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1. Introduction

Consider a directed graph with set of nodes N and set of arcs A. Each

arc (i,j) has associated with it a scalar aij referred to as the cost of

(i,j). We denote by f.j the flow of the arc (i,j) and consider the clas-

sical minimum cost flow problem with gains

minimize a..f.. (MCF)
(i,j)eA 13 13

subject to

m. Kmifi - f. = 0, V ieN (Conservation of Flow) (1)
m m

(m,i)EA (i,m)£A

i, < fij < cij, Y (i,j)sA (Capacity constraint) (2)

where Kij, ..ij and c.. are given scalars. The scalar K.. is referred to
13 13, 13 13 

as the gain of arc (i,j). The main focus of the paper is in the ordinary,

network case where K.. = 1 for all (i,j)eA. We will also treat in parallel
13

the gain network case where K.. can differ from unity. We assume throughout

that there exists at least one feasible solution of (MCF). For simplicity

we also assume that there is at most one arc connecting any pair of nodes

so that the arc (i,j) has unambiguous meaning. This re-striction can.bhe

easily removed, and indeed our computer codes allow for multiple arcs

between nodes. Finally we assume for simplicity that K.. > 0 for ab.l (iaj)A,

Our algorithm can be extended for the case where K.. < 0 for some (i,j)cA,

but the corresponding algorithmic description becomes complicated.

We formulate a dual prohlem to (MCF). We associate a Lagrange

multiplier Pi (referred to as the price of
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node i) with the ith conservation of flow constraint (1). Denoting by

f and p the vectors with elements fij, (i,j)sA and Pi, ieN respectively

we can write the corresponding Lagrangian function

L(f,p) = a..f.. + Pi ( . K .f. - f)

(i,j)eA 3 13

The dual problem is

maximize q(p) (3)

subject to no constraints on p,

with the dual functional q given by

q(p) = min L(f,p) (4)-

1ij <fij- 13

I q pij (Pi-KijPj)
(ij)EA

where

qij (Pi-K.ijpj) min (a. .Kijpj -pi)f. .}. (5)

(a c i{f (.. > a..ijj-Pifij}

13 13 1ij-tijcij ij 1ij

(aij-tiJ)ij if t.. a.ij13 13 13 13-13
and

tij = Pi -K ijPj' V (ij)EA (6)
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The function qij (i-K.ijpj) is shown in Figure 1. This is a classical

duality framework treated extensively in [1], [2].,

The vector t having elements tij, (i,j)sA given by (6) is called

the tension vector corresponding to p. Since the dual functional depends

on the price vector p only through the corresponding tension vector t

we will often make no distinction between p and t in what follows.

For any price vector p we say that an arc (i,j) is:

Inactive if t.. < aij (7)

Balanced if tij = aij (8)
13 ij

Active if t.ij > aij... (9)

For any flow vector f the scalar

di = f''im mimi
m m

(i,m) A (m,i) A

will be referred to as the deficit of node i. It represents the difference

of total flow exported and total flow imported by the node.

The optimality conditions in connection with (MCF) and its dual given

by (3), (4) state that (f,p) is a primal and dual optimal solution pair

if and only if

f.i .= .. for all inactive arcs (i,j) (11)
13 13

.ij < fi.. < c..ij for all balanced arcs (i,j) (12)

f.. =' c.. for all active arcs (i,j) (13)

d = 0. for all nodes i. (14)

Conditions (11}-(13) are the complementary slackness conditions.
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The approach of the present paper is based on iterative ascent of

the dual functional. The price vector p is updated while simultaneously

maintaining a flow vector f satisfying complementary slackness

with. p. The algorithms proposed terminate when f satisfies primal

feasibility (deficit of each node equals zero). The main feature of the

algorithms, which distinguishes them from classical primal-dual methods,

is that the choice of ascent directions is very simple. At a given price

vector p, a.node i with nonzero deficit is chosen, and an ascent is at-

tempted along the coordinate Pi. If such an ascent is not possible and

a reduction of the total absolute deficit I IdmI cannot be effected
m

through flow augmentation, an adjacent node of i, say il, is chosen and

an ascent is attempted along the sum of the coordinate vectors correspond-

ing to i and il. If such an ascent is not possible, and flow augmentation

is not possible either, an adjacent node of either i or i1 is chosen and
the process is continued. In practice, most of the ascent directions are

single coordinate directions, leading to the interpretation of the algo-

rithms as coordinate ascent or relaxation methods. This is an important

characteristic, and a key factor in the algorithms' efficiency. We have

found through experiment that, for ordinary networks, the ascent directions

used by our algorithms lead to comparable improvement per iteration as the

direction of maximal rate of ascent (the one used by the classical primal-

dual method [10]), but are computed with considerably less overhead.

In the next section we characterize the ascent directions used in

the algorithms. In Section 3 we describe our relaxation methods, and

in Section 4 we prove their convergence using the novel notion of £-

complementary slackness. This notion is also important in other contexts

[4], [6], [45]. Sections 5 through 7 are devoted to computational comparisons

of our experimental relaxation codes with mature state-of-the-art codes



Primal cost Dual cost
for arc (i,j) for ar (ij)

Slope = -lij

Slope = aij

a..

Iij CiI f j pi l'-j Pj

Slope = - c ij

Figure 1: Primal and dual costs for arc (i,j)
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based on the primal simplex and primal-dual methods. A clear conclusion

is that relaxation outperforms by an overwhelming margin the primal-dual

method. Comparisons with primal simplex show that on standard benchmark

problems relaxation is much faster (by as much as four times) than primal-

simplex. For large randomly geherated .problems the factor of superiority

increases to an order of magnitude, indicating a superior average computational

complexity for the relaxation method, and even larger speedup for larger

problems.

The algorithm of this paper for the ordinary network case was first

given in Bertsekas [3] where the conceptual similarity with relaxation

methods was also pointed out. The present paper considers in addition

gain networks, emphasizes the dual ascent viewpoint and provides computation-

al results. A special case for the assignment problem has been considered

in Bertsekas [5]. Reference [10], which is an early version of the present

paper, and the thesis [35] contain additional computational results and

analysis. The relaxation algorithm for strictly convex arc cost problems

is considered in [6], [11]. In this case the algorithm is equivalent to

the classical coordinate ascent method for unconstrained maximization,

but there are some noteworthy convergence aspects of the algorithm includ-

ing convergence in a distributed totally asynchronous computational.
environment. The relaxation algorithms of this paper are extended in 135],

[42], and are applied to the general linear programming problem. A mas-

sively parallelizable relaxation algorithm for the linear cost problem

(MCF) that has a strong conceptual relation with the one of the present

paper is given in [4] and [45].
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2. Characterization of Dual Ascent Directions

We consider the ordinary network case first. Each ascent direction

used by the algorithm is associated With a- connected strict subset S of N,

aind has the form v = {v ij (i,j)cA}, where
1J

1 if i~S, jES

V.ij -1 if icS, jVS (15)

0 otherwise.

Changing any tension vector t in the direction v of (15) corresponds to

decreasing the prices of all nodes in S by an equal amount while leaving

the prices of all other nodes unchanged. It is seen from (5) that the

directional derivative at t of the dual cost in the direction v is

C(v,t) where

C(v,t) = lim qij(tij+vij) qij(tij)
(i,j)A a-+0 + a

ei.(vij, t.) (16)
(i,j)cA 1

and

-v. . if (i,j) is inactive or if (i,j)
I 13 13 is balanced and v.. < 0

13 -

eij (Vijtij) v

-v .c if (i,j) is active or if (i,j)
is balanced and v.. > 0. (.l7113 -

Note that C(v,t) is the difference of outflow and inflow across S when

the flows of inactive and active arcs are set at their lower and upper

bounds respectively, while the flow of each balanced arc incident to S



is set to its lower or upper bound depending on whether the arc is going

out of S or coming into S respectively. We have the following proposition:

Proposition 1: (For ordinary networks) For every nonempty strict subset

S of N and every tension vector t.there holds

w(t+yv) =. w(t) + yC(v,t), V Ys[O,6) (18)

where w(,) is the dual cost as a function of t

w(t) = . qijCtij) (19)
(i,j)

Here v is given by (15) and 6 is given by

6 = inff{tim-aimicS, mS, (i,m): active), (20)

{ami-tmiliS, m9S, (m,i): inactive}}.

(We use the convention 6 = +o if the set over which the infimum.above

is taken is empty.)

Proof: It was seen [cf. (16)] that the rate of change of the dual cost

w at t along v is C(v,t). Since w is piecewise linear the actual change

of w along the direction v is linear in the stepsize y up to the point

where y becomes large enough so that the pair [w(t+yv), t+yv] meets a

new face of the graph of w. This value of y is the one for which a new

arc incident to S becomes balanced and it equals the scalar 6 of (20) Q.E.D.
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Directional derivatives for dual directions used by the algorithm may

be similarly computed for a gain network. We assume that there exists at

least one cycle of nonunity gain so that the gain network cannot be

reduced to an ordinary network ([2], p. 459). For purposes of future

reference we note here that the gain of a directed cycle Y with one

direction arbitrarily chosen as positive is defined as

( K..)/( I K. .)
(i,j)eY+ Kj (i,j)Y- 13

where Y+ and Y- are the portions of the cycle oriented along the positive

and negative directions respectively.

Given any connected subset of nodes S, and a set of arcs T forming

a spanning tree for S, let {uilicS} be a set of positive numbers such

that

.u. - K..u. 0, V (i,j)ET. (21)1 1J 3

[Such a set of numbers is unique modulo multiplication with a positive

scalar and can be obtained by assigning a positive number us to an

arbitrary node sES, and determining the numbers ui of the remaining

nodes ieS from (21)]. Each dual ascent direction used by the algorithm

is associated with a pair (S,T) as defined above and is given by v = {vij (i,j)cA}

where

K. .u if iS, jCS
1J 3

Vi. = -u. if iES, j¢S

K. .u.-u. if ieS, jeS
otherwise3 

0 otherwise (22)
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Changing any tension vector t in. the direction v corresponds to decreas-

ing the price of each node i in S by an amount proportional to ui, while

keeping the prices of all other nodes unchanged. From (5), (16) and (17)

it is seen that the directional derivative of the dual cost at t along

a vector v is' again given by

C(v,t) = i e.. (23)

We state the corresponding result as a proposition, but omit the proof

since it is entirely analogous to the one of Proposition 1.

Proposition 2: (For gain networks) For every vector v defined by (21),

(22), and every tension vector t there holds

w(t +yv) = w(t) + yC(v,t), V yE[0,6) (24)

where w(-) is the dual cost function given by (19), and 6 is given by

t. -a.
i im im

6 inf{( v vim > O, (i,m): active),
im

t .-a
M ml vmi < O, (m,i):inactive}}. (251vm. ml -
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3. Relaxation Methods

In this sectionweprovide an algorithm that implements the idea of

dual ascent. The main difference from the classical primal-dual method

is that instead of trying to find the direction of maximal rate of ascent

through a labeling process, we stop at the first possible direction of

ascent--frequently the direction associated with just the starting node.

Typical Relaxation Iteration for an Ordinary Network

At the beginning of each iteration we have a pair (f,t) satisfying

complementary slackness. The iteration determines a new pair (f,t)

satisfying complementary slackness by means of the following process:

Step 1: Choose a node s with d > O. (The iteration can be started

also from a node s with ds < O--the steps are similar.) If no such

node can be found terminate the algorithm. Else give the label "0"

to s, set S = 0, and go to step 2. Nodes in S are said to be scanned.

Step 2: Choose a labeled but unscanned node k, (kgS), set S = SJ/{k}, and

go to step 3.
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Step 3: Scan the label of the node k as follows: Give the label Ilk" to

all unlabeled nodes m such that (m,k) is balanced and fk < Cmk and toink < k- ndt

all unlabeled m such that (k,m) is balanced and m < fkm' If v is the

vector corresponding to S as in (15) and

C(v,t) > 0 (26)

go to step 5. Else if for any of the nodes m labeled from k we have

d < 0 go to step 4. Else go to step 2.
m

Step 4 (Flow Augmentation): A directed path P has been found that

begins at the starting node s and ends at the node m with d < 0 identified

in step 3. The path is constructed by tracing labels backwards starting

from m, and consists of balanced arcs such that we have Zkn < fkn for all

(k,n)eP+ and fkn < ckn for all (k,n)eP where

+

P {(k,n)ePI (k,n) is oriented in the direction from s to m}

(27)

P = {(k,n)EPI (k,n) is oriented in the direction from m to sj.

(28)

Let

E = min{d ,-d m , {fk n fkn j(k,n)£P+}, {Ckn-fkn (k,n)eP}. (29)

+

Decrease by e the flows of all arcs (k,n)eP , increase by e the flows

of all arcs (k,n)EP, and go to the next iteration.

Step 5 (Price Adjustment): Let

6 = min{{tkm-akmtkES, mjS, (k,m): active}, (30)

{amk-tmk £kS, m1S, (m,k): inactive}}.



where S is the set of scanned nodes constructed in Step 2. Set

fkm: ikm , V balanced arcs (k,m) with keS, meL, mjS5

fmk:= Cmk , V balanced arcs (m,k) with keS, meL, mJS

where L is the set of labeled nodes. Set

tkm+6 if k1S, mEs

tkm tkm-6 if kzS, m4S

tkm otherwise

Go to the next iteration.

The relaxation iteration terminates with either a flow augmentation

(via step 4) or with a dual cost improvement (via step 5). In order

for the procedure to be well defined, however, we must show that whenever

we return to step 2 from step 3 there is still some labeled node which

is unscanned. Indeed, when all node labels are scanned (i.e. the set S

coincides with the labeled set), there is no balanced arc (m,k) such that

mrS, kES and fmk < cmk or a balanced arc (k,m) such that kES, mrS and

fkm > Qk It follows from the definition (16), (17) [see also the

following equation (31)] that

C(v,t) = I dk.
keS
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Under the circumstances above, all nodes in S have nonnegative deficit and

at least one node in S (the starting node s) has strictly positive deficit.

Therefore C(v,t) > 0 and it follows that the procedure switches from step

3 to step 5 rather than switch back to step 2.

If aij, ij, and cij are integer for all (i,j)cA and the starting

t is integer, then 6 as given by (30) will also be a positive integer

and the dual cost is increased by an integer amount each time step 5 is

executed. Each time a flow augmentation takes place via step 4 the

dual cost remains unchanged. If the starting f is integer all suces-

sive f will be integer so the amount of flow augmentation C in step 4

will be a positive integer. Therefore there can be only a finite

number of flow augmentations between successive reductions of the dual

cost. It follows that the algorithm will finitely terminate at an

integer optimal pair (f,t) if the starting pair (f,t) is integer. If

the problem data is not integer it is necessary to introduce modification's

in the algorithm in order to guarantee termination in a finite number

of iterations to an s-optimal solution--see the next section.

It can be seen that the relaxation iteration involves a comparable

amount of computation per node scanned as the usual primal-dual method

[7]. The only additional computation involves maintaining the quantity

C(v,t), but it can be seen that this can be computed incrementally in

step 3 rather than recomputed each time-' the set S is enlarged in step 2.

As a result this additional computation is insignificant.

To compute C(v,t) incrementally in the context of the algorithm, it is

helpful to use the identity
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CCv t) = di .- (fij-ij) (ci- ij
itS 1 (i,j):balanced (i,j):balanced 

iES, jgS ifs, jES (31)

We note that a similar iteration can be constructed starting from

a node with negative deficit. Here the set S consists of nodes with non-

positive deficit, and in Step 5 the prices of the nodes in S are increased

rather than decreased. The straightforward details are left to

the reader. Computational experience suggests that termination is typical-

ly accelerated when ascent iterations are initiated from nodes with negative

as well as positive deficit.

Typical Relaxation Iteration for a Gain Network

The relaxation iteration for gain networks is more complex because

the starting node deficit may be reduced not just by augmenting flow

along a path (see step 4 earlier), but also by augmenting flow along a

cycle of non-unity gain (step 4b in the following algorithm). Further-

more in order to identify the existence of such a cycle it is necessary

to occasionally restructure the tree of labels (steps 2a and 2b in the

following algorithm). These devices are also used in the classical

primal-dual algorithm for gain networks--see Jewell [38].

The main idea of the iteration can be motivated by considering

the generalized version of (31). Consider a pair (S,T) where S is

a connected subset of nodes and T is a spanning tree for S. Let

{uiliS} be a set of positive numbers such that



u. - KI.u = 0, V (i,j)cT (32)
1 1iJ J

and let v be the corresponding vector given by (22). Let

(f,t) be any pair satisfying complementary slackness. Then a straight-

forward calculation using the definitions (10) and.(2i)--(23) shows that

C(v,t) = I u.di - (fi-.-. -)u.1 1 (fij-Zij)ui
icS (i,j):balanced

((c ij-fij) Kijuj
(i,j) :balanced 
iCS,jeS

- (f. .-.. -. )uu-K..u
(i,j):balanced ij i- Ki3uj)
its, J S

(i,j):balanced 13 1J 13 3 1
ieS,jzS
u.<K. u.

This equation generalizes (31) since for an ordinary network we have

K..=l for all (i,j), so from (32) we can take u.=l for all iES and (33)
1J 1

reduces to (31). Note here, that in contrast with ordinary networks,

different spanning trees of i-he node subset S can be associated with

different vectors u and v having different values of C(v,t).

Similarly, as for ordinary networks the relaxation iteration starts from

a node with positive deficit and gradually builds a set of nodes S

until either a flow augmentation occurs that reduces the deficit of
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the starting node, or the ascent condition C(v,t) > 0 is obtained.

The main complication is that when a new node is added to the-set S

the corresponding tree T is modified until either an augmentation

occurs or the last two terms in (33) become zero (steps 2a and 2b

below). In the process of reducing the last two terms in (33) to

zero, the corresponding value of I u. increases monotonically which

is important for proving termination in a finite number of operations.

Finally, because the tree corresponding to each successive subset S is

constructed so that the last two terms in (33) become zero, it again

follows [cf. (31)] that the algorithm will always find either a flow

augmentation or an ascent direction v with C(v,t) > 0.

At the beginning of each iteration we have a pair (f,t) satisfy-

ing complementary slackness. The iteration determines a new pair

(f,t) satisfying complementary slackness by means of the following

process:

Step 1: Choose a node s with ds 0.. We assume

in the following steps that d > 0. The case where ds < 0 is entirely

similar.. If no such node can be found terminate the algorithm.

Else set S = {s}, T = {0}, and go to step 2.

Step 2' (Tree Restructuring): Construct the unique vector u satisfying

u = 1, u.-K..u. = 0, V (i,j)ET, u. 0, V itS.
s 1 1 j



P

Y

Yjw

Figure 2: Cycle Y formed by tree T and arc (i,j) identified in step 2.
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Choose a balanced arc (i,j) such that icS, j£S, (i,j)¢T, and either

(a) u.-K. .u > 0, f.. > Z..1 13 3J 13

or

(b) Ui-Kijuj < 0,° . < c.i

If such an arc cannot be found go to step 3. Else go to step 2a or

to step 2b depending on whether case (a) or (b) above holds.

Step 2a: Let Y be the cycle formed by T and the arc (i,j) identified

in step 2. The cycle Y is connected with s by a path P consisting.of

arcs belonging to T (see Figure 2). Let w be the nodetthat is common

to P and Y.- -(Note that P may be empty in which case s = w). Let Y.

be the set of arcs of Y on the undirected path from j to w that does

not contain node i (see Figure 2). There are two possibilities:

(1) We have km < fkm < ckm for all (k,m)EYjw. Then flow can be pushed

around the cycle Y in the direction opposite to that of the arc (i,j)

(Y is a flow generating cycle)--go to step 4b.

(2) There exists (k,m)Y.jw such that fk= m or fkm = km Then

let (k,m) be the closest such arc to (i,j), remove (k,m) from T, add

(i,j) to T and go to step 2.

Step 2b: Same as step 2a except that in place of Y. we use Y. --the

portion of Y from i to w along the direction opposite to the arc (i,j).

Step 3: If v is the . vector corresponding to u, S, and T as

in (22) and

C(v,t) > 0 (34)



go to step 5. Otherwise choose nodes iES, m&S such that either (a) (i,m)

is a balanced arc with f.im > 9 im, or (b) (m,i) is a balanced arc with

fm < cmi. If dm < 0 go to step 4a. Else, add to S node m, and add to

T arc (i,m) or arc (m,i) depending on whether (a) or (b) above holds.

Go to-step;2. -

Step 4a (Flow Augmentation Involving a Simple Path): A directed

path P has been found that begins at the starting node s and ends at

the node m with dm < 0 identified in step 3. Let P+ and P- be given

by (27), (28). Let

= min{ds, -md m, (fkn-kn)Ukl (k,n)6P+),

{ (Ckn-fkn )uk (k,n)cPJ }3. (35)

Decrease by c/Uk the flowsof all arcs (k,n)eP+, increase by £/uk the

flows of all arcs (k,n)eP , and go to the next iteration.

Step 4b (Flow Augmentation Involving a Cycle): From step 2a or 2b

an arc (i,j) and a cycle Y connected to s by a simple path P are

identified (see Figure 2). Let P+ and P- be defined as in (27), (28).

If case (a) holds in Step 2, then set

K. .u.
q ui , q = l-q,

Uk-: Uk/q, V nodes k on Yjw except for wUk:= uk/q , ~ ~ j
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Y': Set of arcs of Y oriented in the direction opposite

to (i,j)

Y-: The complement of Y+ relative to Y,

else set u.
1 -

9q ' K..u., q l-q,
13 j

Uk :=uk/q Y nodes k on Yiw except for w

Y+ Set of arcs of Y oriented in the direction of (i,j)

Y-:= The complement of Y+ relative to Y.

Let

E1 = min{{(fkn- 9n)ukl (k,n)P+ },n{(ckn-fkn)uk(kn)P-

= min(fkn - n)uk (kn)eY-} {(ckn-fkn )Uk ] (kn)£Y+}}

£ = minf{ 1 ,qs 2 ,d S}.

Decrease by s/Uk the flow of all arcs (k,n)sP+, increase by s/Uk the

flow of all arcs (k,n)eP , decrease by c/(qUk) the flow of all arcs

(k,n)sY-, increase by £/(qUk) the flow of all arcs (k,n)cY , and go

to the next iteration.

Step 5 (Price Adjustment): If v is the vector corresponding to u, S,

and T as in (22),. let

t. -a.
6 = minf{ m lm Im v. > 0, (i,m): active),

t .-a
m ml v. < 0, (m,i): inactive}). (36)
v . ml
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Set

fkm = km' V balanced arcs (k,m) with k6S, m9S, or kES, meS and vkm> 0

fmk c Ckm' V balanced arcs (m,k) with keS, mIS, or kcS, mcs and Vk < O

tij = tij - dvij., (i,j)EA.

Go to the next iteration.

The description of the iteration is quite complex, and

thus we have avoided introducing features and data structures that

would improve efficiency of implementation at the expense of further

complicating the description. For example, - the tree T

and the vector u in step. 2 can' be maintained. and updated efficiently by

means of a labeling scheme. Furthermore, the value of C(v,t) can be

efficiently updated using a labeling scheme and (33).

The iteration can terminate in two ways; either via a flow augmentation

(steps 4a and 4b) in which case the total absolute deficit is reduced, or

else via a price adjustment (step 5) in which-case (by Proposition 2) the

dual functional.is increased. In order to guarantee that the iteration will

terminate, however, it is necessary to show that we will not have indefinite

cycling within step 2 and that step 3 can be properly carried out. What

is happening in step 2 is that the tree T corresponding to the set S i.s
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successively restructured so that all balanced arcs (i,j)gT with isS,

jeS and either (a) ui-I`juj > 0, f ij>ij, or (b) i-Kijuj<0, fij<cij

are eliminated [in which case the last two terms in (33) will be zero].

Each time step 2a or 2b is entered either (1) an augmentation occurs (in

which case step 2 is exited), or (2) the offending arc (i,j) satisfy-

ing (a) or (b) above enters the tree while another arc exits the tree

and the vector u is suitably updated in step 2. It is seen

that in case (2) no scalar uk, kES will be decreased while

at least one scalar uk will be strictly increased [uj in case (a)

above, or ui in case (b) above]. Therefore the sum I uk will be strictly
kES

increased each time we return from step 2a or 2b to step 2. In view of the

fact that u remains fixed at unity, this implies that a tree cannot be re-

encountered within step 2 and shows that, within a finite number of operations,

step 2 will be exited in order to either perform an augmentation in step 4b,

or to check the condition C(v,t) > 0 in step 3. In the latter case the

two terms in (33) will be zero. With this in mind it is -- seen us-

ing (33)that if the condition C(v,t) > 0 fails, then

there must exist nodes i and m with the property described in step 3.

It follows that the relaxation iteration is well defined and will terminate

via step 4a, 4b, or 5 in a finite number of arithmetic operations.
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4. Convergence Analysis and Algorithmic Variations

The relaxation algorithm consist-ing-. of successive

iterations of the type described in the previous section is not guaranteed

to generate an optimal dual solution when applied to a gain network

or an ordinary network with irrational data. There are two potential

difficulties here:

(a) Only a finite number of dual ascent steps- take place because

all iterations after a finite number end up with a flow augmentation.

(b) While an infinite number of dual ascent steps are performed, the

generated sequence of dual function values converges short of the optimal.

Difficulty (a) above can be bypassed in the case of an ordinary

network with irrational problem data by scanning nodes in step 3 in a

first labeled-first scanned mode (breadth-first). A proof of this fact

is given in Tseng [35] which also provides an example showing that this

device is inadequate for gain networks.. The alternative is to

employ an arc discrimination device in selecting the balanced arc (i,j)

in step 2 and the nodes i and m in step 3 whereby arcs with.flow strictly

between the upper and the lower bound are given priority over other arcs

(see Johnson [a], Minieka' 137], Rockafellar T2]':'pp. 36', 616). With.thi.s

device it can be shown (Csee' 35]) that an infinite number of successive

augmentations cannot occur. In the subseauent discussion of convergence

we will assume that this device is employed,

Difficulty (b) above can occur as shown in an example given in [35].

It can be bypassed by employing an idea from the s-subgradient method

(Bertsekas and Mitter [39], [40]). FQr any positiye

_ ~ ~ -- ~ --- ~-~~~`~~11-1-- ---any- p-s,1_ -y
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number e and any tension vector t define each arc (i,j) to be

e-Inactive if t. < a.. - (37)
13 ij

e-Balanced if a.. - £ < t.. < a.. + ' (38)13 - 13 - 1j

e-Active if a.. + i < t... .(39)
13 1ij

We will show that if in the relaxation iteration the usual notions of

active, inactive, and balanced arcs are replaced'by the'corresponding

notions defined above, the algorithm will terminate'in a finite number

of iterations with a solution that is within e I (cij-,ij) of being
(ii, ij 

optimal. Furthermore the final primal solution will be-optimal'if ' is

chosen sufficiently small.

Suppose first that we have a pair (f,t) satisfying primal and dual

feasibility, and "e-complementary slackness" in the sense of 11)-(14)

but with the usual definitions of active, inactive and balanced arcs

replaced by those of. (37)-(39). Since f is primal feasible, it is seen

bymultiplying (1) with Pi and adding over i that I t..f.. = 0, so
(i,j) 13 1J

the primal 'cost associated with f satisfies [cf.(4),(5)]

a..f.. (aij-tij)fij
(i,j) ] J (i,j) 

13 (aij tij)cij + 3 (aij-tij3)ij - q(p)

t..>a.. t .. <a
zj 1ij i ij



Since f and t satisfy e- complementary slackness we also have

aij..f.. = (aij -tij)f ij
(ij) (ij)

(i' (aij-tij )cij + (aij-tij )ij
(ij) 1( 1 13 i,j) 1 1 13
t. .>a..+ t. .<a..-e
13 13 13 13

.+ (aij-tij)fij
(ij) 1 3

laij-tij I<__

< E C(a -tij )Cij + (a-tij ). ij ( cijC. ij
(i j) (ij (i~j) .(i j) i 1

13 13

= w(t) + £e (c.ij.- ).
(ij) 13 13

Combining the last two relations we see that the primal cost correspond-

ing to f and the dual cost corresponding to t are within e (ci -f.i)
(i,j) 13 13

of each other. Since these two costs bracket the optimal cost it follows

that both f and t are within e I (cij -ij) of being primal and dual
(ij) 31

optimal respectively.

Suppose next that the relaxation iteration is executed with the

definitions (12)-('14) for active, inactive and balanced arcs replaced

by the corresponding "E" notions of (37)-(39). Then it can be seen that

the stepsize 6 of .(20) or (25) is bounded below by EL where L is a positive

lower bound
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for I/max{lvijv I(i,j)EA} as v ranges over the finite number of

vectors v that can arise in the algorithm. Since the rate of dual

cost increase along these vectors is also bounded below by a

positive number we see that the cost improvement associated with a price

adjustment (step 5) is bounded below by a positive number. It follows

that the algorithm cannot generate an infinite number of price adjust-

ment steps and therefore must terminate in a finite number of iterations

with a solution that is within £ (cij-.ij) of being optimal. This
(i,j)

solution is really an optimal solution for a perturbed problem where

each arc cost coefficient a.. has been changed by an amount not exceed-

ing £.. Since we are dealing with linear programs, it is seen

that if £ is sufficiently small then every solution of the perturbed

primal problem is also a. solution of the original primal problem.

Therefore, for sufficiently small £, the modified algorithm based on

the definitions (37)-(39) terminates in a finite number of iterations

with an optimal primal solution. However the required size of £

cannot be easily estimated a priori.

Line Search

The stepsize 6 of (30) or (36) corresponds to the first break point

of the (piecewise linear) dual functional along the ascent direction. It

is possible to use instead an optimal stepsize that maximizes the dual

functional along the ascent direction.
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Such a s.tepsize can be calculated quite efficiently by testing the.

sign of the directional derivative of the dual cost at successive break-

points along the ascent direction. Computational experimentation showed

that this type of line search is beneficial, and was implemented

in the relaxation codes described in Section 6.

Single Node Iterations

The case where the relaxation iteration scans a single node (the

starting node s having positive deficit ds), finds the corresponding

direction v5 to be an ascent direction, i.e.

C(vs t) d(sm sm) - msc ms)K > 0,
(s,m):balanced (ms):balanced

reduced the price ps (ps (perhaps repeatedly via the line search mentioned

earlier), and terminates is particularly important for the conceptual

understanding of th.e algorithm. Then only the price of node s is changed, and

the absolute value of the deficit of s is decreased at the expense of

possibly increasing the absolute value of the deficit of its neighboring

nodes. This is reminiscent of relaxation methods where a change of a

single variable is effected with the purpose of satisfying a single con-

straint at the expense of violating others.
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A dual viewpoint, reminiscent of coordinate ascent methods, is that

a single (the sth) coordinate direction is chosen and a line search is

performed along this direction'. Figure 3

shows the form of the dual function along the direction of the co-

ordinate p, for a node with d > 0.
5

The left slope at Pc is -C(vs,t)

while the right slope is

-C(vt) c - 9,
(vst) (.s,m)A sm (,m)EA sm

(S,m):active C(,m):inactive
or balanced

+ Kcr ms +ms

(m, §) A msn (m, )EA ms ms
(m, ) :active (m, s): inactive

or balanced

We have

-C(v s t) <-d s < -C(s,t) (41)

so-ds is a subgradient of the dual functional at ps in the sth coordinate direction.

A single node iteration will be possible if and only if theright slope is

negative or equivalently C(vs,t) > 0.
.5
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This will always be true if we are not at a corner and hence equality holds

throughout in (41). However if the dual cost is nondifferentiable at ps

it may happen that (see-Figure 3)

-C(v s ,t) < -ds < 0 < -C(v s t)

in which case the single node iteration fails to make progress and we

must resort to scanning more than one nodes.

Figures 4and 5 illustrate a single node iteration for the cases

where ds > 0 and ds < 0 respectively.



Dual FunctionalDual Functional

Slope = -C( ,t) = -ds = -(v t)

Slope = -C(, t)

Direction vsw/ directional / 
derivative C(vs t )

Ps Price of Node s PS Price of Node s

CASES WHERE A SINGLE NODE ITERATION IS POSSIBLE

Dual Functional
·i Slope = - d

Slope = -C(6 ,t)

Slope = -C(',t)

PS Price of Node s

CASE WHERE A SINGLE NODE ITERATION IS NOT POSSIBLE

Figure 3: Illustration of dual functional and its directional derivatives along the price
coordinate ps Break points correspond to values of ps where one or more arcs incident to
node s are balanced.



Dual functional

slope = 10 slope = -10

slope = 

slope = -40

2nd price drop st price
drop

P1 -as P2 + a s2 P3 -a 3s P4s4 +s Price of node s

(a)
Price level

PS [0,30] Flow reduction from 30 to 0

[0,20] rice op ~ P4 +a s4

P3 -a3s (0,10] rce p 3SP

[0,20]

)P 2 +as2 2 

(b) (C) (d)

Figure 4: Illustration of an iteration involving a single node s with four adjacent arcs (1,s), (3,s),
(s,2), (s,4) with feasible arc flow ranges [1,20], [0,20], [0,10], [0,30] respectively.
(a) Form of the dual functional along ps for given values of p1, p p3 , and p4. The break points
correspond to the levels of Ps for which the corresponding arcs Decome balanced.
(b) Illustration of a price drop of Ps from a value higher than all break points to the break point at
which arc (s,4) becomes balanced.
(c) Price drop of Ps to the break point at which arc (3,s) becomes balanced. When this is done arc
(s,4) becomes inactive from balanced and its flow is reduced from 30 to 0 to maintain
complementary slackness.
(d) ps is now at the break point P3- a3s that maximizes the dual cost. Any further price drop
makes arc (3,s) active, increases its flow from 0 to 20, and changes the sign of the deficit d from
positive (+10) to negative (-10).



Dual functional

slope = 10 slope -1 

slope = 20

slope = -40

1 st price 2nd price rise
rise

P1 als Ps P2 +as 2 P3 -a3s P4+a4 Price of node s

(a)

Price Level

4 P4 +as 4 4+ as4
Price rise

P3 - a3s 3 3

[0,30]
[0,20] 'rice ris 

tP2 +as2 C

Pi 1 A "S [0,10] Ps 1
[0,20] Ps Flow increase from 0 to 10

(b) (c) (d)

Figure 5: Illustration of a price rise involving the single node s for the example of Fig. 4.
Here the initial price Ps lies between the two leftmost break points corresponding to the
arcs (1,s) and (s,2). Initially, arcs (1,s), (s,2), and (s,4) are inactive, and arc (3,s) is active.



Degenerate Ascent Iterations

Consider the case of an ordinary network. If, for a given t, we

can find a connected subset S of N such that the corresponding

vector (u,v) satisfies

C(v,t) = 0

then from-Proposition I we see that the dual cost remains constant as

we start moving along the vector v, i.e.

w(t + yv) = w(t), VY¥ .[0,8)

where w,. v, and 6 are given by (15), (19), (20). We refer to such--

incremental changes in t as degenerate ascent iterations. If the ascent

condition C(v,t) > 0 [cf. (26)] is replaced by,

C(v,t) > 0 then we obtain an algorithm that produces at each iteration

either a flow augmentation, or a strict dual cost improvement or a degenerate

ascent step. This algorithm has the same convergence properties as

the one without degenerate steps under the following condition (see 16j):

(C) For each degenerate ascent iteration the starting node s

has positive deficit ds, and at the end of the iteration all nodes

in the scanned set S have non-negative deficit.
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This condition holds when the set S consists of just the starting

node s. Thus if the ascent iteration is modified so that a price adjust-

ment at step 5 is made not only when C(v,t) > 0 but also when dS > 0,

S = fs} and C(vs,t) = 0 the algorithm maintains its termination properties.

This modification was implemented in the relaxation codes (see Section 6)

and can have an important beneficial effect for special classes of problems

such as assignment and transportation problems. We have no clear explanation

for this phenomenon, but it is probably due to the fact that degenerate

ascent iterations help bring the prices of positive and negative deficit

nodes "close" to each other more quickly. The computational complexity

analysis of [45] indicates that this is an important factor in the speed

of convergence of the algorithm.
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5. Basis for Computational Experimentation

Historically computational experimentation has been the primary method

for comparative evaluation of network flow algorithms. During the sixties

it was generally believed that primal-dual methods held an advantage over

simplex methods. However during the seventies major improvements in

implementation [14]-[20] using sophisticated data structures have propelled

simplex algorithms to a position of prominence as far as general minimum

cost flow problems are concerned. The situation is less clear for special

classes of problems such as assignment where some computational comparisons

[21], [22] suggest that primal-dual methods perform at least as well as

simplex methods. Primal-dual methods are also generally better suited

for sensitivity analysis and reoptimization.

Analytical results aiding substantively the comparison of different

methods. are in scarce supply. An interesting observation was made by

Zadeh [23] who showed that, for problems with nonnegative arc costs, primal-

dual, dual simplex, primal simplex (with "big-M' starting method and most

negative pivot rule), and the parametric method implement an essentially

identical process--a sequence of augmentations along shortest paths between

a supersource and a supersink node. The essential similarity between

parametric and primal-dual methods actually extends to general linear

programs with positive cost coefficients as shown by Gallager '

[24]. This is significant in view of recent average complexity results for

the parametric method (Haimovich [25]). The "big-M' method is known to be

more effective for network problems than the PhaseI-PhaseII method (Mulvey

[26]). However there are pivot rules that are empirically more effective

than the most negative rule and much research has been directed along this



direction ([26]-[28]). Zadeh [23] concludes that the "big M"' method with

empirically best pivot rule should be a better method than primal-dual

for general minimum cost flow problems with nonnegative arc costs. This

conclusion agrees with empirical observations of others (e.g. [16]) as

well as our own (see Section 7).

We have compared our two relaxation codes called RELAX-II and RELAXT-II

with two state-of-the-art codes; KILTER (a primal-dual code due to Aashtiani

and Magnanti [29]) and RNET (a primal simplex code due to Grigoriadis and

Hsu [30]). A description of each of these is given in the next section.

We describe below our experimental approach:

Test Conditions

All methods were tested under identical conditions, same computer

(VAX 11/750 running VMS version 4.1), same language (FORTRAN IV), same

compiler (standard FORTRAN of the VMS system version 3.7 in the OPTIMIZE

mode), same timing routine, and same system conditions (empty system at

night). RELAX-II and RELAXT-II were also compiled under VMS version 4.1

and run about 15%-20% faster than when compiled under VMS version 3.7. The

CPU times reported were obtained using the system routines LIB$INITTIMER

and LIB$SHOW TIMER. Th'ese times do not include problem input and output

but include algorithm initialization and testing for problem infeasibility.

The VAX 11/750 is a relatively



small machine on which problems of large size can produce an excessive

number of page faults thereby severely distorting the computation time.

The size of problems used in our experiments and the system configuration

were such that page faults never-affec-ted- significantly the reported times.

The methods tested include parameters that must be set by the user.

A single default set of parameters was chosen for each method and was

kept unchanged throughout the experimentation. For RNET these parameters

are in the range suggested by its authors with the parameter FRQ set at

7.0.

Efficiency of Implementation

RNET is a mature primal simplex code developed at Rutgers University.

Indirect comparisons reported in [19] and [10] suggest that RNET is faster

on standard NETGEN benchmark problems [31] (see Table 1) than PNET [31]

and GNET [17] both of which are sophisticated simplex codes that represent-

ed an advance in the state of the art at the time they were introduced.

Kennington and Helgason have compared RNET with their own primal simplex

code NETFLO on the first 35 NETGEN benchmark problems and conclude in their

1980 book ([20], p. 255) that "RNET... produced the shortest times that

we -have seen on these 35 test problems". Our own experimentation general-

ly supports these findings and suggests that for general minimum cost flow

problems RNET is at least as fast and probably faster than any other non-

commercial simplex code for which computation times on benchmark problems

are available to us ([17], [20], [22], [29], [31])). See also the experi-

mentation Ain [41] which finds the commercial code ARCNET slightly superior

to RNET.



KILTER is an implementation of the primal-dual method that uses a

sophisticated labeling scheme described in [291. The version we tested

is the fastest of nine versions tested in [29] where it is called KILTER9.

On the basis of the limited computational results and indirect comparisons

of [29], KILTER outperforms by a wide margin earlier primal-dual codes such as

SUPERK, SHARE and BOEING L311, and is comparable to thesimplex code PNET [31].

KILTER is also generally faster than the faster primal-dual' codes that we

have been able to implement (see [10]). However an extensive computational

study by Mulvey and Dembo [33] shows that KILTER is outperformed on assignment

problems under identical test conditions by LPNET (a primal simplex code due to

Mulvey [18]). Our own experimentation also shows that KILTER is consistent-

ly outperformed by RNET and agrees with the generally held opinion that

the most efficient primal-dual codes are slower than primal simplex codes

on general minimum cost flow problems.

The preceding discussion was intended to show that the implementations

of both RNET and KILTER seem very efficient. Therefore it appears valid

to consider these codes as representative of the best that has been

achieved through the enormous collective efforts of many people over many

years to date with the primal simplex and primal-dual methods respectively.
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6. Code Descriptions

The relaxation codes RELAX-II-and RELAXT-II that

we implemented solve the problem

mimimize i a.. f..
(i,j)EA 1

subject to

f.- f. b i, ¥ ie:
(m,i)sA m (i,m)$A lm

< f.. < c.., V (i,j)EA.
-1- 13

This form has become standard in network codes as it does not require

storage and use of the array of lower bounds { ij } Instead the smaller

size array {bi} is stored and used. The problem (MCF) of Section 1 can

be reduced to the form above by making the transformation of variables

f..:= fij - 2... The method for representing the problem is the linked
13 13 13

list structure suggested by Aashtiani and Magnanti [29] and used in their

KILTER code (see also Magnanti [34]). Briefly, during solution of the

problem we store for each arc its start and-ehd node, its capacity, its

reduced cost (aij-tij), its flow fij, the next arc with the same. start

node, and the next arc with the same end node. An additional array of

length equal to half the number of arcs is used for internal calculations.

This array could be eliminated at the expense of a modest increase in

computation time. The total storage of RELAX-II for arc length arrays is

7.5 IAI and 71NI for node length arrays. RELAXT-II is a code that is

similar to RELAX-II but employs two additional arc length arrays that

store the set of all balanced arcs. This code, written with assistance

from Jon Eckstein, is faster than RELAX-II but requires 9.5 JA] + 9 INI

total storage.



This compares unfavorably with primal simplex codes which can be implemented

with four arc length arrays.

RELAX-II and RELAXT-II implement with minor variations the relaxation

algorithm of Section 3. Line search and degenerate ascent steps are

implemented as discussed in Section 4. The codes assume no prior knowledge

about the structure of the problem or the nature of the solution. Initial

prices are set to zero and initial arc flows are set to zero or the upper

bound depending on whether the arc cost is nonnegative or negative respective-

ly. There is a preprocessing phase (included in the CPU time reported)

whereby arc capacities are reduced to as small a value as possible without

changing optimal solutions of the problem. Thus for transportation problems

the capacity of each arc is set at the minimum of the supply and demand at

the head and tail nodes of the arc. We found experimentally that this

can markedly improve performance particularly for transportation problems.

We do not fully understand the nature of this phenomenon, but it is apparent-

ly related to the fact that tight arc capacities tend to make the shape of

the isocost surfaces of the dual functional more "round". Generally speak-

ing, tight arc capacity bounds increase the frequency of single node iterations.
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This behavior is in sharp contrast with that of primal simplex which

benefits from loose arc capacity bounds (fewer extreme points to

potentially search over).

We finally note that RELAX-II and RELAXT-II, finalized in September

1986, are much more efficient than earlier versions 13], [10], [33],

particularly for sparse and uncapacitated problems. In this connection

we note that a computational comparision of RELAX and RNET was undertaken

in [44] using a memory-limited machine. However the code used there was

obtained by modifying in ways unknown to us a prerelease version of RELAX.

That version was considerably less efficient than the code actually tested

in 13], let alone the second generation version tested in this paper.
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7. Computational Results

Our computational results are organized in six tables. All the

problems shown were generated using the widely used, publicly available

NETGEN program [31]. The random number seed used is 13502460 (the same as

the one in [31]). All additional information needed to replicate these

problems is given in the corresponding tables. The thesis of the second

author [35] includes computational experience with gain networks. These

results are preliminary and show that relaxation is roughly competitive with

a state of the art primal simplex code of Currin [36] (tests done under identical

conditiQns on the same machine). More experimentation is required to corroborate

these results.

Table 1: (Standard NETGEN Benchmarks)

This table shows the results for the 40 problems described in detail

in [31] and generated by the NETGEN program. Problem 36 was not solved

because for some unexplained reason ouir NETGEN code was producing an

infeasible problem for the problem data given in [31]. The results show

the substantial superiority of RELAX-II and RELAXT-II over the other

codes for assignment and transportation problems. This finding was

corroborated on a large number of additional assignment and transportation

problems of broadly varying size. For small lightly 'capacitated and un-

capacitated problems RELAX-II and RELAXT-II outperform the other codes,

and the margin of superiority increases for the large problems 37-40.
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Table 2: (Transportation Problems)

These results are in general agreement with those of Table 1. Note

that for dense problems RELAXT-II is substantially faster than RELAX-II

owing to the scheme for storing and using the set of balanced arcs.

Table 3: (Transportation Problems-Large Cost Range)

The problems in this table are identical to those in Table 2 except

that the cost range is from 1 to 10,000 instead of I -to 100. It can

be seen that RELAX-II and RELAXT-II still substantially outperform RNET

but the factor of superiority is less than in the case of the smaller

cost range of Table 2.

Table 4: (Heavily Capacitated Transhipment Problems)

Our experience with heavily capacitated transhipment problems with

positive arc costs is similar to that for transportation problems.
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Table 5: (Transhipment Problems with Both Positive and Negative Arc Costs)

The problems in this table are identical to those of Table 4 except

that the cost range is from -50 to 50 instead of 1 to 100. When there

are both positive and negative arc costs the performance of RNET (in con-

trast with RELAX-II and RELAXT-II) depends on how flow is initialized. If

all arc flows are initially set to zero the performance of RNET degrades

substantially (see [10]). A more efficient scheme is to set

the flow of negative cost arcs to the upper bound and the flow of all

other arcs to zero. This policy was followed in the runs shown in

Table 5. It can be seen that the factor of superiority of RELAX -II and

RELAXT-II over RNET increases somewhat relative to the results of Table 4.

Table 6: (Large Assignment and Transportation Problems)

An important and intriguing property of RELAX-II and RELAXT-II is that

their speedup factor over RNET apparently increases with the size of

the problem. This can be seen by comparing the results for the small

problems 1-35 of Table 1 with the results for the larger problems 37-40

of Table 1, and the problems of Tables 2 through 5. The comparison shows

an improvement in speedup factor that is not spectacular, but is noticeable

and consistent. Table 6 shows that for even larger problems the speedup

factor increases further with problem dimension, and reaches or exceeds an

order of magnitude (see Figure 6). This is particularly true for assign-

ment problems where, even for relatively small problems, the speedup factor

is of the order of 20 or more.

We note that there was some difficulty in generating the transportation

problems of this table with NETGEN. Many of the problems generated were
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infeasible because some node supplies and demands were coming out zero or

negative. This was resolved by adding the same number (usually 10) to all

source supplies and all sink demands as noted in Table 6. Note that the

transportation problems of the table are divided in groups and each group

has the same average degree per node (8 for Problems 6-15, and 20 for

Problems 16-20).

To corroborate the results of Table 6 the random-seed number of

NETGEN was changed, and additional problems were solved using some of

the problem data of the table. The results were qualitatively similar

to those of Table 6. We also solved a set of transhipment problems of

increasing size generated by our random problem generator called RANET.

The comparison between RELAX-II, RELAXT-II and RNET is given in Figure 7.

More experimentation and/or analysis is needed to establish conclusively

the computational complexity implications of these experiments.
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Figure 6: Speedup factor of RELAX-Il and RELAXT-II over RNET for the
transportation problems of Table 6. The normalized dimension D gives the
number of nodes N and arcs A as follows:

N = 1000*D, A = 4000*D, for Problems 6 - 15

N = 500*D, A = 5000*D, for Problems 16 - 20.
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Figure 7: Speedup factor of RELAX-II and RELAXT-I1 over RNET in lightly
capacitated transhipment problems generated by our own random
problem generator RANET. Each node is a transhipment node, and it is
either a source or a sink. The normalized problem size D gives the number
of nodes and arcs as follows:

N = 200*D, A = 3000*D.

The node supplies and demands were drawn from the interval
[-1000, 1000] according to a uniform distribution. The arc costs
were drawn from the interval [1, 100] according to a uniform distribution.
The arc capacities were drawn from the interval [500, 3000] according to a
uniform distribution.
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RELAX-_I I ELAXT-I I i KILTER RNET

Problem Problem # of of (VMS 3.7/ (MS -3.7/ . VMS 3.7
Type # Nodes Arcs VMS 4.1) VMS 4.1) .... .

1 200 1300 2.07/1.75 1.47/1.22 8.81 3.15

2 200 1500 2.12/1.76 1.61/1.31 9.04 3.72

3 200 2000 1.92/1.61 1.80/1.50 - 9.22 4.42

0 .3 4 200 2200 2.52/2.12 2.38/1.98 10..45 4.98

v 5 200 2900 2.97/2.43 2.53/2-:05 16.48 7.18

04 6 300 '3150 4.37/3.66 3.57/3.00 25.08 9.43

7 300 4500 5.46/4.53 3.83/3.17 1 35.55 12.60

8 300 5155 5.39/4.46 4.30/3.57 j 46.30 15.31

9 300 6075 6.38/5.29 5.15/4.30 43.12 18.99

10 300 6300 4.12/3.50 3.78/3.07 47.80 16.44

Total (Problems 1-10) 37.32/31.11 30.42/25.171 251.85 96.22

11 4G00 1500 1.23/1.03 1.35/1.08. 8.09 4.92

1 12 j400 2250 1.38/1.16 1.54/1.25 I 10.76 6.43

13 400 j 3000 1.68/1.42 1.87/1.54 1 8.99 8.92

14 400 3750 2.43/2.07 2.67/2.16 14.52 ' 9.90

15 400 4500 2.79/2.34 3.04/2.46 14.53 10.20

Tota (Problems 11-15) 9.51/8.02 10.47/8..49 56.89 40.37 '

16 a400 1306 2.79/2.40 2.60/:2.57 13.57 i 2.76

17 400 2443 2.67/2.29 2.80/2.42 16.89 3.42

18 400 1306 2.56/2.20 2.74/2.39 13.05 2.56

, L 19 400 2'443 2.73/2.32 2.83/2.41 j 17.21 3.61

20 400 1416 2.85/2.40 2.66/2.29 11.88 3.00

21 1400 2836 3.80/3.23 3.77/3.23 19.06 4.48

| J 22 400 1416 2.56/2.18 2.82/2.44 12.14 2.86

_Q 3 400 2836 4.91/4.24 3.83/3.33 19.65 4.58

'J 3 2 4 400 1382 127/1.07 1.47/1.27 13.07 2.63

25 400 2676 2.01/1.68 2.13/1.87 26.17 1 5.84

26 40·O L_382 1.79/1.57 1.60/1.41 11.31 2.48

27 i 400 2676 I 2.15/1.84 1.97/1.75 18.88 3.62

Total (Problems 16-27) 32.09/27.42 31.22/27.38 192.88 41 '94

TABLE 1 (continued on next page)
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RELAX-II ] RELAXT-II KILTER RNET

Problem Problem # of # of (VMS 3.7/ (VMS 3.7/ IVMS 3.7 iVMS 3.7
Type f Nodes Arcs VMS 4.41) VMS 4.1)

28 1000 2900 4.90/4.10 5.67/5.02 29.77 8.60

,3 29 1000 3400 5.57/4.76 5.13/4.43 32.36 12.01

: · 30 1000 4400 7.31/6.47 7.18/6.26 42.21 11.12

.31 1000 4800 5.76/4.95 7.14/6..30 39.11 10.45

z o 32 1500 4342 8.20/7.07 8.25/7.29 69.28 18.04

o >E 33 1500 4385 10.39/8.96 8.94/7.43 63.59 17.29

u I o 34 1500 51'07 9.49/8.11 8.88/7.81 72.51 20.50
0 tr0O

o 35 1500 5730 10.95/9.74 10.52/9.26 67.49 17.81

Total (Problems 28-35) 62.57/54.16 61.71/53.80 356.32 115.82

·, ~37 5000 23000 87.05/73.64 74.67/66.66 681.94 281.87

38 3000 3500¢ 68.25/57.84 55.84/47.33 607.89 274.46

-C' Q39 5000 115000 89.83/75.17 66.23/58.74 558.60 1151.00

:4 1 40 3000 23000 50.42/42.73 35.91/30.56 369.40 j174.74 .

Total (Problems 37-40) L 295.55/249.38 1232.65/203.29 2,217.83 882.07 -

TABLE 1: Standard Benchmark Problems 1-40 of [31]

obtained using NETGEN. All times are in secs

on a VAX 11/750. All codes compiled by FORTRAN

in OPTIMIZE mode under VMS version 3.7, and under

VMS version 4.1 as indicated. All codes run on

the same machine under identical conditions.
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Problem of of f # of Cost RELAX-II RELAXT-I RNET
# Sources Sinks Arcs Range

1 200 200 7,000 1-100 6.54 4.78 26.58

2 400 400 f" t" 10.18 8.83 53.71

3 600 600 " t" 16.74 11.83 80.98

4 800 800 " " 15.72 12.89 122.46

5 1,000 1,000 " - 20.19 19.98 129.91

6 200 200 6,000 1-00 6.23 4.06 23.02

7 " 8,000 " 8.30 5.00 28.74

8 " lO,000 " 10.61 6.36 32.77

9 ." 12,000 " 17.13 8.26 36.36

10 "I 15,000 " 14.10 8.38 36.60

Total (Problems 1-10) 125.74 90,37 571.13

11 100 300 7,000 1-100 7.88 5.08 20.94-

12 200 600 " 9.36 8.47 49.14

13 300 900 . t . 13.13 9.54 68.64

14 350 1,050 .1 18.04 13.84 89.32

15 400 1,200 . 16.66 15.12 110.05

. ____________ ._______________ ___________ ____________ I ____________ '. . - - ._____________ _. _ . -

16 100 300 6,000 1-100 5.88 4.00 18.68

17 8,000 11.76 6.46 21.97

18 10,000 " 8.69 6.75 25.44

19 .. 12,000 " 12.49 7.66 26.14

20 " ". 15,000 1 16.24 9.16 j 38.74

Total (Problems 11-20) 120.13 86.08 J 469.06

TABLE 2I: Transportation Problems. Times in Secs on VAX 11/750.

Ail Problems Obtained Using NETGEN with Total SupDlv

200,000 and 09 High Cost Arcs. RELAX-II and RELAXT-II

compiled under VMS 4.1; RNET compiled under VMS 3.7.
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Problem #of #of # of Cost RELAX-II RELAXT-II RNET
# Sources Sinks Arcs Range

4 -
1 200 200 7,000 1-04 14.65 12.63 28.52

2 400 400 7,000 1-10 17.64 18.37 57.77

3 600 600 7,000 1-104 30.21 40.41 80.12

4 800 800 7,000 1-104 26.17 40.91 117.89

5 1,000 1,000 7, 000 1-104 61.16 34.75 145.31

6 200 200 6,000 1-104 16.76 11.35 23.01

7 200 200 8,000 1-104 19.07 15.02 28.88

8 200 200 10,000 1-104 16.44 12.70 35.32

9 200 200 12,000 ' 1-104 19.32 18.63 41.55

10 200 200 15,000 1-10 34.21 24.23 41.87

Total (Problems 1-10) 255.63 229.00 600.24

11 100 300 7,000 1-104 11.89 2278

12 200 600 7,000 1-10 27.57 13.38 46.69

13 300 900 7,.000 1-104 19.33 22.79 72.95

14 350 ! 1050 7,000 1-104 31.01 34.1-1 91.-97

15 400 1200 7,000 1-104 32.70 27.90 108.97

16 100 300 6,000 i-104 9.35 13.14 20.21

17 100 300 8,000 1-104 21.42 18.12 25.95

1S 100 i j00 10,000 1-104 18.75 17.59 30.07

19 100) l 300 i ',000 1-104 21.37 22.14 30.66

2-0 100 300 15,000 1-10 40.29 [ 29.31 1 42.67

Total Problems. (11-2 0) 233.68 2-09.70 492.92

TABLE 3: Transportation Problems. Times in Sees on VAX 11/750.

All Problems Obtained Using NETGEN with Total Supply

200,000 and 0% High Cost Arcs. RELAX-II and RELAXT-II

compiled under VMS 4.1; RNET compiled under VMS 3.7.
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Problem # of # of # of Cost Capacity RELAX-II RELAXT-II RNET
# Sources Sinks Arcs Range Range __.. .. r

1 200 200 7,000 1-100 100-500 13.50 7,39 44.47

2 400 400 I " " 16.99 12.10 73.10

3 600 600 . 21.62 22.25 97.11

4 800 800 " " " 26.86 22.35 108.09

5 1,000 1,000 ,, , , " 29.26. .26.54 .102.74

6 200 200 6,000 1-100 100-1,000 9.25 6.26 39.18

7 , " 8,000 " " 10.71 8.53 48.87

8 " " 10,000 " " 14.58 8.57 i 51.98

9 " " 12,000 " " 17.78 10.62 68.17

10t " 15,000 " " 21.42 10.89 : 73.74

Total (Problems 1-10) . 181.97 135.50 707.45

11 100 300 7,000 1-100 100-500 10.38 7.18 43.98

12 200 · 600 , 20.11 13.21 68.29

13 300 900 , , f 25.85 22.59 90.36

14 400 1,200 " " 35.23 27.43 109.75

15 500 1,500 " 40.92 31.60 107.32.

16 100 300 6,000 1-100 100-1,000 9.02 6.97 33.45

17 " " 8,000 " 12.44 9.56 39.59j

18 t 10.000 " 16.26 8.87 48.61

19 1 0 00 "t ft 20 46 11.06 59.36

20 " 1 15,000 "t _ tt _ 22.47 11.36 72.41

Totai CProblems 11-20) 213.14 149,83 673.12

TABLE 4: Capacitated Transhipment Problems. Times in Secs on VAX i1/750.

All Problems Obtained Using NETGEN with Total Supply 200,000,

100% of Sources and Sinks being Transhipment Nodes, 0% High Cost

Arcs, and 100% of Arcs Capacitated. Each node is either a

source or a sink. RELAX-II and RELAXT-II compiled under

VMS 4.1; RNET compiled under VMS 3.7.
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Proble # of # of # of gost Capacity RELAX-II RELAXT-II] RNET
# Sources Sinks Arcs Range Range

1 200 200 7,000 -50-50 100-500 11.02 11.44 55.50

2 400 400 " " " 17.99 12.88 92.11

3 600 600 " " " 17.10 16.38 109.35

4 800 800 . . " 27.82 24.62 124.42

5 1,000 1,000 " .. ,. 38.02 31.48 123.87

6 200 200 6,000 -50-50 100-1,000 10.09 5.83 49.15.

7 " . 8,000 " 12.40 7.99 67.74

8 " 10,000 " 12.71 9.79 81.95

9 " 12,000 , 16.72 10.28 89.71

i 10 It tt " 15,000 I i It 30.78 13.73 94.58

_._._ _ _. _ _ _ _ _ _ _ _. _ _ _ _

Total (Problems 1-i0) 194.65 144.42 888.38

il 100 100 7,0000-50-50 100-500 10.86 5.74 36.35

12 200 600 , 7.00 12.07 79.24

13 300 900 21.95 18.61 107.43

14 400 1,200 " 27.14 21.47 136.58

15 500 1,500 " " " 41.19 30.86 111.57

16 100 300 6,000 -50-50 100-1,000 ! 10.15 7.1'7 48.22

17 ," " 8,000 " i 11.52 8.10- 64.62

18 " 1" 0,000 " 15.68 13.02 86.84

19 " 2,000 19.87 11.04 97.36 ·

20 " . " 15,000 " " 32.17 16.53 128.33

Total (Problems 11-20) 207.53 144.61| 896.54

TABLL 5: Capacitated Transhipment Problems with Both Negative and

Positive Arc Costs. Same Problems as in Tabie 4 except

that the Cost Range is [-S0,50]. RELAX-II and RELAXT-II

compiled under VMS 4.1; RNET compiled under VMS 3.7.
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# Problem # of # of # of Cost Total RELAX-II RELAXT-II RNET
Type Sources Sinks Arcs Range Su pplyl 1_

1 1,000 1,000 8,000 1-10 1 ,000 4.68 '4.60 79.11

2 , 1,500 1,500 112,000 1-10 ,: 00 7.23 7.03 199.44

3 Si l 2,000 2,000 16,000. 1-10 2:,000 12.65 9.95 313.64

4 1,000 1,000 8,000 1-1,000 1,000 9.91 10.68 118.60

5 1,500 1,500 12,000 1-1,000 1,500 17.82 14.58 227.57

1,000 1,000 8,000 1-10 100,000 31.43 27.83 129.95

7* 1,500 1,500 12,000 1-10 153,000 60.86 56.20 300-79

8+ $S 2,000 2,000 16,000 1-10 220,000j 127.73 99.69 531.14

9+ 2,500 2,500 20,000 1-10 275,00Q 144.66 115.65 790.57

10+ _ _ 3,000 3,000 24,000 1-10 330,000 221.81 167.49 1,246.45

11 1,000 1,000 1,000 1-1000 100, 000 32.60 i 31.99 152.17

12* 1, 1,5000 12,000 1-1 000 153,000 53.84 5.32 394.12

13+ 12,000 2000 6,000 1-10000 220,000 101.97 71.85 694.32

14 2,500 2,50 0 20,00,5 0-1,500 0 2700,01-100 107.93 1 96.71 ; 1030.3

15+i 3,000 3,000 24,000 1-1,000 330,000 133.85 1 .02.93 1,533.50

16 1 .500 50 100 15000?

~16+ ~ So 1 50 501-10i 10 NsOo- 16.44 j 11.43 84.041

17 4.) 750 750 5,000 1100 22,5001 28.30 18.12 176.551

18: t > lr 1,000 10,000 1-100 30,000 51.01 31.31 306.97

19 1 ,250 11,250 12S,000 1-100 37,500 71.61 30 18.96 1 476.57

20 H 1,500 1,500 30, 0 0 0 1-100 45,000 68.09 41.03 727.381

Table 6: Large Assignment and Transportation Problems.

Times in Secs on VAX 11/750. All problems

obtained using NETGEN as described in the text.

RELAX-II and RELAXT-II compiled under VMS 4,1;

RNET compiled under VMS 3.7. Problems marked

with * were obtained by NETGEN, and then, to

make the problem feasible, an increment of 2

was added to the supply of each source node,

and the demand of each sink node. Problems

marked with + were similarly obtained but the

increment was 10.
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8. Conclusions

Relaxation methods adapt nonlinear programming ideas to solve linear

network flow problems. They are much faster than classical methods on

standard benchmark problems, and a broad range of randomly generated

problems. They are also better suited for post optimization analysis

than primal-simplex. For example suppose a problem is solved, and then

is modified by changing a few arc capacities and/or node supplies. To

solve the modified problem by the relaxation method we use as starting

node prices the prices obtained from the earlier solution, and we change

the arc flows that violate the new capacity constraints to their new

capacity bounds. Typically, this starting solution is close to optimal

and solution of the modified problem is extremely fast. By contrast, to

solve the modified problem using primal-simplex, one must provide a start-

ing basis. The basis obtained from the earlier solution will typically

not be a basis for the modified problem. As a result a new starting

basis has to be constructed, and there are no simple ways to choose this

basis to be nearly optimal.

The main disadvantage of relaxation methods relative to primal-

simplex is that they require more computer memory. However technological

trends are such that this disadvantage should become less significant

in the future. Note also that an alternative implementation of RELAXT-II,

currently in the final stages of development has resulted in reduction of

the arc length arrays by one third without sacrificing speed of execution.

Our computational results provided some indication that relaxation

has a superior average computational complexity over primal-simplex.

Additional experimentation with large problems and/or analysis are needed

to provide an answer to this important question.
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The relaxation approach applies to a broad range of problems beyond

the class considered in this paper (see [6], [35], [42], [43]) including

general linear programming problems. It also lends itself well to

massivelytparallel computation (see [4], [6], [141]-, [43], [45], [46]).

The relaxation codes RELAX-II and RELAXT-II together with other

support programs are in the public domain with no restrictions, and can

be obtained from the authors at no cost on IBM-PC or Macintosh diskette.
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