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1. Introduction

Until quite recently, the basic approach to non-linear filtering

ther-.- was via the "innovations method," originally proposed by Kailath

ca.i9E7 and subsequently rigorously developed by Fujisaki, Kallianpur and

K-_nita [1] in their seminal paper of 1972. The difficulty with this

apprcach is that the innovations process is not, in general, explicitly

computable (excepting in the well-known Kalman-Bucy case). To circumvent

tnis difficulty, it was independently proposed by Brockett-Clark [2],

Brockett [3], Mitter [4] that the construction of the filter be divided

into _ro parts: (i) a universal filter which is the evolution equation

describing the unnormalized conditional density, the Duncan-Mortensen-

Zakai (D-M-Z) equation and (ii) a state-output map, which depends on the

statistic to be computed, where the state of the filter is the unnormalized

conditional density. The reason for focusing on the D-M-Z equation is that

it is an infinite-dimensional bi-linear..system driven by the incremental

observation process, and a much simpler object than the conditional

density equation (which is a non-linear equation) and can be treated usinq

georetric ideas. Moreover, it was noticed by this author that this

ecuation bears striking similarities to the equations arising in

(Euclidean)-quantum mechanics and it was felt that many of the ideas and

methods used there could be used in this context. The ideas and methods

referred to here are the functional integration view of Feynman (for a

mcdern exposition see Glimm-Jaffe [5]). In many senses, this viewpoint

has been remarkably successful--although the results obtained so far have

been c- a negative nature. Nevertheless the recent work has given us a

deeerr understanding of the D-M-Z equation which was essential for progress

in non-linear filtering, as well as in stochastic control. The

variatlonal interpretation of non-linear filtering given by Fleming-Mitter
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[6], Mitter [7] and the work on the partially observable stochastic

control problem by Fleming-Pardoux [8] can be considered to have arisen

from the "state-space" interpretation given to the filter.

This is an expository paper and contains no original results. For

rigorous derivation of some of the results presented here, the reader is

referred to the doctoral dissertation of Ocone [9], Hazewinkel-Marcus [10]

and Sussmann [11]. The interested reader may also read with profit

Hazewinkel-Willems [12] and Mitter-Moro [13].

2. The Filterinq Problem Considered, And the Basic Questions.

We consider the signal-observation model:

dxt = f(x t )dt + G(x t )dwt ; x(O) = xo
(1) O<t<l

dyt = h(xt)dt + dft , where

x, w and y are mn , IRm and JP-valued processes, and it is assumed

that f, G and h are vector-valued, matrix-valued and vector-valued

functions which are smooth (which mean Cm-function). It is further

assumed that the stochastic differential equation (1) has a global

solution in the sense of Ito. It is further assumed that xt and ft are

independent and Eollh(xt) 12dt<-. For much of our considerations, the

function h(-) will be a polynomial.

It is well-known that the unnormalized conditional density p(t,x)

(where we have suppressed the y( ) and w-dependence) satisfies the D-M-Z

equation:

P P

(2) dP(t,x) = ( 2 hi2(x)) P(t,x)dt + hi(x)P(t,x)odyt

i=l i=l

where
n n

(3) Y ~° d G(x)G' (x) dx
~0 ij=l dx1dxj k ldi '1f
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and the · denotes the Stratanovich differential. It is imperative that we

consider (2) as a Stratanovich differential equation, since the Ito-

integral, because it "points to the future," is not invariant under smooth

diffemorphisms of the x-space, and we want to study equation (2) in an

"invariant manner."

We think of p(t,-) as the "state" of the filter and is, what we have

referred to before, as the universal part of the filter. If c, say, is a

bounded, continuous functional then the filter typically is required to

compute E(P (xt) Y), where YY = {Ys<<-t}. If we denote by

tL _E( (xt)l tY), then ~t is obtained from p(t,x) by integration:

(4) ~t = n / (x)p(t,x)dx/j (tx)dx

A A

wt will be referred to as a "conditional statistic," and no matter what ~t

we wish to compute, p(t,x) serves as a "sufficient statistic."

One of the questions we want to try to answer in this paper is: when

can t (corresponding to a given c) be computed via a finite-dimensional
t

filter? The other remark to be made is: we are interested in computing

the fundamental solution of (2) so that we can evaluate p(t,x)

corresponding to any initial condition.

To proceed further, we need to make a definition. By a finite-

dimensional filter for a conditional statistic $ , we mean a stochastic
t'

dynamical system driven by the observations:

(5) di t = a(it)dt + B(Et)odYt

defined on a finite-dimensional manifold M, so that t' M, and %(t ) and
t t

B( t ) are smooth vector fields on M, together with a smooth output map

(6) St = Y( t) , which computes the

conditional statistic. Equation (5) is to be interpreted in the

Stratanovich sense for reasons we have mentioned above. We shall also
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assume that the stochastic dynamical system (5)-(6) is minimal in the

sense of Sussmann [14].

For the definitions and properties of Lie algebras and Lie Groups

used in the sequel the reader is referred to the Appendix.

3. Lie Algebra of Operators Associated with the Filtering Problem

Consider the Lie algebra generated by the unbounded operators

p
*( 1 h 2

?= 9 2-- hi(x) and h (x) , i = i, .. p,
o 2 z i '

where the operators 9? and h. i(x) (the hi considered as multiplication

operators ¢ (x) - hi (x)4 (x)) act on some common dense invariant domain !

(say = CO (bn) or S9Rn )) .

This Lie algebra contains important information and if it is finite-

dimensional then it is a guide that a finite dimensional universal filter

for computing p (t,x) may exist.

Care should be taken in interpreting this statement. Firstly,

referring to the definition of a finite-dimensional filter in (5), there is

a Lie algebra of vector fields associated with it which in general is

infinite-dimensional. Therefore, the fact that the Lie algebra

?A{iMY, h .. , h } is infinite-dimensional does not preclude the

filtering problem having a finite-dimensional solution. Secondly, even if

A { 9?, hi, ... , h } is finite-dimensional it does not mean that a finite-
1' P

dimensional filter exists. The reason for this is that constructing the

filter requires integrating the Lie algebra and it is a well-known fact

from the theory of Unitary representations of Lie Groups that not all Lie

algebra representations extend to a Group representation (see the Appendix

of this paper). However, it is still a good question to ask as to whether

examples of filtering problems exist where the Lie algebra A{9-9, hi, ... h }

is finite-dimensional and also how big is this class. The answer to the
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first part of this question is positive but the answer to the second part

of the question appears to be that this class is small.

Example 1: (Kalman Filtering)

(7 t t t
b = n x 1 matrix

dyt 'x dt + c = n x 1 matrix

Then
n 2 n

(8) * = - - _ - (Ax). and

,j=l i xk i=l i

C= * 1 (c'x) , where
o 2

Q = bb'

Define the Hamiltonian matrix

/-Al cc'
E = (...AI , and the vector

\bb' A

c\
! O 72n

and the controllability matrix

2n-1
W = [a : Ea: ....... E a] and assume that

W is non-singular.

Define Z 1 = c'x and

i-i
Z. = [ad9'1 Z1'

Then one can show that

n n

(9) Zi = E (Ei-l ) xj + (E -1 )j+n a , and
j=l j=l 

(10) [ZiZ j] = (E-la)'(0 -I) (Ej-a)

I 0 a

We can then conclude that the Lie algebra of the filter
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yi-= span ... Z . z , II , where the Z .. Z2n are independent

by hypothesis. Hence, 'has dimension 2n+2, and this algebra is isomorphic

to the oscillator algebra of dimension 2n+2 (see the Appendix).

3.1 Invariance Properties of the Lie Algebra and the Benes Problem.

The filter algebra is invariant under certain transformations,

namely, diffeomorphisms on the x-space and gauge transformations to be

discussed below. These ideas are best discussed on an example.

Consider the filtering problem:

(11) ,xt = Wt

dyt xtdt =+ dnt

A basis for the filter algebra Fis

;f, x dx I , where

=d 1 2
2 dx2 2 x and this is the 4-dimensional oscillator algebra.

It is easy to see that if we perform a smooth change of coordinates x+ ¢ (x)

then the Filter algebra gives rise to an isomorphic Lie algebra, and two

filtering problems with isomorphic Lie algebras should have the same

filter.

Now consider the example first treated by Benes [15],

(dxt = f(xt)dt + dw t

(12) t t

dy = xtdt + dlt , where

f is the solution of the Riccati equation:

df 2 2
+ f = ax + bx + c , and the coefficients a,b,c are so

dx

chosen that the equation has a global solution on all of R. We want to

show that by introducing gauge transformations, we can transform the filter

algebra of (12) to one which is isomorphic to the 4-dimensional oscillator
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algebra. Hence, the Benes filtering problem is essentially the same as

the Kalman filtering problem considered in example 1.

To see this, first note that for (12)

[2i2 ,x] = f , where the brackets are computed on C>f(IR).
dx o

Now consider the commutative diagram:

d

dx

C"O (I<) > Co (:R)
0O0

co () C(
d

-- f
dx

Here r is the multiplication operator ¢(x)+ f(x)$(x) and it is assumed

that W is invertible. Then it is easy to see that

T(x) = exp x f(z)dz.

1 92
Under the transformation Y', the operator = 2 f

0 2 ax2 3x

1 - 1
transforms to 2 21 V(x), where V(x) = -- + f2 .

It is easy to see that the Filter algebra b is isomorphic to the Lie

algebra with generators

1 d2 1 1 2
2dx 2 -V(x) - x ,x

We now see that if V(x) is a quadratic, then this Lie algebra is

essentially the 4-dimensional oscillator algebra corresponding to the

Kalman Filter in Example 1.

What we have done is to introduce the gauge transportation

p (t,x) + Y (x)p (t,x) , where p (t,x) is the solution of the D-M-Z

equation and what we have shown is that the Filter algebra is invariant

under this isomorphism.
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However, for the class of scalar models considered in (12) with

general drifts f, the Benes problem is the only one with a finite-

dimensional Lie algebra (we restrict ourselves to diffusions defined on

the whole real line). For further details on this point the reader

should consult Ocone [9].

There is no difficulty in generalizing these considerations to the

vector case, provided f is a gradient vector field.

3.2 The Weyl Algebras and the Cubic Sensor Problem.

The Weyl algebra Wn is the algebra of all polynomial differential

operators IR(x1 , ... ' xn ) 
n n

A basis for W consists of all monomial expressions
n

x ~~ an B,
axB a= 1 .. axna n

where a, range over all multiindices = ' ' )' = ( 6 ' )

n1' n

W can be endowed with a Lie algebra structure in the usual way. The

centre of W , that is the ideal J= {ZSW l[x,Z] = 0, VXW } is the one-
n ' n

dimensional space IR - 1 and the Lie algebra W n/ R 1 is simple.

Consider the cubic sensor filtering problem:

x = W

yt = xt dt + dit .

Then the filter algebra F generated by the operators

1 d2 1 6 3
c~= 2 d2 - x , and 91 = x is the Weyl algebra W1/IR.2 dx 2 1

A proof of this can be constructed by performing calculations similar to

that in Avez-Heslot [16].

3.3 Example with Pro-finite-dimensional Lie Algebra (cf. Hazewinkel-

Marcus [10]).
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Consider the filtering problem:

xt = W

d t = x2dt

dy t =xtdt + dv t

In [17] it was shown that all conditional moments of t can be

computed using recursive filters. For this problem .Yis generated by

2 3 1 92 1 2
-x a - 2 - - x = Y and x = 61' A basis for,> is given by wand

ai a oi pi
x Sil ' Magi t gi I= o,l, ...

Defining Ci to be the ideal generated by x i, = 0,1,2,

it can be shown ~-is a pro-finite-dimensional filtered Lie algebra,

solvable and F/i. is finite-dimensionall and can be realized in terms of

finite-dimensional filters corresponding to conditional statistics.

Remark 1.

Other examples of finite-dimensional filters can be constructed by

combinina the attributes of the Benes example considered in Section 3.1

and the example of section 3.3. Thus, in example 3.3 the process xt may

be replaced by

dxt = f(xt)dt + dw t

df 2 2
where f satisfies d f ax + bx + c, and a,b,c are chosen so that

dx

this equation has a global solution. Then it is shown in [18] that all

conditional moments of it can be computed using finite-dimensional

recursive filters.

Remark 2

The Lie-algebraic and representation approach to the filtering

problemv is really concerned with the "classification" question for
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filters. The actual construction of the filter can apparently be achieved

using probabilistic techniques.

4. Existence and Nonexistence of Finite-dimensional Filters and the

Homomorphism Ansatz of Brockett.

In Section 2 we have given the definition of a finite-dimensional

filter. We would consider (5) and (6) as the description of a control

system with inputs yt and output ft. Furthermore, as we have said we may

assume that (5) - (6) is minimal in the sense of Sussmann. We thus have

two ways of computing 4t --one via (2) - (4) (D-M-Z equation) and the

other via (5) - (6). The ansatz of Brockett says: Suppose there exists a

finite-dimensional filter and consider the Lie algebra of vector fields

generated by a(It) and B(Et) and call this Lie algebra L(Z). Then there

must exist a non-trivial homomorphism between the Filter algebra 'Fand

L(Z) such that -T+a and h.i + i where .i is the i row of .

Conversely, suppose that the Lie algebra ecannot be generated as the

Lie algebra of vector-fields with smooth coefficients on some finite-

dimensional manifold, then there exists no such homomorphism and hence no

conditional statistic can be computed using a finite-dimensional filter.

The Brockett ansatz suggests a possible strategy for obtaining

finite-dimensional filters for computing certain conditional statistics.

Suppose, we are in the situation of Example 3.3, that is, the Lie algebraF

is pro-finite dimensional. Since F/_. is finite-dimensional it has a

faithful finite-dimensional representation (by Ado's theorem) and hence can

be realized with linear vector fields on a finite-dimensional manifold

which may give rise to a bilinear filter computing some conditional

statistic. However, what statistic this filter computes is in general

difficult to determine, and one has to resort to indirect and probabilistic

techniques for this determination. One should also remark again that r(or



any of its quotients) need not be finite-dimensional for a finite-

dimensional filter to exist.

4.1 Kalman Filter Revisited

It is instructive to view the Kalman filter in the light of the above

discussion and solve explicitly the corresponding D-UI-Z equation. We shall

consider the special case where the Filter Lie algebra is generated by

{ Ex2 - '2 d- x , I}. For a rigorous justification of the

calculations which follow see Ocone [9].

The basic idea is to do the following formal calculation which needs

to be justified.

Suppose that we want to solve the evolution equation

(13) dt Lip + u(t)L2 p , where

L1 and L2 are in general unbounded linear operators and u(t) is a given

continuous function. Let us assume that'the Lie algebra of operators

A{L1, L2} has a finite set of generators {L1, L2, ... , Ld}. We try a

solution

(14) p(t) = exp(g1 (t)L 1 )exp ( 2 (t)L2 ) ... exp(gd (t)L d )P(o)

where p(o) is the initial condition. For ideas similar to this in the

context of ordinary stochastic differential equations, see Kunita [19].

Differentiatina the above, we get

dt = gl(t)Llp + g2(t)exp(gl(t)L 1 )L2exp(g 2 (t)L2 ) ... exp(gd(t)Ld)P(o)

+ gd(t)exp( l(t)L1 ) ... LdexP(d(t)Ld)P(O).

Now, we use the Campbell-Baker-Hausdorff formula: for 1 < i, j < d,

d
i,j

exp(tL.)L (t)L exp(tL.) repeatedly to obtain
m-)L m 1 m
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(15) Fl(gt),g(t)) + F (t)(t)Ldt d (9=/? d

for some non-linear functions F. of g(t) = (gl(t) '' ' ' gd(t)) and g(t).

For (15) to define a solution of (13), we need

Fl (g(t), g (t) )

F2(g(t) g(t) ) ,g (t)

Fj (g(t), g (t)) = O for j>2.

For the Kalman-filter problem considered, one gets (formally)

gl(t) = 1

y(t) = g2(t)coshgl(t) + g3 (t)sinhgl(t)

O = g2(t)sinhgl(t) + g3(t)coshgl(t)

o = g4(t) - g3 (t)g2(t)

gi(O) = 0 , i = 1, 2, ... 4.

One can explicitly solve the above set of equations to obtain

t

g2 (t) = Jo cosh(s)dy(s)

g3(t) = -otsinh(s)dy(s)

g4 (t) = Jot(sinhs) (coshs)ds - o g 2(s)sinh(s)dy(s)

where we have now used stochastic integrals.

Substituting the above in (14) and using

(etLt )(s) = f_ G(x,y,t,)~(y)dy , t > 0, where

G(x,y,t) = (2Tsinht) 2exp[- (coth)(x2 +y2 ) + xy/sinh ,

one gets

p(x,t) = mk(z,t)exp( -p [x-m(t) [x-m ])p(z)dz

where p(t) = tanht

tz = t sinhs
m(t) = cosht + cosht dy(s)

o
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(and k(z,t) is a function which can be computed), which is the

familiar Kalman-filter solution.

The essential point in proving the above results rigorously is to note

1 d 2 12
that -2 d + x generates a positivity-preserving Hypercontractive

1 d2 1 2 d
semigroup and that the operators -- 2 d+ x , x, dxhave a common dense

set of analytic vectors.

Finally, since the Lie algebra corresponding to the Kalman filter is

solvable (14) is a qlobal representation for the solution.

We remark that the Benes problem considered in Section 3.1 can be

integrated in exactly the same fashion.

Note also that this method computes the fundamental solution of the

D-M-Z equation and hence these ideas can be applied to solve Kalman

filtering problems with non-Gaussian initial conditions.

4.2 Non-Existence of Finite-Dimensional Filters

In an earlier part of this section we have suggested a strategy for

obtaining finite-dimensional filters when the Lie algebra of the filter

has a "good" ideal-structure using the Brockett Homomorphism Ansatz. We

have also remarked how the same ansatz may lead to negative results.

Now, in section 3.2 we have shown that for the cubic-sensor problem

the Lie algebra of the filter is isomorphic to the W1/IR. In [10],

Hazewinkel and Marcus have shown that W1/IR cannot be realized as the Lie

algebra of vector fields with smooth coefficients on a finite-dimensional

smooth manifold. On the other hand, Sussmann [11] has shown that if there

is a finite-dimensional filter for a conditional statistic, then there

exists a non-zero homomorphism of Lie algebras according to the Brockett

prescription. Some further work combining these two ideas shows that no

conditional statistic for the cubic-sensor problem can be computed using

finite-dimensional filters.
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We conjecture that essentially similar results can be proved for the

following class of filtering problems:

dx t = f(xt)dt + dw t

dyt = xtdt + dy t

Suppose that f satisfies:

df 2
+ f = V(x), where V(x) is an even-positive polynomial. Then

dx

the Lie algebra for this filtering problem is an algebra which is isomorphic

to the Weyl algebra Wl,/R, and hence all the above results of this section

will hold.

4.3 Some Recent Positive Results

There have been some recent positive results using the Lie-algebra

formalism. One such result is concerned with the asymptotic expansion in £

of the unnormalized conditional-density for the filtering problem

dx t =axtdt + dw
t t t

dy t = [xt + E(xt) ]dt + dy t, k>l 1

Yo = 0; Po(x) Gaussian ,

where £ is some small positive answer.

For this class of problems it has been shown [20], [21] that the

various terms in the formal asymptotic expansion of p (t,x) can be

computed by finite-dimensional filters using the ideas developed in this

section.

We close this section with a remark on the identification problem for

linear stochastic dynamical systems. These problems can be viewed as

non-linear filtering problems and lead to Lie algebras which are known as

"current-algebras" in mathematical physics. The integration of these Lie

algebras in a rigorous manner has recently been done in the work of
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Hazewinkel-Krishnaprasad-Marcus [22].

5. Non-linear Filtering and Hamilton-Jacobi-Bellman Theory.

An entirely different geometric approach to non-linear filtering

arises by giving the D-M-Z equation a stochastic control interpretation via

an exponential transformation. This was done in joint work with Wendell

Fleming [6 ]. The exponential transformation p(t,x) = exp(-S(t,x)) leads to

Hailton-Jacobi-Bellman equation for S(t,x). It has been shown in [7]

that one is interested in maximum a-posteriori probability filters or

maximum-likelihood filters then these filters can be constructed using S

(or equivalently) p. The assumption that S is a Morse-function (with

parameters) leads to an interesting geometric theory for non-linear

filtering. This will be developed elsewhere.
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APPENDIX

Orn Lie Algebras, Lie Groups and Representations

For most of this paper, the Cc-manifold we will be interested in is

IRn (which is covered by a single coordinate system).

We shall say that a vector space Y over IR is a real Lie algebra, if in

addition to its vector space structure it possesses a product x 2 + i:

(X,Y) -[X,Y] which has the following properties:

(i) it is bilinear over LR,

(ii) it is skew commutative : [X,Y] + [Y,X] = 0
X,Y,Z£E'

(iii) it satisfies the Jacobi identity:

[x,[Y,Z]] = [Y,[Z,X]] + [Z,[X,Y]] = 0

Example: M (IR) = algebra of n x n matrices overIR.

If we denote by [X,Y] = XY - YX, where XY is the usual matrix product,

then this commutator defines a

Lie algebra structure on M1 (R).
n

Example: Let XM) denote the C -vector fields on a Cm-manifold M. 9(M)

is a vector space over R and a C (M) module. (Recall, a vector field X on

M is a mapping: M -+ T (M): p-*x where p£M and T (M) is the tangent space
p p

to the point p at M). We can give a Lie algebra structure to b"(M) by

defining:

f = (XY - YX) f X (Yf)- Y (Xf) , fE£CC(p)
c-p Pp

(-he Ca- functions in a neighborhood of p), and

[X,YI = XY - YX.

Both of these examples will be useful to us later on.

Let Y be a Lie algebra over R and let {X1 . X } be a basis of 5'
1' ° ° n

(as a vector space). There are uniquely determined constants

c £ IR (l<r,s,p<n) such that
rsp
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[X Xs ] = c X
l<p n rspp

The c are called the structure constants of relative to the basis
rsp

{X1, ... , X }. From the definition of a Lie algebra:
n

(i) c + c = 0 (l<r,s,p<n)
rsp srp

(ii) + (c c + c c =0 (l<r,st,u+n).
<< rsp ptu stp pru trp psu)

Let ? be a Lie algebra over R. Given two linear subspaces M,N of 2?

we denote by [M,N] the linear space spanned by [X,Y], XcM and YEN- A linear

subspace K of _T is called a sub-algebra if [K,K]CK, an ideal if [9?,K] CK.

If i andS' are Lie algebras overIR and T7:+±?-' : X+Tr(X), a linear

map, X is called a homomorphism if it preserves brackets:

[T(X), IT(Y)] = IT([X,Y]) (X,YYiC).

In that case r7 M is a subalqebra of £?' and ker 7 is an ideal in S?.

Conversely, let 9 be a Lie algebra over R and K an ideal of SC. Let

~' = SC/K be the quotient vector space and 7r~)-S9 ' the canonical linear map.

For X' = T(X) and Y' = T7(Y), let

[X' ,Y'] = 7 ([X,Y]).

T'iis mapping is well-defined and makes 9?' a Lie algebra over IR and 7 is

thnen a homomorphism of - into Y' with K as the kernel. if' = T/K is called

the quotient of Bby K.

Let1 be any algebra over P., whose multiplication is bilinear but not

necessarily associative. An endonorphism D of 1(considered as a vector

space) is called a derivation if

D(ab) = (Da) b + a (Db) a, b £°9

If D1 and D2 are derivations so is [D1,D 2] = D1D2 - D2D 1

The set of all derivations one(assumed finite dimensional) is a subalgebra

of gl(t, the Lie algebra of all endomorphisms of W1.

For us the notion of a representation of a Lie algebra is very
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important.

Let Y be a Lie algebra over IR and V a vector space over IR, not

necessarily finite dimensional. By a representation of ' in V we mean

a map.

: X -+ (X) : A-d gl(V) (all endomorphisms of V), such that

(i) E is linear

(-ii) T([X,Y]) =7(X)7T(Y)-'r(Y)T7(X).

For any XEC let adX denote the endomorphism of 9?

adX : Y+[X,Y] (YEa?).

adX is a derivation of S and X- adX is a representation of £ in S?,

called the adjoint representation.

Let G be a topological group and at the same time a differentiable

manifold. G is a Lie group if the mapping (x,y)- xy : GxG - G and the

mapping x+x : G+G are both Co-mappings.

Given a Lie group G there is an essentially unique way to define its

Lie algebra. Conversely, every finite-dimensional Lie algebra is the Lie

algebra of some simply connected Lie group.

In filtering theory some special Lie algebras seem to arise. We give

the basic definitions for three such Lie algebras.

A Lie algebra Yover R is said to be nilpotent if adX is a nilpotent

endomorphism of S, VXEXC. Let the dimension of Yi be m. Then there are

ideals .~ of Ysuch that (i) dim J = m-j , O<j<m.

(ii ° =-12- *--..* 
= 0 and (iii) [ 1,Cj] c l O-j-<m-

Let g be a Lie algebra of finite-dimension over IR and write qg = [g,g].

qg is a subalqebra of g called the derived algebra. Define!Pg (p>_o)

inductively by

91 g = g

-Pg -= pP- la) (p>l).
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We then get a sequence ° 0g~D !lg ... of subalgebras of g. g is said to

be solvable if Pg = 0 for some p>l.

Examples

(i) Let n>O and let ( ... ' Pqn' 1q' . q ,z) be a basis for a real

vector space 4.' Define a Lie algebra structure on Y/by [pi,qi] =

[qi,Pi] = Z, the other brackets being zero. This nilpotent Lie algebra

4'is the so-called Heisenberg algebra.

(ii) The real Lie algebra with basis (h,p1, ... , pn,ql, ... q ,Z)

satisfying the bracket relations

[h,Pi] qi ' [h,qi] = Pi ' [Piqi] = Z, the other brackets being

zero is a solvable Lie algebra, the so-called oscillator algebra. Its

derived algebra is the Heisenberg algebra <.

A Lie algebra is called simple is it has no nontrivial ideals. An

infinite dimensional Lie algebra f? is called pro-finite dimensional and

filtered if there exists a sequence of ideals -iDJD2 ... such·i/_i is

finite-dimensional for all i and C',- = {0}.

Infinite-Dimensional Representations

Let g be a finite dimensional Lie algebra and G its associated

simply connected Lie group. Let H be a complex Hilbert space (generally

infinite-dimensional). We are interested in representations of g by

means of linear operators on H with a common dense invariant domain A.

Let r denote this representation.

Similarly, we are also interested in representations of G as

bounded linear operators on H. Let T be such a representation. That is,

T : G - L(H) satisfies

T(glg 2) = T(gl) T(g 2 ) ' gl 2 £G.

The following problem of Group representation has been considered

by Nelson and others. Given a representation 7 of g on H when does
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there exist a group representation (strongly continuous) T of G on H such

that

T(exp (tX)) = exp (t(X)) VX£G

Here exp (t7T(x)) is the stronqly continuous group generated by '7(X) in

the sense that

dt exp(tr(x)) = 7(X)¢ 

and exp (tX) is the exponential mapping, mapping the Lie algebra g into

the Lie group G.

Let X1, ... Xd be a basis for g. A method for constructing T

locally is to define

T(exP(tlX1) ... exp(tdSd)) = exp(t1t(X 1)) ... exp (td1 (xd))

A sufficient condition for this to work is that the operator

identity

(3.1) exp(tA.)A. = [adAjnA.exp(tA
] 1 enxp1

n-o

holds for A, = V(X.) , l<j, j<d.

It is a well known fact, that many Lie algebra representations do

not extend to Group representations. An example is the representation

of the Heisenberg algebra consisting of three basis elements by the

operators {-ix d. -i} on L (ER+) with domain CO (G+) which does not
dx o

extend to a unitary representation (since essential self-adjointness

fails).

Although in filtering theory we are not interested in unitary group

representation, nevertheless these ideas will serve as a guide for

integrating the Lie algebras arising in filtering theory.


