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ABSTRACT

This paper presents a decomposition method to evaluate the
performance measures of a capacitated transfer line with unreli-
able machines and random processing times. The decomposition is
based on approximating the (k-1)-buffer system by k-1 single-
buffer systems. Numerical examples indicate that the approach is
viable as long as the probability that a machine is starved and
blocked at the same time is small.
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1. INTRODUCTION

This paper presents a decomposition method to evaluate
the performance of a capacitated transfer line with unreliable
machines and random processing times. The method follows that of
Gershwin (1983). It is based on a model which approximates a (k-
1)-buffer system by k-1 single buffer systems. The parameters of
the single-buffer systems are determined by relationships among
the flows through the buffers of the original system. An itera-
tive search algorithm is then developed to calculate the through-
put rate and the average buffer levels.

Figure 1 depicts a transfer line with a series of k servers

or machines (M,,M,,...,M,) separated by queues or buffers
(By,By, oo ., Bey). The buffers are each of finite
storage capacity (C;,C,,...,C4). Material flows from

outside the sytem to M;, then to B,;, and through all the
machines and buffers in sequence until it exits via M,.

Each machine spends a random amount of time processing each
item. The randomness of M; is characterized by three exponen-
tially distributed random variables: the service time (with mean
l/pi), the time to fail (with mean l/pi) and the time to
repair (with mean 1/r;). When machine M, is in a failure
condition or taking a relatively long time to process an item,
buffer B, tends to accumulate material and buffer B,
tends to lose material. If this condition persists, it will lead
to blockage of machine M;;, and starvation of
machine M,,,. M;, is blocked when it has finished a
piece and finds that there is no place to tranfer it. M
is starved when there is no piece for it to process.

i+l

The great dimensionality of the state space renders the
analysis of such system a formidable task. Each machine can be

in one of two states: operational or under- repair.
Buffer B, can be in one of Ci+3 states: n, = 0,1,...C,,
Ci+1l, C,+2. C, is the actual storage capacity of buffer
B, and n; is the level of material in transit between M;
and. M,,,. It is convenient to define N,;=C;+2 as an
extended storage capacity between M; and M,,,. The dis-

tinction is explained in Section 2.

As a consequence, the Markov chain representation of a k-
machine line with k-1 buffers has a state space of dimensionality

k-1
2k ]fI(c£+3).

i=1
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A 20-machine line with 19 buffers each of storage capacity 8, for
example, has over 6.41x10%° states.

1.1 Decomposition

As shown in Figure 2, the transfer line L is decomposed into
a set of two-machine lines L(i), i=1,...,k. Their buffers have
the same capacities as those of L in Figure 1.

Pseudo-machine M (i) models the part of the line upstream
of B, and M (i) models the part of line downstream from B,.
We assume that the random behaviors governing flow into and out
of B, can be characterized by six exponentially distributed
random variables with parameters: pu(i), pu(i), r (i); and pd(i),

pd(i) and r (i), respectively. The key to the decomposition

method is to find these parameters so that the material flow into
and out of the buffers of the two-machine lines closely matches
the flow into and out of the corresponding buffers of the long
line L. '

Six equations per buffer, or 6(k-1) conditions are required
to determine the parameters.

1.2 Literature Survey

The transfer line model analyzed here is an extension of
Gershwin and Berman’s (1981) two stage line model. Related
literature on the modeling and analysis of transfer lines is
documented in that paper.

The concept of approximate decomposition of transfer lines
was discussed by Hunt (1956), Hillier and Boling (1956), Takahas-
hi et al. (1980), Altiok (1982, 1984), Altiok and Stidham
(1983), Jafari (1984), Suri and Diehl (1983), Gershwin (1983),
and others. In all papers surveyed except Gershwin's, the numer-
ical method tends to sweep the line from one end (generally the
upstream end) to the other. The symmetry of the line (as observed
by Muth (1979) and Ammar (1980) has not previously been ex-
ploited. In addition, the interrupted nature of both the arrival
and service processes in the decomposed line has not been consi-
dered.

A similar approach to ours was recently described by Sastry
(1985), who also presented an extensive literature survey.
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1.3 Contribution of this paper

Gershwin’s (1983) decomposition method applies to transfer
lines with constant, identical service times. This paper adapts
that method to transfer lines with random service times. The
accuracy of this method is evaluated via numerical simulation.

1.4 Outline

Section 2 describes the assumption and model of the produc-
tion lines. Section 3 describes the derivation of the 6(k-1)
equations. Section 4 evaluates the accuracy of the decomposition
method. Conclusions and new research directions are discussed in
Section 5.
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2. MODEL DESCRIPTION AND ASSUMPTIONS

The development here is an extension of the 2-machine line
model in Gershwin and Berman (1981). The storage and blockage
condition are explicitly defined in response to the comment
raised by Altiok and Stidham (1982).

2.1 Machine Operations

A machine can be in one of two states: operational or
under repair. The machine state is denoted by the binary
variable a as

1, when M, is operational;

i = 1 0, when M; is under repair.

-

When a machine goes from state 1 to state 0, it is said to
fail., A repair takes place when the transition from
a=0 to a=l1 occurs. When a machine is in state 1, it can
process workpieces only when it is not starved or blocked. It
processes no pieces when it is under repair. After the machine is
repaired, it resumes work on the same piece it was working on
when the failure occured. It is assumed here that the first
machine is never starved and the last machine is never blocked.

Since blocked or starved machines are not processing, they
are not vulnerable to failure. This assumption differs from
Wijngaard (1979), who allows failures of idle machines.

Service, failure and repair times for M; are assumed to
be exponential random variables with parameters B P, and
1

r,; i=l,...,k, the service rate, failure rate, and repair rate,
respectively. When a machine is under repair, it remains in that
state for a period of time which is exponentially distributed
with mean 1/r;,. This period is unaffected by the states of the
other machine or of the storage.

When a machine is operational, it operates on a piece if it
is not starved or blocked. It continues operating until either
it finishes or a failure occurs, whichever happens first. Either
event can happen during the time interval (t,t+§t) with probabi-
lity approximately piSt or pi6t respectively, for small §t.

The repair and workpiece completion models are similar to
those of Buzacott (1972). However, in Buzacott's failure model,
the probability of a failure before a completion is independent
of the time spent on the piece. Here, instead, the longer an
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operation takes, the more likely it is that a failure occurs
before the work is complete. Buzacott’s model would seemn,
therefore, to be appropriate where the predominant cause of
failure is the transfer mechanism, clamping, or some other action
that takes place exactly once during an operation. The model
presented here would seem to better represent failures in
mechanisms that are vulnerable during an entire operation.

2.2 Buffer State and Blockage Convention

The state of buffer B; is denoted by the integer n;.
This is the number of pieces in buffer B, plus the piece in
machine M,,,. When M, is blocked, n; also includes the
finished piece in M;. The storage capacity between M, and
M,,, is denoted by C;+1 which includes one space in

Mi+1

Machine M; is blocked at the instant when it has completed
a piece and there is no storage space in B,. The convéntion for
blockage is n;=C;+2. Gershwin and Berman have used this same
convention in their mathematical formulation of a two-machine
line. There, the blockage convention is (n;=N;,) where
N,=C,+2. This definition of blockage agrees with the one
proposed by Altiok and Stidham.

Machine M; is starved at the instant when it has completed
a piece and there is no piece in B -

In the following, we use N, to denote the storage capacity
in between machines M; and M,,.

The state s of the continuous time Markov chain model of
the transfer line is denoted by

{ng,...,my g0, ... ,04).

2.3 Performance Measures

The probability that machine M; is processing a workpiece
is termed the efficiency E; and is given by

E, = problas=1, n,; 0, ni<b11] . (1)

The production rate (throughput rate) of machine
M, in parts per time unit, is
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P, = By E,. (2)

The mean buffer level n 1is defined as the average of
1

materials in transit between the machines M, and M,,,. It
is given by :

n,; = S n,; prob(s). (3)

s

Formulas for these and related quantities for two-machine
lines can be found in Gershwin and Berman (1981).

2.4 Characteristics of the transfer line.

Conservation of Flow

Since there is no creation nor destruction of workpieces,
the flow is conserved. That is

P=P,=P,=... =P, (%)

Flow Rate-Idle Time Relationship

Define e; to be the isolated efficiency of machine
M,. It is given by (Buzacott, 1967)

Iy

®1 T TP, (3)

and it represents the fraction of time that M, is operational.
The isolated production rate, p is then given by

=i, e;. (6)
and it represents what the production rate of M, would be if it
were never impeded by other machines or buffers. The actual
production rate P, is less because of blocking and starvation.
'The efficiency satisfies
E, = e, prob[ n, >0 and n <N, ]. 7
See Gershwin and Berman (1981), and Gershwin (1984).

The flow rate-idle time relations can be stated as

P, = P, prob[ n; >0 and n,<N, 1. . (8)



CHOONG and GERSHWIN page 9

This follows from equation (1).

While it is possible for n; ;=0 and n;=N, simul-
taneously, it is not likely. This corresponds to an event in
which M, finishes a piece and finds that it is both blocked and

starved. The probability of this event is small because such
states can only be reached from states in which niqfl and
n;=N,-1 by means of a transition in which

1. Machine M, ;, is either under repair, starved, or
taking a long time to process a piece, and

2. Machine M, completes an operation, and

3. Machine M;,, is either under repair, blocked, or
taking a long time to process a piece.

The production rate may therefore be approximated by
P, = Py (1 - prob[ n;_=0 ] - prob[ ns=N, ]). €))

However, if there is a great variation in efficiencies and
service rates among the machines, this assumption may not hold
and the method may break down. An example illustrates this in
Section 4.
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3. CHARACTERISTICS OF THE DECOMPOSITION

For every buffer B,, the states of the line upstream of
B, are aggregated into two groups, represented by the up
and down states of M (i). A similar aggregation applies
to the states of the line downstream of B;,. The decomposition
method assumes that the transition between the up and down states
of M, (i) (My(i)) can be characterized by three exponential

processes with the parameters uu(i), r, (i), and p“(i),
(pd(i), ry(i), and pd(i)). This aggregation is not exact.

It is adopted here to characterize the most important features of
the behavior of the transfer line in a simple approximate way.

In this section, we derive the equations for the unknown
quantities: p.u(i), r (i), pu(i), pd(i), ry(i) and pd(i), i=1,....,k.
They are based on conservation of flow (4), the flow rate-idle
time relationship (9), and a set of equations (13), (14), (19),
(20) and (28) developed below.

We first define the up and down states of the
pseudo machines M (i) and My(i).

Definitions : Up and Down

With reference to Figure 3, M (i) is down if, for some
j=<1i:

(1) My is down and,
(2) M, is up, all h: j<h<i; and
(3) n,=0, j=h<i.

Therefore the time interval when M (i) is down is the
period when the flow into B; is interrupted due to an upstream
machine failure. This is distinguished from the period during
which the flow is interrupted due to a slow upstream machine
while the intermediate buffers are empty. In that case, M, (1)
is considered up.

An equivalent recursive definition is: M (i) is down iff

(1) M; is down, or



CHOONG and GERSHWIN page 11

(2) n;_,=0 and M,(i-1) 1is down.

M, (i) is up for all other states of the transfer line

upstream of buffer B,. Therefore M (i) is up iff
(1) M; is operational and n,; >0, or
(2) M, is operational, n;,=0 but M,(i-1) is wup.
Similarly, My(i) is down iff
(1) M;,, is under repair, or
(2) ny,=N,,, and My(i+l) is down.
My (1) is up iff

(1) M, 1is operational and 0, <Ny, or

(2) My is operational, ng =N, but
M (i+l) is wup.

With the classification of the up and down states of the
pseudo-machines and the exponential assumption of the transition
between the states, the parameters pu(i), r (i), p (1),

u

y.d(i), ry(i) and pd(i) are the rates for the exponential
distributed processes. They have the meanings:

probability that M (i) (My(i)) goes from
r (1) 6t (ry(i) 6t) : .
down to up in (t,t+8t) for small 6t;
probability that M (i) (M4 (1)) goes from
p (i) 6t (pd(i) §t) up to down in (t,t+§t) for small §t,
u
given that B, is not full (empty) at t;

probability that a piece flows into
(out of) B, in (t,t+6t) for small 6t

p (1) 6t (p (1) 6t) when M (i) (M4(i)) is up,

given that B; is not full (empty) at t.

3.1 Derivation of Equations

Now we are ready to derive the 6(k-1) equations needed to
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characterize the transfer line.

Interruption of Flow

The first two sets of equations are based on the flow inter-
ruption phenomenon caused by machine failures.

By definition,
p (1) 6t = prob[ M (i) down at t+§t | M (i) up and n<N, at t ](10)
Substituting the definition of M (i) down, we have

(M, down at t+6t}) or

pu(i)ﬁt = prob {n; =0 and M (i-1) down at t+ét) (11)

M. (i) up and n<N, at t

Since {M; down} and ({n; ;=0 and M,(i-1) down} are
mutually exclusive events, equation (11) can be written as

p (1) 6t = prob[ M, down at t+st | M(i) up and n, at t ]

n,_.=0 and M _(i-1) down at t+ét
+ prob 1 “ | (12)
M, (i) up and n <N, at t

The first term is the probability that M, fails in (t, t+6§t)
while processing a workpiece; that is, pét.
1

Using Bayes'’ relationship, the second term can be written as

{n;, ;=0 and M (i-1) down at t+§t} and

rob

P {M,(i) wup and n<N, at ¢t} -
prob[ M (i) up and n<N, at t ]

The denominator is the efficiency of M, (i); that is, E (i).

With the definition of M (i) up and the fact that the
events {n;<N,} and ({n;=N;, and Md(i) up} are mutually
exclusive, the numerator can be written as
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{ni_l-——O and Mu(i-l) down at t+6t} and

prob (ni_1>0 or {n, =0 and M (i-1) up} at t} and

{Mi up and {(n;<N; or {n=N; and M,(i) up}} at t]

{n;_ =0 and M _(i-1) down at t+6t} and
- prob {n; >0 or {n; =0 and M (i-1) up} at t} and

1

[MjL up and {n;=N, and M, (i) up} at t]

The second term is zero because: (1) when M, is blocked, the
probability of transition from (n;,>0} to (n,,=0)
is zero; and (2) we have assumed that the probability of the
event [ni_1=0 and n;=N,} is zero.

The event

{ M, up and {n<N, or {ns=N; and M (i) up}} ]
is the event (M, (i-1) wup}. Hence the numerator is just
the steady state transition probability of line L(i-1) into state
(0,0,1). This is the same as the steady state transition probabi-
lity out of state (0,0,1) and this is only possible via the
"repair" of M (i-1). Thus the numerator is the probability

r,(i-1) p(i-1;001) s¢,

where p(i-1;001) is the steady state probability that line L(i-1)
is in state (0,0,1).

Therefore the parameter Pu(i) is given by

r,(i-1) p(i-1;001)

pu(l) = Pi + Eu(i) (13)
In a similar manner, we obtain -

. r (i+l) p(i+1;N10)
pd(l) =Pyt E,(i+1) (14)

Here, p(i+1;N10) is the steady state probability that line L(i+l)
is in state (N,1,0) and Ey(i+l) is the efficiency of M,(i+l).
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Resumption of Flow

This second pair of equations describes the recovery from
machine failures. The derivation follows from that in Gershwin
(1983) for transfer lines with constant service times.

By definition,
r (i) 6t = prob[ M (i) up at t+6t | M (i) down and n<N, at t ] (15)

Substituting the definition of M (i) up, we get

M; up and } I
r (i) 8t = prob {n; >0 or {n, ;=0 and M (i-1) up)} at t+ét (16)
{Mu(i) down and n<N, at t)
Using the equivalent notation
[ni_1>0 or {n; =0 and M (i-1) up})
= NOT(n;_,~0 and M (i-1) down), (17)

and decomposing the conditioning event, equation (16) can be
written as

{n; =0 and M (i-1) down and n,<N,} at t l

r (i) 6t = prob {M; down or {n;_ =0 and M (i-1) down}
and n<N,} at t

bl: (M; up and NOT(n; ;=0 and M,(i-1) down) at t#5t) | ]
pro

{n, =0 and M (i-1) down and n,<N,} at t

complement of the event of the first
+ prob .
factor in the first term

{M, up and NOT(n, ;=0 and M (i-1) down) at t+§t) |
prob (18)

M, down and n<N; at t}

This decomposition is possible because {(n; =0} and
{M; down) are disjoint events. This is because M; cannot fail
when it is starved from processing and when it fails, it has to
be processing one piece of material. We now evaluate the four
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conditional probabilities in (18).

Using Bayes’ rule, the first factor of the first term of
(18) can be written as

{n;_=0 and M _(i-1) down)} and
prob| (M; down or {n,; ;=0 and M (i-1) down}}

and {n<N.} at t
prob[ {M; down or {n; ;=0 and M (i-1) down} and n<N;} at t ]

Noting that ({M; down) and (n;,=0) are disjoint, the
numerator is the probability that line L(i-1l) is in state
(0,0,1). This probability is p(i-1;001).

The denominator is the probability of the conditional event

of (15), that is probability of {M,(1) down and n,;<N,}.
This probability can be calculated by using the relationship

r (i) prob[ M (i) down and n;<N, ]
= pu(i) prob [ M, (i) up and n<N, 7],
as given by Gershwin and Berman.

Thus, the denominator is

, p_(1) Ei)
prob[ M (i) down and n<N; ] B E N
Hence, the first factor of the first term of (18) is

p(i-1;001)r (i) _
p.(D) BE(D) T i

Now the second factor of the first term of (18) is the
probability of the transition of M (i-1) being down to being up
in (t,t+ét); that is r (i-1) &t.

The first factor of the second term is just 1-X,.

The second factor of the second term of (18) is the probabi-
lity of M, been repaired in (t,t+6t); that is rét.

Therefore, equation (18) can now be written as -

r(i) = r(i-1) X, + r, (1-X,), i=2, ..., k-1. (19)
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Equation (19) shows that r (i) is a convex combination of r;
and r (i-1).

A similiar analysis yields
ry(j) = rg(G+1) Y3 + ry,y (1-YH), j=1, ..., k-2 (20)

where

_ p(3+1;N10) 1r,(3)

Y= T ) EG)

Conservation of Flow

The conservation of flow states that the production rates of
the decomposed two-machine lines, L(i) and the transfer line are
the same. Thus

P=P, =P, =P(i) = P (i) = P(i), i=1,...,k-1. (21)

Flow Rate-Idle Time Relationship

The flow rate-idle time relationship gives
Py=e; n, ( 1- prob[ n;_ =0 ] - prob[ n=N, ] ) (22)
Since the buffers in the decomposed two-machine lines behave

similarly to the corresponding buffers in the transfer line, we
have '

prob[n,_, = 0] = ps(i-l) (23)
and
prob[n, = N,] = pb(i) (24)

where ps(i-l) is the probability the buffer in line L(i-1)
becomes empty and pb(i) is the probability that M, (i) is

blocked. These probabilities are calculated from the two-machine
line formulas in Gershwin and Berman.

Gershwin and Berman show that the flow rate-idle time
relationship for a two-machine line is
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. . Py(i-1)
eq(i-1) (1-p (i-1) ) = ;;:(1“‘“_1)" (25)
and
e (1-p(1) ) = 21 (26)
u b p (1) 7 .

Using these relationships and the conservation of flow, (22) can
be written as

1
e; M,

1 + 1 :
e(i-1) p (I-1) " e (D) p (D)’

+%= i=2,...,k-1. (27)

Boundary Conditions

The remaining 6 equations are satisfied by the boundary
conditions

r(l) =r,

p (1) =p,
p(l) =up
rdfk-l) = r: (28)
p(k-1) = p_
b k-1) = p,

Sastry’s (1985) method is quite similar to this one. The
principal difference is that Sastry propogates the mean times to
fail (1/pu and 1/pd) instead of the failure rates in the

interruption of flow equations; and the mean times to repair
(1/r, and 1/ry) instead of the repair rates in the resumption
of flow equations.
3.2 Numerical Technique

There are a total of 6(k-1) equations among (13), (14),
(19), (20), (21), (27) and (28) in 6(k-1) unknowns: r (1),
P (1), p (1), ry(d), p (1), my(i); i1, ..., k-1.

The equations can be thought of as defining a two-point
boundary value problem of the form

£(x;,%,,) = 0; i=1, .., k-1. (29)

where x, is a 6-vector of the parameters of the line L(i). The
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nonlinear function £(-,:) involves the evaluation of P(i),
p(i;N10) and p(i;001) by means of the two-machine-line formulas
in Gershwin and Berman.

We have developed an algorithm similar to that of Gershwin
(1983). It makes use of the two-point boundary value problem
structure, and works by iteratively evaluating the two-machine
lines. This algorithm is used to analyze several transfer lines
in the next section.
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4. NUMERICAL RESULTS AND DISCUSSION

In this section, we report on numerical experience with the
algorithm. We examined a variety of transfer lines, and we
compared decomposition and simulation results. Simulations were
all run for at least 100,000 time units.

4.1 Short Lines

We used the decomposition method to analyze a three-machine
line. The only varying parameter is By which in turn causes

P,
2
parameters are chosen to make the line symmetric.

the isolated production rate of M,, to vary. The other

When P, is small, M, is the bottleneck; the production
rate of the line is slightly less than [ As l, increases

to infinity, the upper bound is given by the production rate of a
two-machine line with the parameters ‘of M; and M; and with
buffer capacity equal to C,+C, plus the one storage space in
M,. This upper bound is .258 parts per time unit.

The results are in Table 2. Figure 4 shows the variation of
production rate with Py At the lower end, both the decomposi-

tion method and the simulation agree very well in terms of produ-
ction rate and mean buffer levels. This agreement breaks down
when r, exceeds 0.48 (about 1.5 times p, or pa). The

production rate from the simulation approaches the upper bound
while that of the decomposition method exceeds this bound.

We believe the error in the decomposition method is due, in
part, to the non-negligible probability of the joint event
{n1=0 and n,=N,} when P, exceeds 0.48,. The last column

in Table 2 shows, from numerical simulation, that the fraction of
time M, is simultaneously starved and blocked increases with Py

4.2 Longer Lines

Tables 3-9 list the results of the decomposition method on
longer lines. The parameters of the machines are chosen to
represent a typical range of variation of a transfer line. The
efficiencies are between 85% and 95% and the isolated production
rates vary from 0.18-1.28 pieces per time unit. The mean proces-
sing times in Tables 3 and 9 are about an order of magnitude
larger that the mean repair times. The mean processing times in
Tables 4-8 are on the same order as the mean repair times.
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The results indicate the accuracy of the decomposition
method in these cases. Typical errors in the throughput rate are
less than 5%. The error does not seem to be sensitive to the
length of the line.

4.3 Algorithm Behavior

When the algorithm converges, it often converges rapidly.
For example, the three-machine case of Table 1 in which B, = .5

converged after 30 evaluations of the two-machine line, and the
five machine case of Table 4 converged after 134 evaluations.
The eight-machine cases of Tables 8 and 9 converged after 345 and
882 iterations, respectively. These evaluations are very rapid;
they are the analytic formulas of Gershwin and Berman (1981).

There were many cases in which this algorithm failed to
converge. By comparison, the very similar algorithm of Gershwin
(1983) is quite stable. We conjecture that the difference is due
to the Interruption of Flow equations ((13) and (14)). Further
evidence comes from other experiments (not reported elsewhere)
that were performed with the model of Gershwin (1983). The
algorithm for that model was modified so that the Resumption of
Flow equations were replaced by the Interruption of Flow equa-
tions. We were never able to make the modified algorithm con-
verge.

4.4 Transfer Line Behavior

In Tables 10.1-10.4, a 3-machine line is used to show the
relationship between machine efficiency and speed. Tables 10.1
lists the parameters of the base case; Tables 10.2-10.4 show the
results as one parameter is varied at a time. The results sug-
gest that machine efficiency contributes more to line production
rate than machine speed does.
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5. CONCLUSIONS AND FURTHER RESEARCH

A decomposition method has been developed to analyze capaci-
tated transfer lines with unreliable machines and random process-
ing times. Numerical examples show that this method is accurate as
long as the probability that a machine is simultaneously starved
and blocked is small. The accuracy of the algorithm does not
seem to be sensitive to the length of the line. However, it does
appear to be unstable and does not always converge.

Future research effort should be directed at incorporating
into the decomposition method the event that a machine can be
starved and blocked at the same time. An alternate effort is to
quantify the error bound of the method. The convergence proper-
ties of the algorithm should be studied. This decomposition
method should be extended to more general networks such as
assembly/disassembly networks and Jackson-like networks with
blocking.
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i Machine Parameters N

Ty Py & KBy Ay
1| .05 .03 .625 .5 .3125 | 10
2| .06 .04 .600 - - 10

31 .05 .03 .625 .5 .3125 | -

TABLE 1. Parameters of the Transfer Line

Decomposition Method Simulation
K, Py P fi, fi, P 0, n, %M,S &B
0.1]0.06 | .060 9.618 0.382 .060 9.618 0.396  0.00
0.2 10.12 | .115 8.836 1.164 .114 8.961 1.177 ~0.00
0.3 {0.18 | .159 7.872 2.128 .159 7.792 2.181  0.10
0.4 | 0.24| .189 6.957 3.043 .191 7.012 2.982  0.14
0.5]0.30| .209 6.203 3.79 .210 6.174 3.728  0.24
0.6 | 0.36 | .223 5.623 4.376 .218 5.711 4.481  0.24
0.7 | 0.42 | .231 5.180 4.820 .230 5.250 4.742 0.47
0.8 | 0.48 | .238 4.841 5,159 .235 4.961 5.115  0.62
0.9 | 0.54 | .243 4.577 5.423 .239 4.811 5.411  0.61
1.0 | 0.60 | .246 4.365 5,635 242 4,468 5.424  0.69
1.2 | 0.72 | .252 4.052 5.948 245 4.294 5.860  0.75
1.5 | 0.90 | .257 3.744 6.256 .251 4.091 6.104  0.92
1.6 | 0.96 | .258 3.669 6.331 .249 3,902 5.932  0.90
2.5 | 1.50 | .264 3.275 6.725 .255 3.692 6.277  1.08
3.0 | 1.80 | .266 3.151 6.849 .253 3.613 6.276  1.29

%M, S & B : PERCENTAGE OF TIME M, IS STARVED
AND BLOCKED CONCURRENTLY.

TABLE 2. RESULTS FROM THE DECOMPOSITION METHOD AND SIMULATION
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i Machine Parameters N
Ty Py & By Py

1] .3.02.9375 1. .9375

2| .5.05.90911.31.1818 | &4

3 .1 .01 .9091 1.5 1.3636

4 4 .08 .83331.6 1.333 -

P @, 1, 0,
Decomposition.78392.84791.46971.6013
Simulation .78732.75041.42911.5564
$ Error -.43 3.5 2.8 2.9 -

TABLE 3.

Example of a 4-Machine Line
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i Machine Parameters N
Ly Py &1 My P
11 .1 .01 .909 .25 .2273 | &4
21 .3 .02 .938 .20 .1875 | &
31 .5 .04 .926 .30 .2778 | 4.
41 .5 .02 .939 .20 .1875 | 4
5] .5 .04 .926 .30 .2778 | -
P a, 7, T, 7,
Decomposition 0.1377 2.6571 1.6488 1.9740 .9243
Simulation 0.1439 2.7033 1.6285 2.0016 .9816
$ Error -4.31  -1.71 1.25 -1.38 -5.84

TABLE 4. First Example of a 5-Machine Line -
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i Machine Parameters

.3

U W N -
w s PR

r; P,
.02
.05
.01

.07
.02

€;

.9375
.8889
.9091
.8511
.9375

By

.20
.23
.30
.26
.21

Py
.1875
.2044
L2727
.2213

.1969

L o R ST o

page 27

Simulation

Decomposition 0.1385

0.1407

% Error -1.56

2.2318 1.6804 1.9433 1.6307

2.1883 1.6565 1.9601 1.7058

1.99

1.44

.86

-4.40

TABLE 5. Second Example of a 5-Machine Line
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i Machine Parameters N

Ty

.3

~N O 0 W N
PR WP

pi
.02
.05
.01
.07
.03
.03
.06

€y

.9375
.8889
.9091
.8511
.9091
.7692
.8696

m

i

.20
.23
.30
.26
.21
.27
.26

Py
.1875
.2044
.2727
.2213
.1909
.2077
.2261 | -

[ ATE R A T S n

% Error 2.22

Decomposition 0.1333 2.3460 1.9121 3.8464 2.4237 1.6054 1.4906

Simulation 0.1304 2.3596 1.9789 3.7193 2.3258 1.5908 1.3502

-.58 -3.38

3.42 4.21 0.92 10.40

TABLE 6. First Example of a 7-Machine Line
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i Machine Parameters

.3

N Oy W N
oUW

r; P,
.02
.05
.01
.07
.02
.06
.01

€y

.9375
.8889
.9091
.8511
.9375
.8929
.9091

By

.20
.23
.30
.26
.21
.23
.27

P

i

.1875
.2044
.2727
.2213
.1909
.2054
. 2455

P

(SR SN LR .

page 29

% Error -1.09 0.98 0.39

-1.44 3.81

Decomposition 0.1356 2.2984 1.8243 2.9069 2.2105 1.6129 1.1853

Simulation 0.1371 2.2761 1.8173 2.9493 2.1293 1.5856 1.1916

1.72 -0.53

TABLE 7. Second Example of a 7-Machine Line
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i Machine Parameters

.3

™9 oW o e
PwW R We R W

r; P,
.02
.05
.01
.07
.05
.01
.02
.05

e;

.9375
.9091
.9091
.8511
.8571
.9091
.9375
.8889

B

i

.20
.23
.30
.26
.40
.27
.20
.23

p

i

.1875
.2091
.2727
.2213
. 3429
.2455
.1875
. 2044

LR I T S S S S

page 30

% Error

Decomposition0.13762.25911.81832.

10401.77342.45012.38311.4980

Simulation 0.13882.23921.81422.12741.70922.33252.30881.5273

-0.86 0.89 0.23 -1.10 3.76 5.04 3.22 -1.92

TABLE 8. First Example of an 8-Machine Line
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i Machine Parameters N
Ty Py & My P
1] .3.03.90911.51.3636 | ©
2| 5.05.90911.31.1818 | 2
31.1.01.90912.01.8182 |6
4 | .4 .06 .8696 1.6 1.3914 | 4
5| .3 .04 .88242.01.7648 | 6
6 | .1.01 .9091 1.7 1.5455 | 4
7| .3.02.93751.21.1250 | 7
8 | .4 .05 .8889 1.6 1.4222 | -
P . 7, iy T, i,

Decomposition0.83824.27202.40073.63991.96803.36532.19761.6642

Simulation 0.83044,29082.42853.60101.92793.28852.15911.5684

% Error 0.94 -0.44 -1.14 1.08 2.08 2.33 1.78 6.11

TABLE 9. Second Example of an 8-Machine Line
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i Machine Parameters N
T Py & By Ay
4
11,05 .05 .5 .6 .3
2| .05 .05 .5 .6 .3|%
3 .05 .05 .5 .6 30 -

TABLE 10.1 Fixed Parameters of a Three Machine Line

5.00 107° 1.00 0.3 .1668 2.526 1.474
0.03 0.01 0.75 0.4 .1612 2.517 1.483
0.05 0.05 0.50 0.6 .1561 2.510 1.490
0.01 0.03 0.25 1.2 .1432 2.515 1.485

TABLE 10.2 Effects of Variations of the
Parameters of the First Machine
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5.00 10™° 1.00 0.3 .1687 2.459 1.548
0.03 0.01 0.75 0.4 .1616 2.494 1.523
0.05 0.05 0.50 0.6 .1561 2.510 1.490

0.01 0.03 0.25 1.2 .1378 2.508 1.361

TABLE 10.3 Effects of Variations of the
Parameters of the Second Machine

5.00 107° 1.00 0.3 .1684 2.456 1.544
0.03 0.01 0.75 0.4 .1616 2.477 1.506
0.05 0.05 0.50 0.6 .1561 2.510 1.490
0.01 0.03 0.25 1.2 .1365 2.625 1.479

TABLE 10.4 Effects of Variations of the
Parameters of the Third Machine




CHOCNG and GERSEWIN

page 34

Line L
M B M, B My By M, B Mg By Mg B, M,
Py Ny P2 Ny r3;p5 Nz r,p, Ng rs,ps Ns resPs  Ng  r17.p;
F-1 H2 Fs Fa Fs Hs Hr
FIGURE 1: TRANSFER LINE

M) B, My (1)

-—.O._. Line L(1)
r(p 1) N, rd(i),p(:?(i)

Byll) Hq(

! M,(2) B,  Mg(2)
Line L(2) *’O"‘

r,(2),p,(2) Ny 5,(2),%,(2)
m,(2) pd(
My3) By  My(3)
Line L(3)
(30403 Ny r(3),p4(3)
pyld) Bd(3)
Line L(4) )
ro(4),pu(4) Na o ry(4),p4(4)
#y(4) PML(5) Bs  My(B)
Line L(5) —
re(8),py(5) N ry(5),py(5)
#y(S) F.d(s)MU(G) Bs Md(6)

Line L(6) —.O—'

FIGURE 2:

r,(8),p,(8) N ry4(6)py(6)

DECOMPOSED TWO-MACHINE LINES




CHOONG and GERSHWIN page 35

UNDER OPERATIONAL
REPAIR | o
<

FIGURE 3: DEFINITION OF Mu(i) DOWN
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