
December 1981 LIDS-P-1212

Query Processing

in Distributed Heterogeneous Databases *

by

Kuan-Tsae Huang

Wilbur B. Davenport, Jr.

* The authors are with the Dept. of Electrical Engineering and

Computer Science and the Laboratory for Information and Decision

Systems at Mass. Institute of Technology, Cambridge. Mass. 02139.

d* This research was conducted at the MIT Laboratory for

Information and Decision Systems with support provided by the

Office of Naval Research under contract ONR/N00014-77-C-0532.

Abstract

In order to bring distributed heterogeneous DBMSs which are

implemented with relational. CODASYL or hierachical models

together to share the information resources and build new kinds

of applications, we propose to use relational model as global

conceptual model and ALPHA as global nonprocedual high-level

query language. We described the distributed query processing

scheme in this environment. A schema translation and query

translation for CODASYL system case are discussed. Relational

and Hierachical systems can be treated similarily.

1. Introduction

Database management systems are amongst the most important

and successful software developments in this decade. They have

already had a significant inpact in the field of data processing

and information retrieval. The existing commercial systems are

almost exclusively based on one of the three data models:

relational, CODASYL and hierachical. Many organizations have

developed independently their own databases on their own

computers and database management systems based on one of the

three data models to support the planning and decision making in

operations. Each DBMS has its own intended schema. access

control. degree of efficiency, security classification and

operational requirements, etc. Often, different databases may

contain data relevant to the problem although their structure and

representation could be different. If we can bring together all

these databases in several locations in order to integrate

information resources and build new kinds of applications to help

operations. it will be beneficial.

Prior work on this problem have used two approaches. One is

to convert and to migrate the entire database from one type of

system to the other type of system. [SHL 75] and [SU 76] are

works in this direction. The other approach is to maintain the

original database and provide an effective information exchange

among the different systems without incurring mass data

migration. A global data model is used to provide users with a

common schema. Each data base can both operate in its own local

-4-

mode and participate in the distributed system. [AD77], [CP 80]

ans [SBD 81] are in this direction. Our approach [HD 81] can be

classified into the second category. The main differences of our

approach from others are that-we take advantage of the relational

data model and use a very high-level non-procedural language as a

common language for a user interface.

Although many logical data models have been proposed which

model the real world in terms of the interested objects and the

interrelation between them. it is clear that there is no mental

model which is good for all users. We choose a relational data

model as global data model in order to provide a central view to

the users bases on the following reasons:

1. The relational data model shields the user from data

formats. access methods and the complexity of storage structures.

2. It supports a high-level non-procedural query language.

3. The storage and data structures are very simple. all data

is represented in the form of records.

4. Access paths do not have to be predefined. A number of

power operators are supported in relational model, e.g., select,

project. join. etc. for data retrieval.

5. Because of the decline of hardware costs and the rise of

manpower costs. a high-level nonprocedural manipulation language

is necessary in orderto minimize the user workload.

6. The relational model provides a simpler and powerful

interface to the data.

7. The relational model has a fast response to ad hoc

-5-

queries which are considered to be high-percentage of queries.

8. The advance in associative storage devices offers the

potential of greatly improving the efficiency and therefore the

performance of relational system.

Our basic underlying assumptions are: 1. It is possible to

exchange information amongst the various system and they are

willing to maintain information. 2. Each DBMS is condsidered to

be able to execute a given local transaction. 3. There exists a

communication network which connects the various DBMSs. 4. the

access to a local DBMS is not affected by the operation of the

data communication system which should transparent to the local

user. 5. The communication cost is the dominant factor and hence

local processing is essentially free.

2. Query Processing in Heterogeneous Environment

Based on the architecture of the database communication

system (DCS) we proposed in [HD81] . we adopt the relational

model as the global conceptual model. It is necessary to provide

a relational schema for each database. For those databases in

which the underlying data models are not relational models.

schema translators will be required to do the translation jobs. A

specific schema translator is needed for a specific data model to

translate the underlying schema to a relational logical schema.

The integration schema consists of information about integrity

constraints. data incompatibility and data redundancy. This

integration schema can be viewed as a small database. For the

query which is against this local relational schema. it is also

necessary to provide translation rules to translate the

relational operations into data manipulation language statements

of the underlying data model. The users will see the system as a

distributed relational database system.

In our approach, each database system is presented to a user

with a global relational schema. A query for data access or

update is specified in terms of a relational calculus-like

qualification over relations with a target list. Codd's data

sublanguage ALPHA (DSL ALPHA) [CODD 72] is one of the

calculus-based data sublanguages. It consists simply of the

relational calculus in a syntatic form which more closely

resembles that of a programming language. In practice, the syntax

would have to be compatible with that of the host language,

whatever that was. For our purpose. we shall use the syntax of

ALPHA which is expressed in [CODD 70]. An example of a query

expressed in ALPHA is:

EXAMPLE:

Let the query be "Get SNO values for suppliers who supply a

LONDON or PARIS project with a red part". The corresoponding

ALPHA statement of this query will be:

RANGE P PX

RANGE J JX

GET W (SPJ.SNO) : PX JX(PX.COLOR='REDT

A(JX.CITY='LONDON' V JX.CITY='PARIS')

nSPJ.PNO=PX.PNOASPJ.JNO=JX.JNO)

-7-

The list of attributes within parenthesis of W is the target

list which specifies the attributes to retrieve. The

predicate calculus following ":" is the qualification

The query optimizer in the query processing unit of the

system will transform the query into an optimal sequence of

relational algebra operations. In order to execute the

operations against the local DBMS, we have to translate a

relation algebra operation against this DBMS to a program of DML

statements of the target system. The query translator plays the

role of this process.

We assume in this paper that the transmission mode of any

system be all-records-at-a-time, the form of data after being

retrieved from local DBMS and temporarily stored in user working

area (UWA) of each local DBMS are in relational table-like form

and each DCS has the ability to execute relational algebra

operations. These assumptions will enable easier data

transmission when it is required. In the next section. we

address the problem of designing a schema translator and a query

translator of CODASYL data model. Relational and hierachical

systems can be treated similarily. We focus on those changes

that must be made because of the different in the level of

procedurality of the relational algebra operators and data

manipulation language of target data models.

3. Network model case

A great deal of attention has been focused on the network

approach since the publication in April 1971 of the CODASYL DBTG

final report [CODA 71]. A number of commercially available

systems have used one or more versions of the specifications as

the implementation base. While those commercial implementation

may show slight differences, their underlying concepts are based

on the same CODASYL/DBTG data model.

3.1 Schema translation

The schema is the logical description of the data base. A

schema description in th DBTG DDL includes four types of

declarations: The schema name description. Record type

declarations, Set declarations and Area declarations.

There are two kinds of record types in the CODASYL/DBTG

model: a description record type and a connection record type. A

description record type in the DBTG data model has a record ID,

and one or several attributes describing properties of the

record. It is very similar to a relation in the relational data

model with the record ID as the key attribute. Therefore, a

description record type can be translated to a relational schema

directly. A connection record type is introduced when n types of

entity (represented by n description record types) are to be

connected. N set types also introduced. Each of the n "entity"

record types is made the owner of one of the set types, and the

connection record type is made the member of them, Each

connection record occurrence is made a member of exactly one

-9-

occurrence of each of the n types of set and thus represents the

connection between the corresponding n entities. For this record

type we define a relation schema R with attributes consisting of

the keys of the owners of the-n sets in which this record is a

member and the data items of this record. The key of this

relation is the set of keys of the owners of the n sets.

A set type is defined in the schema to have a certain type

of record as its owner and some other type of record as its

member. Each occurence of a set type consists of precisely one

occurrence of its owner together with zero or more occurences of

its member. For each set type. we do not correspondingly define a

relational schema. We create a table in each node to record all

the sets which can be thought of as an access path relation. This

table contains three attributes, { set, owner, member }. It is

used in the query translation process from a relational operator

to CODASYL DML statements in order to identify the access path.

The table can be thought of as a new relation which is stored in

the local database and only used for query translation. This

table provides information of record access paths.: It isn't

joined to the global schema to be presented to the user.

An area is a storage space of a DBTG database. For each type

of record the schema specifies the area into which occurrences of

the record are to be placed when they are entered into the

database. This area type is correspondingly mapped to the

horizontal or vertical partition of a relational database which

may require to create a new relational schema. In this paper. we

-10-

shall assume that all occurrences of a given type of record are

to go into a single area.

EXAMPLE [DATE 77]

Assume the supplier-part-project database S is stored in a

CODASYL version DBMS. The schema of this database is defined as

follows.

SP-
After applying the rules of schema translation. we define the

following relational schema:

S=(SNO. SNAME. STATUS, CITY)

P=(PNO. PNAME. COLOR, WEIGHT)

J=(JNO. JNAME. CITY)

SPJ=(SNO, PNO. JNO. QTT).

We create an access path relation as follows:

set owner member

S-SPJ S SPJ

J-SPJ J SPJ

P-SPJ P SPJ

S SYSTEM S

P SYSTEM P

J SYSTEM J

3.2 Query Translation

A query in CODASYL model is a sequence of DML statements

which are embedded within a program as a syntactic extension of

the host language. The details of CODASYL DML are described in

[DAT 77]. In the distributed DBMS environment. we assume each

system has a SEND command which can send a file or part of UWA

from one system to another system. To update a database, or to

create a new record, it is required to retrieve the data

occurrence to be updated or to create a new data occurrence in

UWA. After updating the data occurrence in UWA. a MODIFY or

STORE statement is then applied. Therefore, we only need to

consider retrieve operations. We first study the translation

procedures for two unary algebra operators: project and select.

We assume R={AI .A2.,A}, X={A I.....AK}. PROJECT, denoted

by T x(R), is to retrieve the attributes in X of each record in

R. The algorithm PROJECTN(R,X). as shown below is toj translate

T]x(R) into a DML program.

PROJECTN(R.X):

IF (T[J5et(t)='R-set' and -T,~fo¢0,(t)='system')

/* description record */

THEN NXT: FIND next R within R-set;

IF end of set GOTO quit;

GET A IIN R , A N IN R;

GOTO NXT.

ELSE IF (T (t)='S-R t and ITo (t)='S')
Cj~~~t) Io~~{~ney)

-12-

/* connection record */

THEN NXT: FIND next R within S-R;

IF end of set GOTO quit;

GET Al in R ... A_ in R.

GOTO NXT.

Let Y={A1 ,A 2 ,.., A, } < R. SELECT. denoted by

Ogj ,CR), is to select tuples in R such that R.A='RA....... R

'. The algorithm below is the translation algorithm.

SELECT(R,Y,c, ,c I,...,c):

IF (R is a connection record)

THEN if (some A, is and attribute of S) & (S-R is a set)

THEN BEGIN

MOVE 'cl' to A, in S;

FIND any S;

IF S-R empty GOTO quit;

MOVE 'c ' to A2 in R;

MOVE 'cr' to AK in R;

FIND any R within S-R;

IF end of set GOTO quit;

GET R;

END;

ELSE BEGIN

/* there exist some S s.t. S-R is a set */

NXT: FIND next S within S-set;

IF end of set GOTO quit;

GET A in S;

MOVE 'c I to Al in R;

MOVE 'c ' to A K in R;

FIND any R within S-R;

GET A I in R. .. , A£ in R;

IF end of set GOTO NXT;

END;

When the two operands of the operator are in different

systems. we always retrieve the first operand and store in user

working area as a relation and then send it to the other system

to produce the final result. We consider a binary operator. join,

as an example. Let R I and Rz be two relational schemas at

different systems S t & S respectively and X=R 1I R. be the set of

attributes in R! and R2. Without lost of generality. we assume

X={A lI,Az ,...,A }. Let TX and Tz be the temporary relations. The

distributed join of R, and R. over X is a distributed query

operator which executes the following sequence of operations: 1.

retrieve R 2 from S 2 as To; 2. send T. from S2 to S, ; 3. R IXI T

at site S1. The query translation of this operator is as follow:

IF R I and R 2 are both relational DBMSs

THEN execute it as relational operator;

ELSE IF R, is relational and R2 is CODASYL

-14-

THEN

Po(R2 ,R2) at Sz as T ;

send T from S, to SI;

execute R !XIX-R 2 as relational operator;

ELSE IF R ! is CODASYL

THEN

retrieve R2 from S2 as a elation T;

send T from S. to Si;

For all te T

SELECTN(RI ,R I-X,t ,t,..., t K) ;

This operation will create a new relation T' with relation schema

RI U R2at working area of system S.

Semijoin, Union. Intersection and Difference of two

relations require two operands having the same set of attributes.

They can execute similarily by using project and select to

retrive data and put into relational form and then perform the

binary operation. If both two operands are stored in relational

systems then we just perform the relational operation. If one of

the two operands R are stored in CODASYL system, then we use

PROJECT N (R,R) to retrieve R to form a relation and perform

relational operation afterward. If both two operands are stored

in CODASYL systems, then we must consider two cases. If the

results of the operation are temporarily stored in UWA for using

by later operations. then we both use PROJECTN(Ri,RI) and PROJECTN

(RI ,R_) to retrieve both two operands as two relations and send

one relation from one site to the other to perform the operation;

-15-

or we can use PROJECT to retrieve one operand as a relation and

send to the other site and then perform selections.

When the two operands of a binary operation are at the same

site and are stored in a CODASYL system, then we can perform the

operation as the same sequence we discussed above. However. we

can do it in a more efficient way because it is not necessary to

retrieve one operand as a relation first in the execution of this

operation. We can use solely CODASYL DML statements to perform

this operation and do it by record-at-a-time or set-at-a-time. In

some cases, we even can do it much better by combining a sequence

of relational opeations which reference data stored at the same

CODASYL system and translating them to a sequence of CODASYL DML

statements.

4. Conclusions

In this paper. we have presented detailed schema translation

rules for CODASYL data model translation to relational data model

and algorithms for translating a relational ALPHA query into

CODASYL DML statements whose associated databases hav:e themselves

been translated. The translation algorithms are developed for

each relational atomic operation. The translation procedures are

based on the relational operations sequence provided by query

optimizer with the objective of minimizing communication

complexity and are done one relational algebra operation at a

time, It also uses the information of access path relation. Some

optimization for the local query processing can be made by

translating a subquery which is a continuing subsequence of

relational operations which reference data at the same DBMS into

a sequence of CODASYL DML statements rather than translating one

operation at a time. Bec-ause our major concern is the

communication cost. this local processing optimization are not

considered in this paper.

REFERENCES

[AD 78]
Abida, M. and Portal, D. A cooperation system for
heterogeneous data base management systems. Inform.
Systems 3(3):209-215, 1978.

[CODA 71]
Data Base Task Goup of CODASYL programming language
committee, Report, ACM Apr 1971.

[CODA 78]
CODASYL data description language committee, DDL
Journal of Development 1978.

[CODD 70]
Codd, E. F. A relational model for large shared data
bases. Comm. ACM 13(6):377-387, Jun 1970.

[CP 80]
Cardenas, A. and Pirahesh, M. H. Data base
communication in a heterogeneous data base management
system network. Inform. Systems 5(1):55-79, 1980.

[DAT 77]
Date, C. J. An Introduction to Database Systems, 2ed,
Addison Wesley, Reading Mass. 1977.

[HD 81]
Huang,K.T. and Davenport, W.B. Issues in distributed
database management systems. The 4th MIT/ONR Control,
Command and Communication workshop. 1981.

[SHTGL 77]
Shu, N., Housel, B., Taylor, R. W., Ghosh, S. P., Lum,
V. EXPRESS: a data extraction, processing and
restructuring system. ACM TODS 2(2). Jun 1977.

[SLH 76]
Shu, N., Lum, V., Housel, B. An approach to data
migration in computer networks. IBM Rep. RJ 1703 1976.

