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Abstract
This paper addresses the problem of designing multi-item procurement auctions in capacity-constrained

environments. Using insights from classical auction theory, we construct an optimization-based auction
mechanism ("smart market") relying on the dynamic resolution of a linear program minimidng the buyer's
cost under the suppliers' capacity constraints. Suppliers can modify their offers in response to the optimal
allocation corresponding to each set of bids, giving rise to a dynamic competitive bidding process. To assist
suppliers, we also develop a bidding suggestion device based on a myopic best response (MBR) calculation
that solves an associated optimization problem. Assuming linear costs for the suppliers, we study within
a game-theoretic framework the sequence of bids arising in this smart market. Under a weak behavioral
assumption and some symmetry requirements, an explicit upper bound for the winning bids is established.
We then formulate a complete behavioral model and solution methodology based on the MBR rationale,
and show that the bounds derived earlier continue to hold. We analytically derive some structural and
convergence properties of the MBR dynamics in the simplest non-trivial market-environment, which suggests
further possible design improvements, and investigate bidding dynamics and incentive compatibility issues
via numerical simulations. In particular, experiments suggest that suppliers can be relied upon to provide
truthful capacity information when procurement contracts are properly designed.

1. Introduction

1.1. Background and Motivation. Online business-to-business auctions are becoming

increasingly widespread, because their demand revelation properties are superior to that
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of fixed-price mechanisms, while the Internet keeps their transaction costs low: In a May

2000 study by Forrester Research, Inc. (Kafka et al. 2000), it was estimated that the total

annual volume of transactions realized through online business-to-business auctions in the

U.S. would reach $746 billion by 2004. However, online implementations of traditional open

auction mechanisms are often poorly adapted to the selection of industrial suppliers in pro-

curement markets, because this process typically involves capacity constraints, transporta-

tion costs, incumbent supplier switching costs, complex quality requirements, etc.: Transfer

price, although the sole focus of these mechanisms, is only one consideration among several

when it comes to choosing suppliers. Consequently, an important challenge faced by online

procurement service providers is to design alternative auction mechanisms adapted to these

complex allocation environments.

An example of such a mechanism is the bidding process used by FreeMarkets (Rangan

1999). One of the emerging leaders in electronic industrial auctions, FreeMarkets organizes

"bidding events" for large industrial buyers typically seeking to auction off procurement

contracts for specified quantities of several component types (or lots). In the mechanism

currently used, the various component types are ordered, and each component is effectively

auctioned off in a sequential manner. More precisely, binding bids on selling prices are

solicited for each component type from competing suppliers, who can observe the value of

the lowest bid submitted thus far. When a pre-specified time limit is reached for the first

component type in the list (after perhaps some overtime period triggered by an activity-

based criteria), bidding closes for that component type, competition then turns to the next

component type, and this process repeats itself until the list of component types required by

the buyer is exhausted. However, in contrast to traditional auctions, the actual allocation
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of procurement contracts is only decided by the buyer after the entire bidding event is

completed, and the lowest bidder may not be awarded the contract for a component. The

reason for postponing the allocation decision is to allow the buyer to take into account some

of the non-price factors mentioned earlier.

Although this mechanism appears to represent current best practice as of the summer

of 2000 (it is also used by FreeMarkets' competitor eBreviate), several sources suggest di-

rections for improvement. In particular, a consequence of the delayed allocation decision is

that suppliers' bids are based on very limited competitive information, which appears to be

especially damaging in environments characterized by supplier capacity constraints: During

our meeting with FreeMarkets co-founder Sam Kinney (Kinney 2000), he hypothesized that

some suppliers grew nervous during the bidding event about receiving a total allocation ex-

ceeding their production capacity, especially if they had submitted relatively low bids on one

or several of the components auctioned early on. As a result, these suppliers would withhold

their bids on later components, thereby hampering competition. Indeed, some buyers also

seem to be aware of this issue; for example, Jack Porter, a manager of central purchasing

direct at Caterpillar, made the following comment during an interview on his experience as a

FreeMarkets customer (Janhke 1998): "This concept only applies in those areas where there

is a great deal of capacity."

Motivated by these observations, our objective is to design and analyze a stylized online

multi-item procurement auction mechanism adapted to supply environments with production

capacity constraints. Following a review of the relevant literature, we describe in §2 the

market environment under study, the proposed auction mechanism, and the specifics of the

game formulation. In §3, we discuss our solution methodology, derive some convergence
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bounds, and investigate bidding dynamics and incentive compatibility issues. Concluding

remarks are provided in §4.

1.2. Literature Review. The study of multi-item auctions has been one of the most active

research areas in microeconomics lately (see Klemperer 1999 for a recent survey). It is also

becoming an increasingly popular topic in operations management, operations research and

computer science. The crux of the problem lies in the interdependencies between the various

objects being auctioned off, which arise in practice from factors such as capacity constraints,

budget constraints, economies of scale/scope, and legal restrictions. In our model, capacity

constraints are the only source of interdependencies across component types, and there are

no interdependencies between different units of the same component type, since component

production costs are assumed to be linear. Our discussion of the literature (restricted to

papers studying multi-item auctions) is organized in two parts: The first is relevant to the

design of our auction mechanism, while the second addresses outcome analysis.

The design of appropriate multi-item auction mechanisms is the object of impassioned

debate, motivated in large part by the sales of broadband spectrum licenses by the Federal

Communication Commission that began in the early nineties. A pivotal issue is whether

bidders should be allowed to submit bids on packages or bundles of items (Bykowski et al.

1995), giving rise to so-called "combinatorial auctions" (Rothkopf et al. 1998, Kelly 1999,

de Vries and Vohra 2000) that rely on optimization algorithms to determine the winners, in

contrast with adaptations of more traditional auction formats where bids are only allowed

for individual items (Milgrom 1999). A widespread concern about combinatorial auctions is

the allocation complexity they induce (Rothkopf et al. 1998). While the market mechanism

we study in this paper is also an optimization-based auction, the allocation complexity it
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addresses does not stem from package bidding, but rather from the production capacity

constraint of each supplier across the multiple component types auctioned off: It relies on a

simple linear program (LP), so that computational complexity is not an issue.

More generally, our auction format belongs to the family of market mechanisms known in

the literature as smart markets, which are exchange institutions supported by a computer

executing an optimization algorithm to solve the allocation problem associated with each

given set of bids. This approach has been applied to a variety of market environments (see

McCabe et al. 1991 for an early survey), including airport runway allocation (Rassenti et al.

1982), space shuttle/station payload allocation (Banks et al. 1989, Plott and Porter 1996),

railroad track allocation (Brewer and Plott 1996), natural gas pipeline networks (McCabe

et al. 1989), truckload allocation (Caplice 1996), project management (Ledyard et al. 1994,

Walsh and Wellman 1998), general assignment problems (Olson and Porter 1994) and dis-

tributed scheduling (Kutanoglu and Wu 2000, Wellman et al. 1999). To our knowledge,

Stanley et al. (1954) contains the earliest occurrence in the literature of using optimization

to compute an allocation in a competitive bidding process. It is also the smart-market paper

that is closest to our work from a contextual standpoint: They formulate a LP to determine

the optimal allocation of procurement contracts for a fixed set of (sealed) bids submitted by

army clothing manufacturers with capacity constraints. While the transportation problem

they suggest is almost identical to the LP we use as the allocation engine of our mechanism,

a distinguishing feature of our work is that we study analytically the dynamic competitive

process that arises as the real-time solution to this LP generates competitive information

feedback to the bidders, who can then modify their bids, thereby leading to a new instance

of the LP. To our knowledge, the only other studies investigating analytically the properties
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of bidding sequences in an iterative optimization-based auction mechanism are Demange et

al. (1986), Wellmann et al. (1999) and Parkes and Ungar (2000), which are discussed further

below.

In designing the information structure of our mechanism, we found relevant the discus-

sion by Cramton (1998) of how ascending auctions compare to sealed-bid auctions. More

specifically, we have tried to take advantage of the design flexibility allowed by organizing

the auction on a distributed network of computers such as the Internet in order to achieve

a satisfactory balance between facilitating competition and preventing collusion. An impor-

tant issue related to the former objective, which we feel is overlooked in the vast majority

of the papers cited above, is how bidders confronted with a complex multi-item allocation

mechanism can be assisted in making their bidding decisions: Rothkopf et al. (1998) show

that the complexity of the bidder's "minimal winning bid" problem is tightly connected

with that of the allocation (or "winner determination") problem, so that a human bidder's

computational abilities are likely to be quickly overwhelmed in all smart markets of inter-

est. Recognizing that this concern is not only relevant to bidders, but also to the design of

an efficient auction mechanism, we investigate a particular form of competitive information

feedback that is called myopic best response (MBR). This feature allows each supplier to

enter his production costs into a private calculation device that will compute on his behalf

the bids maximizing his potential payoff in the next round, under the assumption that his

competitors' bids remain unchanged (Fudenberg and Tirole 1996); Note that the dynamic

minimum ask price posting rules described in Demange et al. (1986) and Parkes and Ungar

(2000) also address the limited computational abilities of human bidders. However, these

rules require bidders to evaluate in real-time their utility over the set of all subsets of items
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being traded. Moreover, if the quantities of items to be allocated are continuous decision

variables then these rules could, in theory, be adapted via discretization, but perhaps at

the expense of computational intractability. The novelty of our MBR feedback is to fully

account for the optimization problem that will be solved by the buyer in the next round

when performing this calculation for the bidder.

We now turn to the relevant literature on outcome prediction. Because the computational

requirements associated with the assumption of full rationality are particularly formidable in

this game under uncertainty (Chapter 8 in Fudenberg and Tirole 1996, Samuelson 1997), we

follow instead the approach developed in the theory of tatonnement and learning in games

(Fudenberg and Levine 1998, Samuelson 1997); our rationale for using this approach is dis-

cussed in more detail in §3.1. That is, we explore the implications of less-than-fully rational

behavioral models on the final outcome. Under a. "weak" behavioral assumption defined in

§3.2, some symmetry requirements, and a condition on the minimum level of competition,

we derive an upper bound on the winning bids at the end of the auction, which to our

knowledge is the first explicit outcome prediction as a function of the market environment

parameters in the smart-market literature. We also propose a complete behavioral model

(justified at some length in §3.3.1) that is a natural adaptation to our setting of the myopic

best response bidding strategies assumed in Parkes and Ungar (2000) in a generic combina-

torial auction, also referred to as "straightforward" bidding by Demange et al. (1986) in an

assignment auction, by Wellman et al. (1999) in a decentralized scheduling mechanism and

by Milgrom (1999) in the simultaneous ascending auction. These authors establish explicit

relationships in their respective settings between the final bids and the minimum equilibrium

bids, and between the final allocation and the surplus-maximizing (i.e. efficient) allocation.
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In contrast, we consider the traditional perspective of a revenue-maximizing auctioneer; Al-

though revenue-maximizing auctions are efficient if there is a resale market after the auction

(Ausubel and Cramton, 1999), this is unlikely to occur in procurement settings. From the

revenue-maximizing viewpoint, we derive some upper bounds on the final bids, and hence

the buyer's final procurement cost, in terms of the specific data of the procurement problem

under study (production costs, capacity constraints), and investigate how they are affected

by the initial bids. We also provide a numerical study of some incentive compatibility issues,

mostly related to the suppliers' revelation of their capacity constraints.

2. Mechanism Description and Game Definition

2.1. Market Environment. The initial situation giving rise to our market design prob-

lem is a monopsony where a buyer (typically a large manufacturing corporation) wants to

purchase some specified quantity of m component types (namely qj units of each component

type j in {1, ... , m}). Facing this opportunity are n suppliers ready to compete on selling

prices for the award of the corresponding procurement contracts. We assume that the only

parameters left to specify in these contracts are the total quantity along with the correspond-

ing selling price for each component type. In particular, the rules by which payment terms,

delivery schedules, insurance provisions, etc. will be determined are clearly defined from the

outset and accepted by suppliers. In addition to the buyer's quantity requirements and her

low cost objective, the other consideration relevant to the allocation of components is that

each supplier has a limited overall production capacity across all component types. In the

present study, we assume that the capacity limitation of each supplier i E {1, ... , n} can be

appropriately described by a linear model specifying a total amount c, of production resource
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available (e.g., machine-hours or man-hours), and the amounts aij of this resource needed

to produce one unit of each component type j. We also assume these capacity constraints

to be exogenous, so that suppliers do not have the option of acquiring additional production

capacity as part of the competitive interaction under study (see Budde and Gox 1999 for an

analysis of a procurement auction with endogenous capacity decisions).

The remainder of this section is organized as follows: The core of the proposed optimization-

based allocation mechanism is presented in §2.2, along with some practical implementation

issues. Section 2.3 focuses on the suppliers' payoff function, which is subsequently used both

to derive outcome predictions in §3, and to generate more efficient competitive information

feedback. The design of this information feedback is discussed in §2.4, which more generally

summarizes the information structure underlying this competitive interaction.

2.2. Proposed Mechanism. Bidding in our mechanism takes place through a discrete

set of bidding rounds, denoted by t E N (t = is the initial round). More precisely, each

supplier i is invited in each round t of the auction to simultaneously bid on his unit selling

price bij(t) for all component types j in {1,... ,m}.

Each bid bij (t) corresponds to an offer in round t by supplier i to sell any quantity between

0 and qj of component type j at a unit price given by the value of the bid (see §2.3 for a

discussion of how this relates to the suppliers' objective). The first constraint on these

bidding decisions is a classical non-reneging rule (i.e. bij(t) < bij(t') for t' < t) imposed to

ensure the efficiency of this mechanism: Increasing a bid submitted in some previous round

would amount to reneging a prior offer to sell, and thus threaten the stability of the price

formation process. The second constraint is a common multiple rule (i.e., bij(t) E eN for some

e > O) that further restricts the set of admissible bids to a regular lattice with granularity e,
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or "e-grid". This rule both enforces a minimum bid decrement frequently imposed in practice

(see Aeppel 1999), and prevents strategic collusion signals using the lower digits of the bids

(reported in Kelly and Steinberg 1999 for example). In addition, the common multiple rule

resolves a technical definition problem associated with the solution concept we introduce in

§3.3.

The key feature of our auction format is that the overall capacity constraint of each

supplier will always be satisfied by all possible allocation outcomes, which seems desirable

from both the suppliers' and the buyer's perspective, as discussed in §1. This is achieved in

two steps: First, the capacity constraints ((aij)jE1,,m} Ci) of each supplier i are estimated

before the beginning of the auction. The parameters of these capacity constraints can be

either assessed by an auditor during a pre-certification/qualification of supplier i prior to

the auction, or merely provided by supplier i. In the latter case, the incentive compatibility

issues linked to this capacity revelation become particularly important, and are discussed

in §3.3.4. Second, once all the bids have been submitted for round t during the auction,

the mechanism calculates the quantity allocation xij(t) of component type j to supplier i

minimizing the buyer's total procurement cost, subject to both the quantity requirement

constraint for each component type and the capacity constraint of each supplier (estimated

during the first step mentioned above). This allocation x(t) = (ij(t)) iE(l,...,n} is obtained
jby solving in each round t the following P, referred to in the remainder of this paper as...m}

by solving in each round t the following LP, referred to in the remainder of this paper as
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AE[b(t)] (for "allocation engine"):

m

Min E E bij(t)xij
Zi / i=l j=l

s.t. aijxij < c Vi; (1)
j=(1)
n

xij = qj Vj;
i=l
Xij Žo V(i, j).

Note that the complete specification of the allocation mechanism must also include a se-

lection rule discriminating among multiple optimal solutions to AE[b(t)] when needed. Al-

though we do not impose in general any particular selection rule, the convergence results

presented in §3.2 require the optimal solution x(t) to be an extreme point of the feasible

set of AE[b(t)] (which seems both a desirable feature for the buyer, because solutions cor-

responding to extreme points tend to involve a smaller number of suppliers, and is easy to

achieve in practice, since some optimization algorithms such as the simplex method naturally

generate extreme point solutions). Finally, the allocation engine AE[.] along with this op-

tima selection rule define a function which unambiguously associates a potential allocation

x(t) = (xl(t),...,xn(t)) to any given set of bids b(t), which we can summarize with the

notation x(t) = AE[b(t)].

To encourage competition among suppliers across bidding rounds, our proposed mecha-

nism displays on each supplier i's screen at the end of each round t his own private potential

allocation xi(t) = (xil(t), 2(t),... ,xim(t)); we refer to this process as private potential al-

location feedback. Each supplier i can then respond to this competitive information in the

following round by submitting a new set of bids bi(t+1), and may in particular lower his bids

on the component types for which his potential allocationxi (t) is deemed unsatisfactory. We

defer until §2.4 a more complete description of the information structure in this mechanism.
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The relevance of the private potential allocation feedback as a competitive signal (and

hence its ability to generate bidding competition) follows from the activity-based termination

rule that we study. More precisely, the bidding round iterations described above terminate

after the first round T > 1 where no supplier modifies any of his bids from the previous

round, i.e., when b(T) = b(T - 1). At this point in time, the allocation xi(T) calculated

for each supplier i by the allocation engine becomes final (hence the adjective "potential"

used to qualify x(t) for t < T, since the termination round of the auction is not known a

priori), and the final unit prices paid by the buyer to supplier i for the component types

for which he receives a positive allocation are given by bi(T), so that the buyer's final

procurement cost resulting from the auction is E E bij(T)xij(T). Note that this objective
i=1 j=1

function does not take into account the fixed cost of establishing and managing a vendor

relationship, so that nothing prevents this auction mechanism from selecting a large number

of suppliers and generating many fragmented orders for the same component type in the

final allocation. More generally, while the stylized auction mechanism just described is well

suited to an analytical study, the allocation environment it captures may be too simplistic

in practical situations. Some possible generalizations, including a bid adjustment system

allowing the buyer to incorporate relative preferences among suppliers (arising, for example,

from incumbent switching costs), are briefly discussed in §4.

2.3. Bidders' Payoff Function. Our key assumption here is that each supplier i has

a fixed unit production cost vij for each component type j, so that his payoff (or utility)

function in this market mechanism is described byIIi(b(T)) = Y (bij(T) - vij) xij(T), where
j=1

T is the terminal bidding round as previously defined, and (bij(T), xij(T)) are related through

x(T) = AE[b(T)]. This expression can be interpreted as the sum of supplier i's final profits
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from each component type, in that bi (T) - vi represents supplier i's final unit margin on

component type j, and xi(T) is his corresponding final allocation.

Note first that there is no need to model capacity constraints via overload costs in Hi(),

because by construction all allocations generated by our mechanism will satisfy these con-

straints. More fundamentally, this payoff formulation implies a linear cost structure, where

for all suppliers the unit production cost of each component type is independent of the quan-

tity allocated. Consequently, our model does not capture the possible economies of scale that

suppliers may experience when they receive large orders (set-up times, production learning

curve, etc.). Nor does it capture the possible diseconomies of scale associated with, for ex-

ample, the necessary purchase of additional production capacity. While this cost linearity is

a strong assumption, we observe that it is consistent with the auction mechanism we pro-

pose to study, where the bids correspond to binding offers to sell at a specified unit price

independent of the quantity received (see §2.2): Because capacity constraints are exogenous

and will always be satisfied in this setting, the reason why suppliers may not be willing to

submit such quantity-independent bids in some situations is precisely because their produc-

tion costs may not be linear; see Gallien (2000) for a discussion on the design of improved

smart auction mechanisms allowing suppliers to take (dis)economies of scales into account

when they formulate their bids.

Finally, neither our payoff function nor our allocation mechanism capture the possible

synergies (or incompatibilities) across component types, since each supplier's production cost

for one component type is also independent of his allocation of the other component types.

In procurement situations in which such (dis)economies of scope are particularly important,

we believe that some alternate allocation mechanisms (e.g., a corribinatorial auction) may
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be more appropriate (see references in §1.2).

2.4. Information Structure. In this section we describe the information structure

underlying our proposed market mechanism, namely which entity knows what information.

We also show how the suppliers' payoff function presented in the previous section can be used

to complete the competitive information feedback provided to bidders during the auction and

lead them to make more efficient bidding decisions.

There are three types of information depositories to consider: The suppliers, the buyer and

the mechanism/auctioneer. We assume here that the auctioneer is trusted by the suppliers to

be respectful of its confidentiality commitments. This is legitimized in our view by the current

fierce competition between online procurement auctioneers (e.g., Freemarkets and eBreviate),

where reputations for integrity standards seem to play a particularly important role: Even

though procurement auctioneers primarily serving buyers are by no means neutral, their

confidentiality commitment seems credible in that the long-term costs of losing the suppliers'

trust will likely outweigh the short-term benefits of communicating to the buyer some private

information obtained from suppliers under a non-disclosure agreement. This along with the

technological medium used to support this auction (a distributed network of computers)

effectively justify the decoupling between the buyer and the mechanism/auctioneer that is

inherent in our mechanism. For studies of competition among auctioneers, see Burguet and

S6kovics (1999) and references therein.

We first discuss the information structure relative to the market environment. Because

the quantities (qj)jEl,...,m} of each component type required by the buyer motivate in large

part the suppliers' interest in the auction, it seems natural that they should be common

knowledge to all participants. However, a key feature enabled by the use of a computer
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network to run the auction is that the suppliers need not know how many competitors they

have, let alone their identities (for studies of traditional auctions with unknown or uncertain

number of bidders, see Harstad et al. 1990 and references therein). Because this feature

offers some protection against possible collusive behaviors, we have designed our auction

mechanism to take advantage of it. In adherence to this design philosophy, suppliers are not

informed by the mechanism of their competitors' capacity constraints ((aij)jEl,..,m, Ci)

either. However, this capacity information is required by the mechanism to ensure that

all potential allocations generated satisfy these constraints (see §3.3.4 for a discussion of

the incentive compatibility issues associated with the revelation of their capacity by the

suppliers).

The only dynamic competitive information feedback proposed so far is the private po-

tential allocation feedback x(t), communicated to each supplier i during the auction, but

hidden to his competitors. In particular, because we seek to limit the possibilities of collu-

sion and strategic behavior, our mechanism does not send any direct information to suppliers

during the auction about their competitors' bids (Cramton 1998). Using private potential

allocation feedback alone, however, would probably lead to an inefficient price formation

process, because suppliers would lack sufficient information to rationally decide on which

component types to lower their bids, and by how much. As a result, suppliers in this situa-

tion would most likely engage in exploratory bidding behaviors, whereby they would try to

identify the minimal bid decrease leading to some improvement of their potential allocation

through multiple rounds of minimlm bid decrement trials.

The option that we have investigated to prevent this involves providing to each supplier in

every round the possibility to have his myopic best response bid calculated by a local bidding
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suggestion device. In words, this suggested bid to supplier i is the one that maximizes his

potential payoff function in the next round, assuming that all his competitors' bids remain

unchanged from the current round; i.e., b;(t + l) sup arg max II(w, b_i(t))]2 where
L w(eN)m

fII(-) is the payoff function defined in §2.3, w represents the decision variables associated

with the bids of supplier i in the following round, and bi(t) is the standard game-theoretic

notation for the bids of all supplier i's competitors in the current round. Note that the

arg max operator acts upon a finite set because of both the non-reneging and the minimum

decrement rules, so that the output of this operator is always non-empty even though II,(.)

is not necessarily continuous. Moreover, the sup operation over the arg max set, provided

it is associated with a total order over (eN) m, ensures that the myopic best response bid is

uniquely defined. With the lexicographic order, for example, suppliers will not be suggested

to lower their bids unless their prospective potential payoff when doing so is strictly greater

than their current potential payoff.

A key information requirement of the myopic best response calculation is that each sup-

plier i willing to use this feature needs to provide the value of his own production costs

(vij),jE(....m} via the auction software interface. Because the production costs of each sup-

plier are sensitive and private information, it is essential for the auctioneer to credibly commit

that these costs, if entered into the myopic best response calculation device, will not be dis-

closed to the buyer or to any other supplier. We also observe that in end-consumer online

auction sites (Yahoo!, eBay, etc.), users routinely enter their maximum bid for an item into

some software agent (known as proxy bidding, bidding agent, bidding elf, etc.) that then

submits bids on their behalf whenever needed and up to this specified limit (Lucking-Reiley

1999). Because these maximum bid limits are the exact analogue of the production costs
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Information Notation

number and identity
of competing suppliers
component- quantities
required
capacity constraint c
of supplier i (aijq)
production cost
of supplier i toj

bids
hi(t)'of supplier i

potential allocation (t)
of supplier i 
best response suggestion bz(t)
of supplier i

Table 1: Summary of

Information Available to:
Supplier Other Mechanism-

Supplier i Buyer
Suppliers Auctioneer

no no yes yes

yes yes yes yes

yes no yes yes

yes no yes no

yes no yes yes

yes no yes yes

yes no yes no

the information structure.

in our procurement auction setting (and more generally correspond to bidders' valuations

in the traditional auction theory literature), we feel that the myopic best response bidding

suggestion feature is likely to be implementable in practice.

To conclude this section, we summarize in Table 1 the information structure underlying

our proposed auction mechanism. We are now ready to turn to the analysis of our proposed

market mechanism.

3. Analysis

3.1. Methodology. The basic premise underlying our methodology is that bidders will

be less-than-fully rational when confronted with the smart auction mechanism described

earlier. While from a practical standpoint this assumption simplifies the analysis, we share

with other researchers (Chapter 1 in Samuelson 1997) the belief that it is also motivated
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by behavioral considerations. In this dynamic game of incomplete information, the classical

solution concepts associated with the requirement of full rationality predict that bidders will

form probabilistic beliefs about all relevant uncertain information in the game, update these

beliefs in a consistent manner during the auction, and derive and execute in every round

a bidding strategy maximizing the expected value of their final payoff function accordingly

(Chapter 8 in Fudenberg and Tirole 1996 and references therein). Because the uncertain

information includes here not only the competitors' production costs, but also their capacity

constraints, their bids and even their number, a rational Bayesian expected utility maximizer

would have to solve an overwhelmingly complex stochastic dynamic program with imperfect

information. The alternate methodology we have adopted consists of assuming a deter-

ministic, less-than-fully rational behavioral model, ultimately specifying for each supplier a

mechanistic relation between the information received in each round and his subsequent bid-

ding decision. This type of model is known in the literature as a nonequilibrium adjustment

or tatonnement process, and is the starting point to the theory of learning in games (see §1.2

for background references).

3.2. Weak Behavioral Assumption and Convergence Bounds. To establish some

convergence bounds, we only rely initially on the weak behavioral assumption that a supplier

receiving in some round a private allocation feedback of zero for all component types will

lower at least one of his bids, unless doing so would generate a negative profit. Formally,

this means that if xi(t) = 0 and there exists j E {1, ... , m} such that bij(t) > vij + e, then

there exists j E {1,... m} such that bij(t + 1) < bij(t) - e.

We begin by stating an e post result (i.e., relying on an observation of the final allo-

cation made a posteriori) that relates the final winning bids and the order statistics of the
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production costs.

Proposition 1 (ex post bound) Let T be the final round of the auction, let v:,,.. n, V:,n
denote the order statistics of (vii,. , v,nj), j E {1,. ., m}, and define PC _ {i E 1, ... ,
xi(T) = O}. Provided that IPCI > 1 and under the weak behavioral assumption, we have

ij (T) > <bij(T) vinpJcJ+1: + e Vj E {1,..., m}. (2)

The proof of Proposition 1 (found in the Appendix along with all remaining proofs) ex-

ploits linear programming duality and complementary slackness; we strongly suspect that it

can be extended to a more general class of optimization-based auctions. In words, Proposi-

tion 1 states that the highest selected bid on each component type at the end of the auction

cannot be larger than some order statistic of the production costs for that component type

(modulo the minimum bid decrement e), and the greater the number of rejected suppliers,

the lower the rank of this order statistic. Moreover, it seems natural that the upper bound

in (2) involves the number of suppliers eventually receiving no allocation, because the only

behavioral assumption required to derive this result concerns precisely the suppliers receiv-

ing a null private allocation feedback. Proposition 1 generalizes to the case of a multi-item

and optimization-based procurement auction the well-known result (Vickrey 1961) that in

a single-item English ascending auction, the price eventually obtained by the seller is equal

to the second highest valuation among the bidders (modulo the minimum bid increment).

Although the information structure is slightly different in our mechanism, the set of param-

eters m = 1, q1 = 1, ci unbounded and aij = 1 for all i and j, when the allocation selected

is always an extreme point, corresponds to the classical auction of a single indivisible object

with no capacity constraints. In this case, there are IPCl = n - 1 losing suppliers, so that

the bound provided by Proposition 1 is indeed v, + e.

Although Proposition 1 is an e post result, it can be used to prove an ex ante result
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(i.e., applicable before the auction outcome is observed) in the case where the suppliers have

the same production technology, i.e., all capacity constraints satisfy aij = ai,j = aj V(i, i') E

{1,..., n}. To state this result in a compact form, we first assume without loss of generality

that the suppliers are numbered by increasing order of capacity, i.e., cl < c2 < ... < c.

This assumption allows us to conveniently define the maximal load number as the smallest

integer p such that -+1 c, > E ajqj. Note that this definition is not appropriate when
j=1

n m

Eci < ajqj, but this case can be dismissed because it corresponds to either infeasible
i=1 j=1

buyer requirements or, at equality, to the trivial situation in which all the available supply

capacity is required. The observation that the maximal load number provides an upper

bound on the number of suppliers loaded to their capacity in any feasible allocation is key

to the following proposition.

Proposition 2 (ex ante bound) Assume that the optimal solution selected by the alloca-
tion engine AE[-] is always an extreme point, that all the suppliers have the same production
technology, and that the maximal load number p satisfies n - p > m + 1. Then under the
weak behavioral assumption, we have

xij(T) > O = bi (T) < v+m+l :, + C, (3)

and the buyer's final procurement cost is bounded by

bi (T)x 2ij (T) < Eqj (v +l:n + . (4)
i=1 j=1 j=1

This last result is noteworthy in that it provides a performance guarantee for the buyer

before the auction takes place, even though the behavioral assumptions required are partic-

ularly mild. As in (2), the upper bound (4) generalizes in the setting of a multi-dimensional

optimization-based procurement auction the relation between winning bids and valuations

in simpler auctions. However, it shows much more explicitly how this bound for the final

bids depends on the primary data of the problem, namely the suppliers' capacity constraints

and production costs, and the buyer's requirements. In particular, the larger the buyer's
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required quantities in relation to the suppliers' available capacities, the looser the bound

on the final bids; hence, this expression provides quantitative support for the intuition that

the buyer's market power decreases as supply resources become more scarce. Likewise, the

applicability condition n - p > m + 1 can be interpreted as a minimum requirement on

the level of competition in the auction (via the number of participating suppliers) or on the

buyer's market power. Finally, the upper bound (4) helps reveal the relationship between

the buyer's final procurement cost and her required quantities; note that in this model with

linear production costs, an increase in the component market size may potentially increase

the cost per unit because of the competitive effects.

3.3. Myopic Best Response. We now introduce a fully specified behavioral model, which

follows directly from the myopic best response (MBR) information feedback described in §2.4.

Namely, we assume that every supplier uses in each round the MBR calculation device and

follows exactly its bidding suggestions, i.e., bi(t + 1) = b;(t + 1) for all i E {1,..., n} and

all t > 0, where b(t + 1) is the expression defined in §2.4. Note that the MBR bidding

model almost satisfies the weak behavioral assumption, the exception being the suppliers

with no current potential allocation who may still not benefit from lowering any of their bids

(e.g., when all competing bids are lower than his production costs), because in such cases

the sup operator used in the definition of b(-) will cause these suppliers' bids to remain

constant. Nevertheless, the convergence bounds established in §3.2 remain valid under the

MBR behavioral model, as can be quickly checked from their respective proofs.

From a mathematical standpoint, the MBR behavioral model amounts to a recursive

relation between consecutive values of the bidding sequence (b(t))tN of the form b(t + 1) =

.F[b(t)], t > 0. Because F[ *] is a well-defined function (see §2.4), the entire bidding history
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of the auction is completely characterized by the initial bids b(O) and this recursive relation.

A property of the MBR bidding sequences essential to the theoretical validity of our solution

concept is that they always converge in finite time (they are non-decreasing by the non-

reneging rule, bounded from below and may only take a finite set of values by the common

multiple rule). This can be formalized by the following proposition.

Proposition 3 Let (b(t))tEN be a myopic best response bidding sequence defined by a set of
initial bids b(O) and the recursive relation b(t + 1) = F[b(t)]. There exists an integer T > 0
such that b(t) = b(T) for all t > T.

By the recursive definition of the MBR bidding sequence (b(t))tEN, its limit b(T) is

necessarily a fixed point of the relation .F[-], i.e., b(T) = F[b(T)]. Conversely, for every

fixed point b of F[.], there obviously exists a MBR bidding sequence converging to b (e.g.,

b(O) = b). The solution concept we propose to predict the final outcome in our market

mechanism given an initial set of bids b(O) is precisely the limit b(T) of the MBR bidding

sequence (b(t))tEN. This is the natural adaptation to our setting of the auction-specific

local Nash equilibrium defined in Bykowsky et al. (1995) in the context of the simultaneous

ascending auction.

3.3.1. Model Discussion. Although the MBR behavioral model is close to the classical

Cournot or best response tatonnement process (Chapter 1 in Fudenberg and Tirole 1996),

there remains a few important differences between them. First, the information structure of

the game to which they apply differ, since the duopoly competition studied by Cournot is

a game of common knowledge/full information, whereas our auction format corresponds to

a game under uncertainty. Moreover, payoffs in our mechanism are not obtained at the end

of every round as in the Cournot game, but only at the end of the auction. Consequently,

the objective function used in each supplier's MBR calculation only represents his potential
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payoff in the next round, and only coincides with the actual payoff in the round immediately

preceding the end of the auction. The MBR behavioral model thus implicitly assumes the

belief that the auction will terminate in the next round (see discussion two paragraphs

below on why this is still a reasonable assumption in this setting), justifying the use of the

adjective "myopic". Finally, because of the non-reneging bidding rule, decision spaces in

different rounds are not independent from each other as in the Cournot adjustment. More

precisely, each bid constrains the future bidding decisions of the supplier who submitted it,

and this constraint is more stringent as the value of this bid is lowered.

These specific features provide what we feel is a strong justification for applying the

MBR model to the game under study. In the classical case with no uncertainty, the best

response adjustment process has been sharply criticized for the players' naiveness and/or

reasoning inconsistencies it implies: While it relies in every round on the assumption that

the competitors' actions will remain constant in the next round (strategy stability), this very

assumption is observably proven wrong in every round until equilibrium is reached (Fuden-

berg and Levine 1998). However, in the information structure underlying the game we study,

bidders cannot observe their competitors' bids directly, and the indirect process by which

they could try to infer these bids - based on the history of their own bids, private allocation

feedback and MBR bidding suggestions - seems particularly complex. As a consequence,

the assumption of strategy stability is plausible, in sharp contrast to more classical games

where past actions are common knowledge.

More fundamentally, suppliers in this auction will be particularly cautious not to submit

low bids prematurely, because of the lock-in effect induced by the non-reneging rule. In this

setting, strategy stability is likely to be perceived as a wise assumption on which to base
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bidding decisions, even when also perceived as probably wrong. This is because incorrectly

assuming that the competition will be more aggressive in the next round may lead to lower

bids than necessary, thus wasting some margin and restricting the space of future possible

actions. On the other hand, the activity-based termination rule ensures that a supplier

who underestimates his competitors' aggressiveness in a given round by assuming strategy

stability will not be penalized: If this supplier ends up lowering one of his current bids then

the auction will continue for at least one more round, giving him the opportunity to adapt

his bids to the actual bidding strategy of his competitors. If this supplier does not modify

any of his bids then the auction may terminate, proving the strategy stability assumption

correct and therefore his bidding decision optimal, or it may continue, leaving him the option

to further modify his bids.

3.3.2. Impact of Initial Bids. Although Propositions 1 and 2 show that the dependence

of the auction equilibrium on the initial bids should be relatively limited when the level

of competition among suppliers is sufficiently high, these results do not apply in market

environments characterized by supply resource scarcity. To gain some insights into the

impact of initial bids when the level of competition is low, we turn to the analysis of the MBR

bidding dynamics in the simplest non-trivial market environment in which our smart-market

mechanism can be applied: The 2 x 2 symmetric case, where n = 2, m = 2, ql = q2 = q,

aij = 1 (i, j) and cl = c2 = c, but vl need not equal v2. The only interesting choices of

parameters in this environment satisfy 1 < 8 < 2, where 6 = k, which is the number of

suppliers required to cover the total procurement needs'. For this range of 6, the buyer has

no choice but to use a positive amount of capacity from both suppliers.

1 In the case 8 < 1, the allocation of each component type is entirely independent from the other, and the case8 >

2 is infeasible.
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The following proposition shows that even with such scarce supply capacity, when the

initial bids are sufficiently close to each other and are greater than the component-wise

maximum of the production costs, they have relatively little impact on the final outcome.

Moreover, it also shows that the particular information structure used in our mechanism

may still enable some bidding competition.

Proposition 4 Let d(b1, b2) = max(lb2l - b1ll, b22 - b12j). In the symmetric 2 x 2 auc-
tion and under the MBR bidding model, there exists a selection rule discriminating between
multiple optimal solutions to the allocation engine AE[.] such that

3q - c
d(bl(0),b2(0)) < e =* d(bi(T),vl V 2) < ( + 1)e, i {1, 2}.

c-q

A legitimate question at this point is to determine to what extent the final outcome is

affected when the initial bids are further apart. Although we do not entirely resolve this

issue here, it is revealing to plot for a particular choice of parameters (c, q, vi, b1 (0)) the

stability zones for supplier 1, i.e., the subset of supplier 2's bidding space such that supplier

1 would not move in the next round should b 2(0) belong to it (see Figure 1).

Figure 1 shows the existence of premature equilibria, arising when the initial bids are too

far apart, so that the increased order volume the higher bidder may receive by outbidding

his competitor does not compensate for the margin reduction that would be incurred. For

example, if supplier 2's bid was to lie in the lower-left quadrant of the stability zone, supplier

1 would not move in the following round by definition. Depending on supplier 2's production

costs, he will either not move (thereby achieving a premature equilibrium) or may try to

switch the component type for which he received the larger volume. If these observations also

apply to environments with more suppliers and component types, then there are implications

for mechanism design: Whenever supply capacity is suspected to be scarce, it seems in the

buyer's interest to have initial bids as close to each other as possible, which could be achieved,
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Figure 1: Supplier l's stability zones (shaded areas).

for example, by enforcing a common minimum entry bid.

3.3.3. Bidding Dynamics. When the initial bids are sufficiently close, the proof of

Proposition 4 also reveals the structure of the bidding dynamics in the symmetric 2 x 2 auction

according to the MBR model. This structure is illustrated in Figure 2, which represents a

typical MBR bidding sequence. Here, the initial bids are below the 45 ° lines going through

the production costs of both suppliers, which we refer to as the margin switching lines

for a reason that will soon become clear. As long as the bids remain in this area of the

bidding plane, both suppliers try to outbid their competitor primarily on component type

1 (so as to receive the full order quantity of this component), because it is the one with

the higher relative margin. Thus, the bidding sequence moves horizontally, until it hits

supplier 2's margin switching line, at which point supplier 2 starts competing primarily

for component type 2. The bidding sequence then moves downwards along this line, until
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it hits the horizontal line going through supplier l's cost for component type 2, at which

point this supplier stops competing altogether on this component type (his margin is then

reduced to zero). The bidding sequence starts moving horizontally again, before it reaches

an equilibrium in the neighborhood of vl V v2, as predicted by Proposition 4.

Rid-,ctw n

(product
costs of
supplier 

bi(O)

(starting bid of
supplier 1)

rUng bid of
plier 2)

ids/costs on
oreponent 1

Figure 2: Bidding dynamics in the symmetric 2 x 2 auction.

Because of the combinatorial complexity involved, it seems hard to perform a similar an-

alytical study of the MBR bidding dynamics in market environments with more suppliers

and/or more component types. Instead, we undertook some numerical experiments simulat-

ing competitive interactions under the MBR behavioral model. The two experiments with

eight suppliers and two component types represented in Figures 3 and 4 are fairly typical

of the results we have obtained (see Gallien 2000 for more examples). These figures show

each supplier's bidding sequence in the auction as a color-coded dotted line (a color version

of these figures are available from the authors), and the corresponding production costs as

diamonds. In addition, the set of connected squares is the sequence of dual prices associated
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in each round with the quantity requirement constraints in the formulation of the allocation

engine AE[.] (referred to below as market prices according to the classical interpretation

of LP duality theory). By design, these two experiments have the exact same parameters

(capacity, required quantities, initial bids), with the exception of the production costs, which

are more homogeneous across component types for the experiment 2 reported in Figure 4.

In Figure 3, all suppliers except one exhibit a specialized pattern of bidding, where they

compete by decreasing their bids for only one of the two components. However, in Figure

4, there are many more "diagonal" bidding paths, i.e., competition takes place for more

suppliers along the two component axes. The primary driving force behind these different

bidding patterns seems to be the relative position of each supplier's production costs in each

round with respect to the market prices. More specifically, as the auction evolves, the path

formed by these market prices partitions the suppliers' production costs into three categories.

Suppliers with production costs roughly proportional to the market prices tend to compete

for both components, while suppliers with production costs clearly above or below the path

of market prices typically only compete for the one component on which their current relative

margin is the highest (as defined by the relative position of their production costs and the

current market prices). This interpretation explains why more homogeneous production

costs across components (as in Figure 4) lead to a competition pattern that is more mixed.

3.3.4. Incentive Compatibility. Although the incentive compatibility of suppliers'

production costs input when using the MBR bid suggestion device is a legitimate question in

theory, experiments described in Gallien (2000) tend to show that a truthful cost revelation

is compatible with suppliers' incentives, so that we do not discuss this issue in further detail

2 For each supplier, production costs in Figure 4 have been obtained from those of Figure 3 by a translation along
the off-diagonal.

28



25

20

115

8

7 10
Sm

0 5 10 15 20 25

BidaiCosts on Compont 1

Figure 3: MBR dynamics in 8 x 2 auction with heterogeneous costs.

here. Instead, we focus on the incentive compatibility issues linked to capacity revelation.

A simple-minded analytical approach to this problem is to ignore the potential impact

of a supplier's capacity input on the other suppliers' bidding behavior, and to perform a

sensitivity analysis on this capacity input. That is, assuming that the bidding sequence has

reached in round T an equilibrium b(T), what is the impact of a marginal change of supplier

i's capacity cj on his payoff function IIi(b(T)) = [bij(T) - vij] xii(T)? By complementar-
j=-

ity slackness, the dual variable associated with the capacity constraint of supplier i (which

represents the marginal change in the buyer's objective resulting from a change in ci) can

only be positive if E xij(T) = ci. Hence, a necessary condition for this marginal change to
j=1

have any impact on supplier i's allocation is that his capacity constraint be binding. That

is, a supplier cannot benefit by overstating his capacity without becoming overloaded and
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Figure 4: MBR dynamics in 8 x 2 auction with homogeneous costs.

incurring an observable default (i.e., refusing to accept all of the work he has been awarded).

However, this static sensitivity analysis does not take into account the strategic implica-

tions of a capacity statement on the other suppliers' bidding behavior. More specifically, it

is conceivable that a supplier could earn higher margins by understating his capacity, be-

cause it may induce the other suppliers to bid less aggressively, which could compensate for

the lower market share resulting from the capacity understatement. Likewise, this strategic

effect could play against the incentive to overstate one's capacity, because it would induce

the other suppliers to bid more aggressively.

Although it appears difficult to assess these strategic effects analytically, numerical exper-

iments conducted under the MBR behavioral model and reported in Gallien (2000). confirm

the abovementioned hypothesis that benefits derived from overstating one's capacity neces-
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sarily imply overloading (as opposed to strategic implications on other suppliers' behaviors).

We also report in Gallien (2000) some "cooked-up" experiments demonstrating that it is

possible for a supplier to increase his profits by understating his capacity (which can also

be interpreted as a disincentive for capacity overstatement), thus illustrating the strategic

effect hypothesized earlier.

In summary, it appears that there is no incentive for a supplier to overstate his capacity,

and there are examples, which require more information (e.g., the other suppliers' capac-

ity constraints), rationality and risk-taking than would typically be observed in practice,

in which a supplier can raise his profits by understating his capacity. Hence, if suppliers

are penalized for capacity overloading, then our smart-market mechanism should be able to

induce truthful revelations of suppliers' production capacity. Regarding penalties, it is in-

teresting to note that Freemarkets keeps instances of capacity overloading to a minimum by

suspending from subsequent bidding events overloaded suppliers who default after an auction

(Wnorowski 2000); it is this punitive action that led to the observed impact of overload fear

on suppliers' bidding behavior, which in turn motivated the design of our smart-market ap-

proach (see §1). Alternatively, a procurement contract specifying an appropriately high fixed

penalty in the event of misdeliveries and/or quality problems may also ensure a relatively

truthful capacity input by the suppliers.

4. Conclusion

Partly motivated by the observed inefficiencies of current online procurement auction mech-

anisms when suppliers' capacity constraints are stringent, this paper investigates an alterna-

tive mechanism designed specifically for such environments. It relies on an estimation of these
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capacity constraints prior to the bidding event, which enables the use of an optimization-

based allocation engine (justifying the term "smart market"). For every set of bids submitted

during the auction, this engine dynamically computes the allocation of procurement contracts

minimizing the buyer's total cost under both the buyer's quantity requirement and the sup-

pliers' capacity constraints. The bidders' information sets in this mechanism are designed

to achieve a middle ground between facilitating competition and preventing collusion, ex-

ploiting some of the possibilities offered by the use of a distributed network of computers

to support the auction. They include in particular an original myopic best response bidding

suggestion device, taking as an input a supplier's production costs, and delivering as an out-

put the set of bids maximizing his potential profit in the next round under the assumption

that his competitors' bids remain constant.

The solution concept we propose for this auction mechanism is based on tatonnement

theory, whereby we first formulate less-than-fully rational behavioral models for the bidders,

and then examine the implications of these models on the dynamics and the convergence

properties of the resulting bidding sequences. Under a weak behavioral assumption loosely

characterizing the reactions of potentially rejected suppliers, some symmetry requirements

and a minimum competition level condition, we constructed upper bounds for the bids of

the winning suppliers at the end of the auction, providing in turn an upper bound on the

buyer's final procurement cost. These bounds were shown to carry over to the complete

behavioral model, in which the suppliers followed the myopic best response bid suggestions.

We then derived some additional structural properties of the myopic best response bidding

sequences in a symmetric (except for production costs) market with two bidders and two

component types, which suggested that when supplier capacity is scarce (i.e., competition
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is low), the buyer may find it beneficial to impose a common maximum entry bid to dis-

courage premature equilibria that are generated by initial bids that are far apart. Finally,

by performing numerical simulations of myopic best response sequences in more complex

market configurations, we inferred that the negative incentive compatibility effects linked

to the revelation by the suppliers of their private capacity and cost information should be

relatively limited.

We believe this work constitutes a useful basic framework towards the development of

electronic trade systems enabling real-time complex industrial transactions. Within the

scope of our model, natural steps in this direction include more complex capacity constraints,

nonlinear production costs and bid structures, requirements on the supply base size, and

incumbent switching costs; this last generalization is particularly important, because these

switching costs (which could, more generally, incorporate the bidder's perceptions of the

suppliers' reputations) are the primary reason why Freemarkets makes its allocation decisions

after - rather than during - their bidding events. In the framework of our model, one way for

the buyer to account for her relative preferences across suppliers is to use a bid adjustment

mechanism. In this method, the actual bids bii submitted by suppliers are automatically

adjusted for the purpose of computing potential allocations by an additive factor cij > 0

reflecting the buyer's relative preferences. That is, while the selling prices resulting from

the auction still correspond to the actual bids bij submitted by the winners, the potential

and final allocations of components are now calculated by solving x(t) = AE[b(t) - c]; the

higher acij, the more supplier i is advantaged relative to his competitors for the allocation of

component type j. Some of our results can be generalized to include these adjusted bids. For

example, the right side of the ex-ante bound in Proposition 2 becomes [v - ctjm+pl:n + E+
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aij, where [v - a]!j denotes the k-th order statistic of (vij - aj,... , v - aj). In words,

modifying the bids for allocation purposes through the mechanism just described roughly

amounts to modying the production costs by the same adjustment factors, as one would

intuitively expect.

Unfortunately, this adjustment model does not allow us to capture fixed switching costs

(i.e. independent of the quantity allocated). From a practical standpoint, this particular

extension along with most of the others previously mentioned can be incorporated by using

more sophisticated integer programming formulations for the allocation engine AE[-] in (1)

(see Gallien 2000 for details), although we have not derived theoretical results corresponding

to Propositions 1-4 in these more complex settings. Another relevant challenge would be

to model into our allocation engine more criteria specific to industrial procurement, such as

delivery performance, quality, and insurance provisions, leading perhaps to the design of a

multi-dimensional bidding mechanism. In such complex and dynamic trading environments,

efficiency will require the design of decision support tools available to bidders, for example

by generalizing our myopic best response bid computational device. From a methodologi-

cal perspective, we note that formulating behavioral models associated with these decision

support tools seems to be a fruitful approach when trying to predict various mechanism

outcomes.

Appendix

A.1. Proof of Proposition 1. Let z(T) denote the value in round T of the optimal dual

variables associated with the quantity constraints in AE[b(T)I, and e, an m-dimensional
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vector with all its components equal to 1. Then we have

i E pC vi > z(T)- eem. (5)

This is because bi(T) > z(T) for any supplier i E PC, so that if we had vij < zj(T) - e

for some j, then supplier i could increase his profit (currently equal to zero) by bidding

bij(T + 1) = zj(T) - e < bij(T). But bi(T + 1) = bij(T) by definition of T, and therefore

zj(T) - e < vij Vj. This last statement applies to at least IPCI suppliers, so that

j(T) < p + . (6)

Finally, xij (T) is the dual variable associated with the constraint zj (T) < bij(T) + aijyi of the

dual to AE[b(T)], where yi > 0 is the dual variable associated with the capacity constraint

of supplier i in AE[b(T)]. Therefore, xij(T) > 0 implies bij(T) < zj(T), which combined

with (6) completes the proof.

A.2. Proof of Proposition 2. The proof amounts to finding a lower bound for pC[

(or equivalently, an upper bound for PI), and then invoking Proposition 1 in the cases

where this bound allows us to claim that pc[ > 1. In any feasible allocation, the number of

suppliers who are fully loaded is clearly smaller than the maximal load factorp, because of

the quantity requirement in (1). We now claim that in any extreme point of the polytope of

feasible solutions to (1), the number of suppliers that are not fully loaded but still receive a

positive allocation is smaller than m. This is because the allocation would otherwise include

at least two non-fully loaded suppliers receiving a positive allocation of the same product,

and would therefore not be an extreme point (as it could be written as a convex combination

with positive weights of two distinct feasible solutions). Therefore, among all the suppliers
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receiving a positive allocation of each product, at most one can be non-fully loaded, and

the total number of non-fully loaded suppliers is smaller than m. This completes the proof

of IPI < p + m, from which (3) follows immediately by Proposition 1. The bound on the

buyer's final procurement cost is a direct consequence of (3).

A.3. Proof of Proposition 4.

A.3.1. Notation. In this market environment, AE[.] has six extreme points, namely

(x 1,x 2) E {(A, C), (C, A), (B,B), (B, B), (A, C), (C, A)}, where A = (2q - c, )T, B =

(q, O)T, C = (q, c - q)T and ~ (tilde) denotes an exchange of the two elements in the vector

(i.e., A = (0, 2q- c)T ). In this proof, we refer to h(t) and h(t + 1) as h and h, respectively,

where h denotes any variable or vector of interest (allocation, bids). Also, to describe a

player's strategy for the next round, we use the notation by where Y E {A, B, C, A, B, C}

with Y = (AE[bi = by, bi])i (i.e. under the MBR assumption that b_i = b_i, player i will

obtain an allocation i = Y if he plays by). As shown in Gallien (2000), for a given selection

rule, by can be uniquely defined among all bids yielding allocation Y under strategy profile

stability as the one requiring the smallest decrease in margins (so that each player's strategy

space at each round is practically discrete). When comparing the impact of two different

bid choices on a player's payoff function, we refer to the case II(bi = by, bi) > IIi(bi =

bz, b-i) as by > bz. Finally, we use in the bidding space the distance metric defined by

d(bl, b 2) = max(b 2l - blll, b22 - bl21)

A.3.2. Selection Rule. We consider a multiple optima selection rule symmetric across

bidders and component types, where the selected allocation is always an extreme point, and

that is characterized by
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b12 > 622
* bL >b21 (xl,x2) = (A,);

bll-b 2 1 = 2 - 22

* - 21 = L2-22 (l, x2= (A, C) if (xl, x 2) E {(C, A), (B, B), (A, C)}
bll > b21 (A, C) otherwise

* bl = b2 • (l, 2) = (xl,x 2).

Note that all missing cases in the definition above can be resolved by symmetry, and a

random selection rule can be used at the first round if necessary.

A.3.3. Strategy Space Restrictions. While at every round the strategy space of

each player is a priori {bA, bB, bc, bA, bA, be}, it can typically be reduced to a smaller set

by considering both the non-reneging rule (e.g., if xl = B then bl E {bB, bc, bc,}) and an

adaptation of Lemma 4 in Part I of Gallien (2000) to the selection rule described earlier,

which shows that under the MBR rationale:

1. If b22 - v12 > b2 - vl (player 2's bid is above player l's margin switching line), then

1
bA > bA;

2. If b22 - v12 > b2l - 11 and xl E {A, A, B, C}, then be > be;

1 .1
3. b22 > v12 bc > be and b2l > vill bo > bB.

Note here again that many more such statements follow by symmetry. In summary, the

set of possible bid choices b, for player 1 can be obtained from the following table (in order

to avoid a long and uninteresting discussion of the tie cases, we assume that the production

costs vl and v2 do not belong to the e -grid):
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Case:
b22 - V12 > b21 - v1 1 and b 2 > vl

b2 1 < Vll
b22 - v 12 > b2 1 - v11 and b2l < V

A

{bA, bo}

{bA, bB}

A

{bA, bo}

{bA, bB}

xl

B

{bC, bC}

N/A

{bo}

{bA}

C

{bc, bC}

N/A

A.3.4. Neighborhood Stability and Convergence. Let us now assume that

d(b1,b 2) < e. We can use the above table to specify the bid chosen by player 1 under

the MBR rationale (results for player 2 and for missing cases follow by symmetry):

Case 1: b22 - v1 2 > b2 - v and b 2 > V1

- When x1 E {A, A}, we have
1

bA > b (2q - c)(b 22 + e - V1 2) > q(b22 - e - 1 2) + (c - q)(b 21 - v)
2 b22 - 12 + b21 - V11 < c-q

c-q

- When xl = B,

bc > bC ¢ (c- q)(22 - v 1 2) + q(b -' V~) > q(522 - - v 1 2 ) + (c- q)(b1 1 - vl) ;
b22 - 12 - b21 + V11 < 2q-c

- When x1 = C,

be > b e 4 q(b1l - vjl) + (c - q)(bl2 - 1 2) > (c - q)(bl - vll) + q(bl 2 - e - 1 2)
i - V12 - bll + vll < 2q- e

Case 2: b22 - V2 > b2 l -vl1 and { b2 < v11
b22 > V12

- When xl E {A, A}, we have
1

bA > bB if (2q- c)(b2 2 - 1 2 ) > q(b22 - e- 1 2)
4 b22 - V12 < c-'q e

In words, supplier 1 prefers bc to bA as long as supplier 2's bid b 2 remains sufficiently

greater than vl (i.e., when b22 - v12 + b2l - V11 > 3e),, and prefers be to bc when b2 is far

enough above his margin switching line (i.e., when b12 - v2 - bll + v1 > 2q-c) When b21

drops below v l l, supplier 1 plays bg if b22 is sufficiently greater than v12 (i.e., when b22-v 12 >

4cLq), and bA otherwise. Applying the same reasoning to player 2, we can construct for all
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relevant cases the tables describing the joint bidding strategies and resulting allocation for

both players, thus characterizing the dynamics of the bidding sequence. For example, the

b2 - 2 > bl - v and b2 > Vltable corresponding to the case bf b- v 2 > b1 - 1 and bi>v2 is (missing allocation

cases can be derived by symmetry)

C: bi2- V12

-bll + Vii

C: b2 - V1 2

-bll + vii
2g-c

A:

d(b2, vl)
C-q

(be, b)
- (A, C)

d(b2, vl)
< 3--c
- c-q

(bCe bA)
- (C,A)

A:

d(b2, vi)
c 3q-cq
c-q

(be, b)
- (c,A)

(bC, bC)
- (A, C)

d(b2, vi)
< 3-c

-C-q

(be, bA)

- (C, A)

(bc, bA)
- (C, A)

B

B:
b22 - V12

-b 21 + Vll
> C--c2a-c

(be, be)
- (A,C)

where the rows correspond to player 2's allocation x 2, the columns to xl, and each entry

(I, J) in this table provides (b 2, bl) - (x2, l) when (x 2,xl) = (I, J). Constructing the

tables corresponding to cases

i2 -bv1 2 > bll -v2 and bl > v and bn -v 12 >b bl - , b21 <v11 andb22 > 12

b2 - V22 < b1l - V21 and bi > -v b12 - V22 > bl -v 2 1 and b > v2

(tables for other cases follow by symmetry), we can observe that

d(bi, b2) < e;
bi2 -_i2 + bi - v-i > e for i E {1, 2}; and
biij- v-i > qcs for i,j E 1, 2}

implies

d(b 1,2) < e; and
bl1 < bl,b12 < b12,b21 < b21 or b22 < b22

In words, if at one given round the bids of the two suppliers are within a distance e of each
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-b 21 + V1
< 2-=ce

2a-c

(be, bc)
- (B,B)
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other and sufficiently far away from the production costs, then under the MBR rationale

the bids at the next round will still be within e of each other, and at least one of the

bids will have been strictly decreased. Applying this reasoning iteratively, observing that

3q-ce > cqe since 2q - c > 0, and that bi2 - v_i2 + bil - v-il < 3q-ce for i = 1 or 2 impliesc-q c-q c-q

d(bi, vl V v2) < 3q-e, we can conclude that d(bi(T), vl V v2) < ( + 1)E for i E 1, 2},

which completes the proof.
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