible path is the maximal delay of the intermediate

paths contained in this possible path. After all possible paths and

associated delays are found, the expected delay for the overall

decisionmaking system can be calculated. The expected delay provides an

indication of the speed of response of the system. The algorithm has been

applied to compute the delays in parallel and hierarchical organizations.
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