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Abstract

We develop a mathematical model to compute the minimum

communication cost of a join-semijoin program for processing a

given equi-join query. Some definitions and conditions uponwhich

this paper is based are stated. We define a query processing

graph for each equi-join query and characterize the set of

join-semijoin programs which solve this query. A rule for

estimating the size of the derived relation is derived. The

parameters for estimating the size of derived relation form a

consistent parameter system. With the assumption of

communication cost dominance, the cost functions are linear in

the size of data transmission. An optimization problem for

distributed query processing is well formulated.
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1. Introduction

Query processing in distributed relational databases

corresponds to the translation of requests. formulated in a

nonprocedural relational calculus like language. into a sequence

of relational algebra operations which retrieve and update data

stored in the distributed database management systems (DDBMSs).

Given a database schema D={R,,R ,..., Rm }, a query can

usually be written in a number of alternative algebraic

expressions. In particular, each query can be put in the

following form:

Q = -PEL - (RlxR 2x... xR )

where TL contains the attributes in the answer relation; q is a

predicate and each R is a relation. Usually, TL is referred to

as the target-list and q as the qualification of a query. We

shall assume all queries are expressed in this canonical form.

denoted by Q=(q, TL).

In distributed query processing, the execution of a query

involves data transmissions which may take significant time in

comparison with the subquery and elementary operation execution

times. We assume that the data communication costs dominate the

local processsing costs. so the local processing cost of a query

(e.g. costs of selection and projection ) are negligible. In this

paper, our objective is to minimize the total data transmission

cost for processing a query.
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For a query Q=(q,TL), let { R I, R 2, ... R, ) be the set of

relation schemas referenced by q and let X be the set of

attributes appearing in q. Before processing the query, we can

project each relation R; over attributes (X UTL)n R£. We then

execute those subqueries which reference to only one local

relation.

A query Q=(q, TL) is a conjunctive equi-join query if the

qualification q is a conjunction of equi-join clauses of the form

(R i . X= Rp.Y), where X and Y are subsets of attributes of R. and

R. respectively.

In this paper, we restrict our study to a class of equi-join

queries. Although it is a subset of complete relational calculus

language, it is a rich and large class of queries in practice.

Data transmission is required when two relations that must

be joined reside at different sites. To perform the join, one way

is to move entire relation from one site to the other. The other

way is to replace a join by semijoins and then perform a join.

Assume R, and R. at different sites and we want to join R, and R.

at the site of R. . Using semijoin strategy, one can send the

projection of R on its joining column to R 's site and perform a

semijoin to reduce R i by R. before sending R to R.'s site. This

will be a profitable tactic only whenever the projection of R 2 on

its joining columns smaller than the amount by which R I is

reduced by the semijoin.



Prior works in distributed query processing

[WONG77,GBWRR80,CHIU79,HY79] were either limited to strategies of

performing semijoins first and then joins or without a consistent

parameter system to estimate the size of derived relation.

In this paper, we first state some definitions and

conditions uponwhich this paper based. We then define a query

processing graph for each equi-join query and derive a theorem

about the set of join-semijoin programs which solve this query.

Next. we define a rule for estimating the size of derived

relation and prove that the parameter system we defined is

consistent. With the definition of cost functions, we develop a

mathematical model to compute the minimum communication cost of a

join-semijoin program for processing a given query.

2. Query Processing Model

A query Q specified by a qualification q over the relations

Ri , R2 ...,R n, and by a target list TL can be decomposed into a

set of operations { P1, 2....-- P which will produce the answer to

the query, where piE 4, the set of relational algebra operators.

In general, a query can be decomposed into several different

executing sequences which will produce the same answer. We call

such an executing sequence a strategy. Let S(Q) denote the set of

strategies which answer the query Q. The goal of the problem is

to minimize the overall cost of executing this query Q. We can

formulate this problem as
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MIN f(P,D[OI)= C f (p3,D[i])
P-S(Q) '-1

s.t. P=pl .....

D[i+l] =p(D [i] )

D[EO is the initial database state

2.1 Definitions and Assumptions

We assume that the distributed database management system

DDBMS consists of a collection of interconnected computers S t, S2

...... S at different sites. Each computer, known as a node in

the network, contains a DBMS. Data are logically viewed in the

relational model. By the univeral relation interpretation

[BFMMUY 811, we assume that each site only consists of one

relation-

Data transmission in the network is via communication links.

We assume that the transmission cost to send one byte of data

between any two sites i & j is known and equal to c . So the

cost function of transmitting data of volume V between two sites

i & j is a linear function C..(V)=ci.*V. We assume that all

possible subqueries involving data at single site are

preprocessed; this we call local processing. The effort of local

processing is to reduce the amount of data that needs further

processing. After local processing, the following parameters of

the qeury can be defined.
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n = number of sites (i.e. relations) in the remaining query

di = I R; I , number of attributes in site RX

Xi = Rn Ri , the set of attributes of joining domains

between R2 & R'

r. = number of tuples in relation R.

w(A) = the width of data item of attribute A in relation RX

s. = r* * I w(A) , the size of the relation R2

w(X i[ )= Z, w(A)

Next, we define several terminologies used in this paper.

Let (R£,rl) and (Ra,r ) be two relation states and X C R^n R 

Definition:

The equi-join of R. and RS on X, denoted by R X Rb , is

{tlt is a tuple over R. U RF such that t[Ri]6 ri A t[R] E ri

}.

The semijoin of RLand Rpon X, denoted by R. iX Rp, equals Ri

1 R [X]. Equivalently it equals {tlI tr4r/ A (r t 6 r,3 t.

XI =t' IX] ) }.

The natural join of R. & R , denoted by R IX| R , is the

join of R. & R-on R.A\ R.

The natural semijoin of R;& Rb, denoted by R. Ix R., is the

semijoin of R. & R. on R , n R.

Note that the join (resp. semijoin) operator is weaker than the

natural-join (resp. natural semi-join) operator in that:



R IXI R i Ri xl R X R. R .

R fX R C R. Ix R. V X.c R, \ R.

Definition:

A qualification q is called sub-natural iff for each clause

R. .AiC=Rj.Ap , ALV=Aip .

q is called natural iff the converse holds as well, i.e.

for all relation schemas R. and RP, and for all AKc Ra( Rig

R..AK=R .A is a clause of q.

Definition:

Given a database schema D={R! ,R 2,...,R n}, a query is called

an natural join query (NJQ) (resp. sub-natural join query ,

SNJQ) iff there exists a natural qualification (resp.

sub-natural qualification) for it and TLC U(D).

As shown in [BG 81], any query Q=(q,TL) with an equijoin

qualification q and a target list TL can be efficiently

transformed into an equivalent natural join query. Instead of

the class of equijoin queries, EQJ. we shall construct the query

processing model in terms of the class of natural join query,

NJQ.

In DDBMS, we define two types of directed operators.

Definition:

1. <IXlx~ (or R.<IXI Ri) is the distributed natural join

operator which send R. to R. and perform natural join of

R. and R. at R.'s site-

s oL A~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~_~_
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2. <IXz (or R.<IX R.) is the directed natural semijoin

operator which project X=R n Ri over Rk , send the

results to R. and perform the join of R, and the result

at R£'s site. (i.e. R. IXI T R- at Ri's site).

Note that IXI>.- =R- IXI>R. and Xl>X =RZ XI>R- are similarily

defined. One can use them interchangeablely. The semijoin

operation only reduces the relation state without changing

relation schema.

Definition:

A join-semijoin program P=plp 2 ... p, is a sequence of

distributed natural join and distributed natural semijoin

operators.

A natural join qualification q with final node at R can be

done by sending all relations R£, ill, to R I and performing R I

IXIRZIXI...IXIR, at node RI . So R2IXI>R 1, R 3 1XI>R I ,... R IXI>R,

or its permutation are join-semijoin programs of this

qualification q.

2.2 Query Processing Graph

We define a processing graph of a qualification over a

database schema D={R'" _to be a graph with two type of edges, <V~

.Aq.Bj>. V i is the set of node which is equal to D. Aa is a set

of semijoin edges which is {a, =(R,,Ri)EAI if RA.Ril4t and Rn Rd

}. We denote it by i --- >--- j with one arrow on the edge. Bq =V&

xVt ={b.^ IV itjl is the set of join edges. We denote it by i
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--- >>--- j with two arrows on the edge.

Note that if RJ\ RX=-, then we can not perform a semijoin

between R. and Ri So a is not a semijoin edge. If R _cC R

then Ri=RZc\R-. The semijoin of R2-tRp, R.XI>Rb, is the same as

join of R k to Rd, R IXIR . This operation is covered by join edge

b.·

Example:

R(={ A,,A2,A3,A 4}

R2={ A 2,A 3,AS,A6}

R3={ A 5,AqA 8}

The processing graph of the natural join qualification q is:

Without lost of generality, from now on we assume that the

final node of a query is node 1.

Definition:

A join-semijoin program P is correct for a natural join

qualification q if after executing the program P, the

final node will have a new relation R' = RI IXIRZ

XI... IXIRA.



Lemma 1:

Any directed path of edges in Bq from R Kto R~KF, bK. ,bKIC

..-.,bK ,will form a relation R IXIRK IXXI... IIRK~ in

node R ~

Proof: WE prove this by induction on the length of the path. If

1=1, then the path is by b. After this operation we will

have R <--- RKXIRK . By induction assumption on 1-1, Rag

<---R o IXIRKI IXI...IXIRKt_ . In the case of 1, for the

first 1-1 edges of this path, R'_=RK lXIRK IXI ... IXIR

by induction assumption. After performing beK , we will

have R'X =R 'XJR IXIR... IXIR .

Lemma 2:

Any directed spanning tree toward node 1 of edges in B.

will form R{IXIR2IXI...IXIRRfat node 1.

Proof: By lemma 1, any path from RK to R I will form a new

relation at node 1 by joing all relations in this path. A

directed spanning tree will contain each node i exactly

once. If we execute the pathes toward node 1 one by one,

we will result the relation Rl IXIRZIXI...IXIR, at node

1.

Theorem 1:

Let Q=(q,TL) be a natural join query and TL=R1 U...U R.

Let P be a join-semijoin program for q, then P is correct

iff there exist a subset of the set {bxi } in P which

forms a inversely directed spanning tree toward node R 1.
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Proof: IF: Natural semijoin only reduce a relation state without

losing any correct data and do not change the relation

schema. So after performing the sequence of joins in the

directed spanning tree toward R,, we get the R l IXI...IXlRn

at node Ri. Any other join operation does not change the

state. This implies P is correct.

ONLY IF: For each semijoin operation aix in P, R, nRj 4V

and R;- Ri. So performing the semijoin operations do not

move the full relation state from node R 2 to node Ra. We

still need to perform a join to move the full table of R2

to Ri. If there do not exist a subset of {b£i } in P

which form a directed spanning tree toward node Rl, then

some information of those nodes which do not have a path

toward Rlwill lose some information.

From theorem 1, we know the set of correct programs of the

NJQ qualification is the set of join-semijoin programs such that

there exists a directed spanning tree toward R out of the set of

join edges in P. We denote the set of correct programs by P .

The distributed query processing problem becomes to find a

program pnEwith minimum communication cost. For a program p, if

we change the order of the sequence of operations, the total

communication cost will be different. The set of correct programs

is very large. In fact, after executing one operation in P, it

will change the number of rows and columns of some relations.

This change then affects the communication cost of next

operation. So the communication cost of one operation will depend
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on the previous subsequence of operations.

2.3 Estimate the Size of the Derived Relations

In order to compare the communication cost of query

processing strategies. it is very important to have a method to

estimate the size of a relation after one operation. Also the

system for estimation of the size of the derived relation must be

consistent in the sense that if two sequences of operations will

produce the same results. the estimated sizes of the result

according the two sequences of operations must be the same.

We introduce the notion of semijoin reducibility and join

reducibility of R, to Rk , denoted by c./ and G respectively,

for each pair of relations R. and Ri . Where 0•< &.<l and 0•< ,j<l.

The interpretation of the semijoin reducibility cx"' of Rr to R'

is that the percentage of rows of R/ will be reduced after

performing the semijoin R. XI> R.. At stage t, if the number of

rows of Rj is ri[t-l] and the semijoin reducibility of R -to R

is i, [t-l], the the number of rows of R~ after performing

semijoin R i XI> RJ will be reduced to ri [t]= rj[t-l]* (1-lii

[t-13). Note that the semijoin reducibility of R 2 to Ri is not

equal to the semijoin reducibility of R} to R; and i[t]=0O for

all t. The interpretation of the join reducibility of R to Rj

is that after performing join RA 1XI> R., the number of rows of

new relation RIXIRi at site j will be ra[tJ= rA[t-lJ* rY[t-lJ *

(1- t-) * (1- [t-) * (1- ' ([t-) * (- t . This is because the

affect of join R i IXI> R* is equivalent to perform the semijoins
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R. Xi> Ri and RiXI> Rsand then to perform the join of R, to R .

Both semijoin reduciblities and join reducibility affect the

number of rows of the new relation. The join reducibility of Rj

to Ri is the same as the join reducibility of R 2 to Ri . i.e.

fi[t] = fi£[t]. Also ,[Jtl]=O for all t. For this paper, we assume

the set of reducibilities { O<xy,, 03} can be known in advance by

some-statistical measurement.

Since the number of rows and columns of a relation will be

changed after one operation, the reducibilities of this relation

with other relations will be changed too. We define how the

reducibilities will be changed after one operation. Assume the

database state before the operation pt be D={Ri[t-l],...Rr[t-1J},

the number of rows of each relation R·It-1] be r,[t-l], and the

semijoin and join reducibilities of R [t-l] to R [t-l] are

cL)[t-1] and j I[t-l1.

If the operation pb at stage t is a, i.e. R.XI>R. , then

the database schema will remain the same and only the number of

rows of relation RI[t] will be changed to equal to r. [t-l] * (1-dA

[t-l]) and the number of rows of all other relations will remain

the same.

Since this semijoin operation a.j will reduce the number of

rows of Rj , the semijoin reducibility of R. with all other

relations R K will be reduced too. The semijoin reducibility

Ickt] of R k [t] with all other R I[t] will be changed as the

following rules: 4C.-<3 O = z

L4 dqS ct-lc+io~ Ct-l - Oktld d.; 5

~-----~----- - c---~- ~ ~ - -L C-- --- - ~ I ~C----0



The semijoin operation does not affect the join reducibilities.

So all join reducibilities at this stage stay the same as last

stage. i.e.

}[t]-= Bxy[t-1] for all h and k.

If 'the operation p; at stage t is b , i.e. RAIXI>R , then

the database schema at node j, R [t] will change to R.[t-1] U Ri

[t-1], and the relation state at site j will be R. [t-1] IXI RB

[t-l]. The number of rows of Ri[t], ri[t], equal to r.[t-1] * r.

[t-1] * (1- c[t-1]) *(1- [t-1]) * (1- lx}[t-1]). All other

relation states will remain the same. Because this is a join

operation, the semijoin reducibilities and join reducibilities

will be affected.

The semijoin reducibility of R[Ct] to Rk[t] will be changed as

follows:

fR;+t-13-i dj-l -4 j(t-IJ i<C*-' -& r. ] 44 a

L Ago a-13 CCmera 1]

The join reducibility of Rj[t] to Rj [t] will be changed as

follows:

4[t}= * Ac[t-l* +KtJ K- 6IVt-[i --it

I 4 YMCt-1D=o



2.4 Consistent Parameter System

We say that a parameter system is consistent if this

parameter system will produce the same estimates of the size of

the results when the two programs really produce tha same

results. We now define a parameter system which we shall use to

estimate the size of the derived relations has the parameters { r.

Theorem:

The parameter system {r, [It], ciI[t], Nj [t]} we defined

above is consistent.

Proof: This is because a semijoin operation and join operation

can only affect the size of derived relations once and

the rules of updating reducibilities have reflecting this

fact. So the order of the operations does not affect the

estimate of the size of the derived relation.

Example:

Suppose we have three relations R ! ,R. and R 3, where R-A

Rj i0 and R4 %R V i,j; and suppose x [0], - [0] are

given. then the processing graph will be:
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Let PI =b31 bl, and P.= a,2 al3 b13 bl3 . The two programs will

produce the same results Rl[O] 0 XI R2[0] IX R,[0 at

site 1. By the rules of estimating the size of the

derived relation, the estimate sizes of R,[O] IXI R2 [0]

IX; R3[0] derived by these two programs will be the same.
3 3 3

Which is 1Tr.[0 * TF (1- ~*[O]) * TF (1- £[0])

2.5 Problem Formulation

In order to write down the mathematical formulation of

distributed query optimization problem, we need to know the cost

function of each operation. From our assumption of linear cost

function before, we can write down the cost function of this type

of operations at stage t. The projection of RZ over R .( Rk may

result the number of rows of R smaller after compressing. Here

we ignore this fact. We assume the number of rows after

projection on R. over R \NR~ equal to:

4z = Min { r.[t], TF dom(A), }

The cost of operation aji will be

Cost(aC;)=c,*(w:.* 2L w(A))

and the cost of operation b will be

Cost(b$})=cx~i( r.[t] i E w(A)).

Based on the distributed query processing model we

developed, the formulation of the disributed query optimization
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problem is as follow:

INPUT:

1. a distributed database schema D={ R [O]r,...RR[OJ}

2. the width w(A) of each attribute A in U(D)

3. the number of rows ,r.[0], of each relation R.

4. the semijoin reducibility o{- [0] of each pair of

relations R; & RYwith or,10J=0

5. the join reducibility 9[O0] of each pair of relations R.

& R with rzJ10]=0 and kig[0]= Pi5[O].

OBJECTIVE:

Find an optimal join-semijoin program to solve the

natural join program.

Let P=pl p ...'Py , then the problem is to minimize

cost(p. ) according the rules of updating the parameters and cost

functions defined above.

3. Conclusion

We have developed a mathematical model for distributed query

processing problem for a class of equi-join queries. We also

define rules for estimating the size of derived relation. The

parameter system based on those rules is consistent. The future

research will be to develop algorithms for solving this problem.

The reason for difficulty in solving this problem is that

computing the cost of one operation depend on the size of derived

relation which is the result of previous operations. A special
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case of this problem has been shown [HUA81] to have NP-complete

complexity. An efficient optimal algorithm for this problem

seems unlikely.
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