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Overcoming the 90% Syndrome:
Iteration Management in Concurrent Development Projects

David N. Ford and John D. Sterman2

Abstract
Successfully implementing concurrent development to reduce cycle time has proven difficult due

to unanticipated interactions of process constraints and managerial decision making. We develop

a dynamic project model that explicitly models these interactions to investigate the causes of the

"90% syndrome," a common form of schedule failure in concurrent development. We find that

increasing concurrence and the common propensity of workers to conceal required changes from

other development team members aggravate the syndrome and degrade schedule performance.

We explore iteration management policies to improve performance in concurrent development

projects.

1. Introduction
Developing products faster has become critical to success in many industries, whether the

product is an office building, software package, or computer chip. Calls for faster product

development have simultaneously taken on the sacred tone of a mantra and the volume of a brass

band ( Rosenthal 1992). Perhaps with good reason. Cycle time reduction is considered crucial to

success by many researchers (Wheelwright and Clark 1992, Clark and Fujimoto 1989, Hayes

Wheelwright and Clark 1988) and practitioners (e.g. Patterson 1993, Meyer 1993) with impacts

larger than those of product development budget overruns (Hayes et al. 1988). Developing

products faster than competitors can increase market share, profit, and long term competitive

advantage (Patterson 1993, Wheelwright and Clark 1992, Meyer 1993).

In response many firms have shifted from a sequential to a concurrent development paradigm.

Concurrent development is designed to reduce cycle time primarily by overlapping development

activities to perform them as much in parallel as possible. Large reductions in cycle time can be

realized by applying concurrent development (Backhouse and Brookes 1996, Wheelwright and

Clark 1992, Womack, Jones and Roos 1990, Nevins and Whitney 1989). However, successfully

implementing concurrent development has proven difficult for many organizations. Some

implementation failures and challenges have been linked to the increased coordination required

among development team members by the overlapping of activities (Haddad 1996). For example

Wheelwright and Clark (1992) cite a case in which applying concurrent engineering increased

cycle times due to unsuccessful cross-functional teams, the primary coordinating structure in



concurrent development. Clark and Fujimoto (1991) found an automobile development team

consisting only of liaison people and no developers. The team failed because it was ignored by

the developers.

An example of the increase in complexity brought on by implementing concurrent development

is Boeing's shift from a sequential approach to a concurrent approach. Boeing used a series of

sequential activities from conceptualization to product introduction to develop the 727-100

airliner in the 1960s including three distinct formal engineering phases following an informal

series of concept studies. Boeing purposefully kept these phases sequential and was able to

successfully address schedule-threatening changes with "overtime, work around, and a high dose

of ingenuity" (Maxam 1978). In sharp contrast development of the 777 explicitly included eleven

iterative loops among nine overlapping development phases (Peterson and Sutcliffe 1992).

Boeing also applied concurrent development within project phases. The product definition phase

was disaggregated into three concurrent activities. In the design phase Boeing overlapped its

fifteen previously sequential design and engineering steps to allow work to proceed on many

development activities simultaneously. Major assembly began before the product definition was

90% complete (Stix 1991). Boeing considered traditional management wholly inadequate for so

many concurrent development activities. It therefore developed the 777 with a network of cross

functional design teams and integrating managers which coordinated the work of 4,000 engineers

on the 130,000 parts of the airliner by developing the 777 completely on computers (Sabbagh

1995). While increased product complexity contributed to the challenges of developing the 777,

Boeing's concurrent approach sharply increased the need for effective development process and

schedule management.

Several explanations have been suggested for the concurrent development implementation

challenge. Backhouse and Brookes (1996) present nine sets of contrasting case studies to support

their theory that concurrent development implementation fails due to mismatches among a

development organization's people, controls, tools, processes and structure, and the

organization's need for efficiency, focus, incremental change, radical innovation and proficiency.

Other research identifies characteristics common to most concurrent development efforts such as

the disaggregation of work into smaller pieces (Smith and Eppinger 1997a, Zirger and Hartley

1996). The disaggregation of development activities into smaller tasks for increased concurrence

increases the number of tasks begun with incomplete or preliminary information, boosting the

number of design iterations. Concurrent methods increase the frequency and magnitude of

information transfers (Clark and Fujimoto 1991, 1989).
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Cycle time reduction through concurrent development comes at the cost of increased process and

management complexity (Wheelwright and Clark 1992, Krishnan, Eppinger and Whitney 1995,

Clark and Fujimoto 1989). Development process design and management policies have not

generally improved to address the effects of increased complexity due to concurrent

development. This has contributed to the frequently cited poor management of development

projects (Womack et al. 1990, Dertouzos, Lester and Solow 1989) and failure to meet project

goals.

In this article we address the need for better understanding of effective concurrent development

implementation by showing how processes and policies can interact to degrade schedule

performance in concurrent development projects. We use a causal dynamic model to explore

interactions of concurrent process structure with the behavioral decision processes of the actors

in the system. In particular, we explore the impacts of the interaction of process concurrence

with the common behavior of concealing the need for rework on schedule performance. We

show how these interactions can cause the "90% syndrome," a chronic form of schedule failure

and use our results to suggest policies for reducing cycle time.

2. The 90% Syndrome
One common concurrent development problem is the "90% syndrome." The syndrome describes

a project that reaches about 90% completion according to the original project schedule but then

stalls, finally finishing after about twice the original project duration has elapsed. The

phenomenon is so common many design engineers have codified it into their normal

expectations. A product development manager in one company we worked with described their

experience as "The average time to develop a product is 225% of the projected time, with a

standard deviation of 85%. We can tell you how long it will take, plus or minus a project." (Ford,

Hou, Seville 1993). The syndrome is common in many industries including software,

construction, consumer electronics and semiconductors (DeMarco 1982, Kiewel 1998, Abdel-

Hamid 1988). Our fieldwork with a leading semiconductor maker provides an example of typical

behavior. Figure 1 contrasts the planned and actual progress of a semiconductor chip

development project we call Rattlesnake. Reported progress, based on actual phase durations,

rises to 79% by the original deadline (week 34) but two large unplanned iterations prevent

project completion until over twice the original scheduled duration (81 versus 34 weeks). The

significant reduction in the pace of progress in the later portion of the project is typical of

projects experiencing the 90% syndrome. The management of the final 10% during the last half

of the project is typically of the most concern to managers because this portion of the project

obviously and significantly deviates from planned progress, focusing attention on the failure of
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the project to meet its targets. The inter-phase iterations in the latter half of the project suggest

the late discovery of unanticipated rework as a key to understanding the syndrome.

Eliminating the 90% syndrome could potentially reduce cycle time roughly 50%. In light of the

relatively recent or slow adoption of concurrent development in many industries the syndrome

could be assumed to be a temporary problem that will disappear as firms become competent at

managing concurrent development. However the persistence of the syndrome in construction

projects several decades after the widespread adoption of overlapping phases (fast tracking) and

cross functional development teams suggests that the syndrome is a persistent concurrent

development problem and not a transient issue soon overcome by experience.

Effective process and policy design requires explaining how the structure and characteristics of

projects and the behavior of the participants can cause the 90% syndrome, particularly when

concurrent development practices are being used. Many existing models treat either the structure

of development processes without regard to behavioral issues (e.g. Adler, Mandelbaum, Vien,

Schwerer 1995, Ettlie 1995) or focus on behavior without considering the process structures (e.g.

King and Majchrzak 1996). Abdel-Hamid (1988) used a simulation-based approach integrating

process and behavioral issues to investigate the 90% syndrome in software development projects.

He found the cause of the syndrome to be the interaction of underestimating project size and

poor assessments of true project progress (that is, the inability to detect design flaws until work

reaches a downstream testing phase). Abdel-Hamid identifies one development process (delays

in error detection) and one management decision (estimating project size) as critical elements in

the 90% syndrome. But the theory doesn't apply to projects with clear and stable scopes that

nevertheless experience the syndrome. Building on this work, we develop a more general

explanation for the syndrome in projects, integrating physical and information processes with

managerial decision making.

3. The Development Project Model
To investigate the impacts of the interaction of physical and information processes with

managerial decision making we built a dynamic project simulation model integrating several

constraints usually treated separately:

1. Task Duration: Development activities require characteristic times to perform regardless

of the resources allocated to the activity.

2. Task Sequencing: Development activities occur in a specific sequence within phases.
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3. Dynamic Information Requirements: Development phases are constrained by information

dependencies within and between project phases. These dependencies vary with phase

progress and manager decisions.

4. Work Release Policy: Work is often not released as it is completed, but in discrete

packets. The policy governing packet size and release timing strongly affects the

availability of information across project phases.

5. Coordination: When released tasks are discovered to require rework developers in the

originating and discovering phases must coordinate prior to revising the work.

The model is a system of nonlinear differential equations describing (i) the flow of work and

information within and among development project phases, and (ii) the policies used to manage

the project. Model components and their interactions are based on existing product development

theories and our field studies of development projects. For example the development process

structure is based on theories of project constraints and resources (Noreen, Smith and Mackey

1995) and previous dynamic project models including Abdel-Hamid and Madnick (1991), Ford

and Sterman (1998a), Cooper (1980) and others. Because no closed-form solutions are known

we simulate the system's behavior.

Our model simulates the performance of a multiple-phase development project. Each phase is

represented by a generic structure, which is customized through parameterization to reflect a

specific stage of product development such as preparing construction drawings for building an

office complex, writing software or testing computer chip prototypes. The numeraire for

development work is the "task," an atomic unit of work. Examples of development tasks include

the selection of a pump, writing a line of code or installing a steel beam. When tasks within a

phase are heterogeneous the unit of work can be defined as the average amount an experienced

person can accomplish in a given time interval (e.g. an hour or day). Tasks may require rework

because they were done incorrectly or because the information they were based on has changed.

We assume tasks are small enough to either require a change or be correct and in final form, but

not to require a partial change.

Modeling the Flow of Development Work

The flow of work and information among phases define the network structure of the project.

Figure 2 shows a simple but common example. The links shown in Figure 2 represent several

forms of inter-phase interaction, including:

*Work progress in which supplying phases provide development products or other

information to receiving phases. These flows are shown by the solid arrows.
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* Work inherited by receiving phases from supplying phases may require rework (either

mandatory due to errors or optional for improvement). Inheritance of tasks requiring

rework corrupts work done by the receiving phases. When corrupted work is discovered it

is reported to the phase where the change requirement was generated so it can be reworked.

These flows are shown by the dashed arrows in the project network.

* Rework requires coordination between the phase that discovered the change requirement

and the phase that generated and must correct the work. This coordination must occur prior

to the revision of the work.

Consistent with the literature on concurrent development the information flows among phases in

the model are bi-directional. For example, in the Design Structure Matrix approach (Eppinger,

Whitney, Smith and Gebala 1994, Smith and Eppinger 1997a,b) development task concurrence is

described by directed dependencies between pairs of development activities. Applications of the
Design Structure Matrix in several industries have identified bi-directional development

dependencies between phases in which the activity initiated first (upstream) receives products

from the activity initiated later (downstream) as well as the more traditional dependence in the

general direction of work flow. Smith and Eppinger call development through these bi-

directional flows iteration. Figure 2 also shows the Design Structure Matrix corresponding to the

project network in the diagram in which several iterative loops are created by the bi-directional

information dependencies among phases.

All development processes are constrained by the physical and information relationships among

the tasks and phases within a project. These constraints include traditional task durations and

precedence relationships but also include information dependencies leading to iteration (Smith

and Eppinger 1997b). Managerial decisions about the availability of work, coordination

mechanisms (Hauptman and Hirji 1996) and the characteristics of information transferred among

development phases (Krishnan 1996) can also affect progress, as can the number, skill, and

experience of project staff (Abdel-Hamid 1988). These processes and policies can interact to

constrain progress. Consider as an example the erection of the structural steel skeleton for a ten

story building. Steel erection requires that the structural members (the columns, beams and

bracing) be installed, inspected for proper installation and corrected if the installation is found to

be defective. For each member these activities can only occur in a specific order: install, inspect,

approve or discover an error and correct, re-inspect rework, and eventually release to other
development phases. Management policies such as the number of floors of steel that must be

approved prior to being released also affect progress and information availability downstream.

6



Figure 3 shows the storage and flow of work within a single development phase such as the steel

erection example.

Basework

In our model any task is in one of six states represented by boxes in Figure 3: base work not
completed (Wb), work completed but not yet checked by quality assurance (Wq), work that has
been approved (Wa), work which has been finished and released to other development phases or
customers (Wf), work requiring coordination between development phases prior to being

changed (Wc) and work known to need changes and awaiting rework (Wr). Four fundamental

development activities drive the movement of work among these six stocks. Base work (b) is the

completion of work for the first time and moves work from its initial condition of not completed
to being completed and needing checking. Quality assurance (q) is checking for errors and

improvement needs. Tasks that do not require rework or tasks with changes not discovered
during quality assurance are approved (a), accumulate in the stock of work approved until they

are released (f) to the managers of receiving phases or to customers. Quality assurance can also

discover work needing changes (d) due to flaws by developers in the phase or the inheritance of

defective, incomplete or preliminary work from supplying phases. Rework can be generated in

supplying phases by changes in customer requirements or other environmental disruptions.

Rework (r) seeks to correct errors or improve tasks previously completed. Work that has been
corrected or improved (i.e. reworked) is returned to the completed-not-checked stock for re-

inspection. Thus:

(d/dt) Wb = - b (1)
(d/dt) Wq = b + r - d - a (2)
(d/dt) Wa = a - f (3)
where: Wb- Work needing Base work Wa - Work Approved

Wq - Work needing Quality Assurance a - Approval rate

b - Base work rate d - Discovery of rework rate
r - Rework rate f - Finish and release rate

Discovery and Notification of Rework Requirements
Recognizing and reworking errors is critical to product development success. Cooper and Mullen
(1993) found software in large defense programs was reworked three times on average and 40%

of code in large commercial software programs required rework. Boehm (1976) found that
rework costs increase approximately tenfold for each phase in which errors remain undiscovered.
Burati and Farrington (1987) found an average of over 12% of the installed cost of nine
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construction projects was due to changes. Management of changes has also been investigated

(Loch and Terwiesch 1999). Terwiesch and Loch (1999) identified procedural causes of poor

schedule performance in automobile development and suggest process changes for reduced cycle

time.

In our model work discovered to need changes moves from the stock of work awaiting

inspection to the stock of work to be coordinated (Figure 3). Coordination (c) is the integration

of the project among phases. Classic examples include designers working with marketers to

refine product specifications, or engineers meeting with product architects to explain why certain

product specifications cannot be met within the time available. We assume a fortiori that

coordination across phases can be accomplished asynchronously with tools such as memoranda,

sharing of CAD/CAM files or electronic mail. After coordination resolves any disputed issues

tasks move to the stock of work to be changed and are subsequently reworked. Work requiring

changes can also be missed during quality assurance and therefore be approved and released, to

be discovered in a receiving phase. Upon discovery the generating phase is notified and the
affected work is moved from the stock of work considered finished (Wf) to the stock of work to

be coordinated (Wc). After coordination, the change is made by the originating phase and the

work is checked and eventually released again. These flows yield:

(d/dt) Wf = f - n (4)

(d/dt) Wr = c - r (5)

(d/dt) Wc = d + n - c (6)

where: Wf - Work Finished and released Wr - Work known to need Rework

Wc - Work needing Coordination c - Coordination rate

n - Rate of Notification and return of work requiring coordination and

rework

The detection of tasks requiring rework is not a purely technical matter. There are often long

delays between the time receiving phases detect a problem requiring rework and the notification

of the phase where the problem was generated. Engineers in a phase often have incentives to

hide errors from management and from other phases, for example to maintain the impression that

their phase is progressing on schedule. They hope others will be forced to reveal their errors first,

causing a schedule slip that enables them to solve the problem before having to reveal it. We

capture these behavioral processes by distinguishing between the detection of tasks requiring

rework (d) and the notification of affected phases (n).
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Quality Assurance
Three of the four fundamental development activities (base work, rework and coordination) are

used directly in equations (1), (2), (5), and (6). The discovery of changes and approval of work

are based on the fourth fundamental development activity: quality assurance. We separate the

work inspected through quality assurance (q) into the discovery of generated changes (d) and the

approval of work (a) as follows. Since quality assurance efforts are not perfect, the need for some

rework is missed. Some work that must be changed is mistakenly considered to be finished, and

is released (type I errors). We assume that the work done correctly is not mistakenly flagged for

rework (no type II errors), though the model can easily be expanded to relax this assumption.

Therefore the fraction of the work under-going quality assurance discovered to require rework is

the product of the probability that a task requires a change (p(p)) and the accuracy of quality

assurance, which we measure with the probability of discovering the need for a change given that

the need exists (p(alp)). The first probability is strongly influenced by product complexity but

also by process complexity (Nutt 1998). The sensitivity to quality assurance (p(alp)) is affected

by managerial decisions that influence the quality of inspection such as the experience of the

quality assurance work force and by managerial objectives and incentives to reveal or conceal

change requirements. The fraction of tasks requiring rework is the non-overlapping sum of the
probability that a task requires rework due to causes within the phase itself (P(Pi)) and the

probability that a task requires rework due to problems inherited from its supplier phases (P(Pe)).

Tasks for which no rework needs are discovered are approved.

d = q * p(p) * (p(alp) (7)

p(P) = (P(Pi) + P(Pe)) - (P(Pi) * P(Pe)) (8)

a = q - d(9)

where: q - Quality assurance rate

p(p) - probability a task requires rework

p(alp) - probability of discovering the need for rework if it exists
p(pi) - probability a task requires rework due to internal causes

P(Pe) - probability a task requires rework due to external causes

While work is approved continuously, the release of approved work (f) is discrete. Approved
work (Wa) is released in packages of size a. The release package size is a management decision

and is strongly conditioned by characteristics of the phase. In computer chip development the

vast majority of the design code must be completed prior to release for a prototype build since

almost all the code is needed to design the masks. In other development settings managers have
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broad discretion in setting release package sizes. Product specifications can be released to design

a few specifications at a time or in a single complete document.

One release policy uses the release package size to specify the minimum fraction of the
unreleased work (the phase scope, S, less the work released, Wf) that must be approved to begin

releasing work. The phase scope is the total number of tasks to be done in the phase. Using this

policy the release rate is zero when the stock of approved work is less than the threshold release

packet size. Once the stock of approved work exceeds the threshold it is released over a period
determined by the nominal release time (r). The nominal release time can include physical and

administrative processing delays, can vary across projects or phases, and is influenced by phase

managers. We assume the instantaneous release of tasks approved to date by setting the nominal

release time to the simulation time step. This policy releases work in packages of decreasing

size.

fWa / r if Wa >C * (S - Wf)
l0 otherwise (lOa)

where: - release package size as fraction of unreleased work
S - phase scope Tr - nominal release time

An alternative policy releases work in packets of fixed size * (the last packet may be

smaller).

{Wa / r if Wa > Min( * S, S - Wf) (10b)
0 otherwise (b)

where: - release package size as fraction of phase scope

We use these two release policies in our model to describe the practices we have observed in the

field. Other release policies can also be modeled.

The rate at which a supplying phase removes work from its stock of finished and released tasks

for coordination and rework (n) is driven by the discovery of the need for rework by receiving

phases. This flow in the supplying phase is the sum of the rework requirements discovered by all

receiving phases. The discovery of rework in receiving phases due to using supplied work that

need changes depends on the probability that the work released by a supplier phase, s, to a
receiving phase, r, requires a change (Wf,s,p / Wf,s where p indicates required rework), the rate

at which the receiving phase checks work (qr) and the probability the receiving phase discovers
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the inherited change (p(alp)r). This rework discovered in receiving phases is scaled for

differences in phase scopes (S s/Sr) to describe the rework required in the supplying phase. The

contribution of returned work needing rework to a phase is zero from all phases that do not
utilize the phase's output because no work is released to these phases. Simultaneous discovery of
the same inherited change requirement by multiple receiving phases is assumed insignificant.

This assumption is valid for relatively small change densities and a sufficiently short time step in
the simulations. Work requiring changes is modeled with two structures that have the same basic
stock and flow structure shown in Figure 3, one each for changes due to internal and external

causes.

ns = r [(Wf,s,p / Wf,s)*qr*(P((lp)r) *(Ss / Sr)] for r & s { 1,2...,m} and s r( 1)
where: Wf,s,p - Work requiring rework but released by supplying phase s

Wf,s - Work released by supplying phase s

m - number of phases

Modeling Concurrence and the Availability of Work
In general, the rate at which any of the development activities (base work, quality assurance,

coordination, and rework) is performed depends on two types of constraints. First, work rates can
be constrained by inadequate resources - too few workers, insufficient worker skill and
experience, or insufficient supporting infrastructure (such as CAD/CAM systems). Second,
progress can be constrained by the interdependencies among phases and tasks. As an example,

consider the erection of the structural steel skeleton for a ten story building. Each member must
be installed (base work), and inspected (quality assurance). If an error is found, there must be

coordination among the affected supervisors and skilled trades (coordination) before the error

can be corrected (rework). For any given technology, a certain minimum amount of time is

required for each of these four activities to be performed for each structural member even when

resources such as laborers and cranes are ample. Further, certain tasks cannot be worked on until

others are done.

The rate of progress Pj,k for activity k in phase j is the minimum of (i) the rate feasible due to
the quantity and productivity of resources allocated to each activity and phase (Pl,j,k where 1

refers to labor as an example of a resource), and (ii) the rate feasible given the number of tasks
available to the activity (wj,k) and the minimum activity duration for that activity (j,k):

Pj,k = Min (Pl,j,k, j,k / j,k) forj {1,2...,m} and k {b, q, c, r} (12)
where: Pj,k - Progress feasible for activity k in phase j
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Pl,j,k - Progress feasible due to resource constraint 1 for activity k in phase j
Wj,k - Work available for activity k in phase j

Xj,k - Minimum activity duration for activity k in phase j

It is obvious that inadequate or poorly trained workers, or shortages of required equipment and

support infrastructure, can cause delays in projects and may contribute to the 90% syndrome. A

variety of models explore how underestimation of project scope, overestimation of productivity,

or unexpected changes in customer requirements can lead to delays and cost overruns by causing

resource shortages (e.g. Williams, Eden, Ackermann and Tait 1995, Abdel-Hamid 1988). In this

paper, however, we seek to show how the structure of a development process and managerial

decision making interact to contribute to the 90% syndrome, even when resources are ample.

Thus we assume henceforth that resources are always more than sufficient, and equation (12)

reduces to:

Pj,k = j,k / j,k forj E {1,2...,m} and kE {b, q, c, r} (12a)

The minimum activity durations Xj,k are specific to each activity and phase. These durations

must be estimated empirically, for example from time and motion studies, the history of past
projects, or other means. In the structural steel example the minimum base work duration (j,b)

would answer the question "How long does it take fully experienced people with ample and

appropriate materials, equipment and information to place a steel member?"

We model the work available (wj,k) for quality assurance, coordination, and rework with the

stocks of tasks awaiting each of these activities. Thus:

Wj,k = Wj,k for kE {q, c, r} (13a)

The formulation for base work available is different. The base work available, j,b, is all the

work that can be initially completed less the work that has already been completed. Base work

tasks already completed is the sum of all tasks that have been released, approved, are awaiting

rework, or awaiting quality assurance, or, equivalently, the difference between the phase scope,
Sj, and the tasks remaining in the base work stock, Wb,j. Thus base work available for initial

completion is given by:

Wj,b = Max (0, wj,t - (Sj - Wj,b)) forj E { 1,2...,m} (13b)

where: wj,t - Total work available for base work completion in phase j
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The MAX() function is required since the total number of tasks available for base work whether
completed or not (wj,t) depends on the tasks released to phase j by the phases that supply it with

development information. Suppose supplying phases have released a large fraction of their tasks,
so that phase j is able to complete, say, half of its work (that is, wj,t = .5 0*Sj). Now, however,

suppose a large number of errors are discovered in the work of the supplying phases. The tasks

previously released to phase j are recalled for rework and the number of tasks that phase j can do
(wj,t) falls (e.g. to wj,t = 0.25*Sj) until the flawed tasks are coordinated, reworked, re-inspected,

approved and re-released by the supplying phases. If phase j had already completed most of the
tasks that depended on the flawed work (e.g. Sj - Wj,b = 0.45*Sj) the term wj,t - (Sj - Wj,b)

becomes negative. The Max() function enforces the non negativity constraint on work available

in situations where a phase has done more work than it should have given the tasks released by

the phases upon which it depends. In such circumstances, further base work in phase j must

cease until the flawed tasks upon which it depends are reworked and re-released. In addition, of

course, the base work completed by phase j based on the flawed work will also require rework.

For example the steel erection phase could be forced to stop installing new members if released

drawings of installed work were recalled for design changes. Upon the re-release of the drawings

the redesigned members already installed could be corrected.

Another constraint on the availability of work arises from the fact that not all tasks can be

developed fully concurrently. The progress of work within a phase can constrain the availability

of work within that same phase. For example in the steel erection phase of a building project,

work on some steel members such as beams must wait for the completion of other work such as

the installation of the columns that support those beams, and the upper floors are not available

until the lower floors are completed. Therefore not all the structural members can be installed

simultaneously. The progress of work in a phase can also be constrained by the completion and

release of work by the phases that supply it with development products and information. The

number of tasks available is the minimum of the internal constraints set by the focal phase itself
(aj) and the external constraints set by its supplying phases (as,j).

wj,t = Sk * Min(aj, as,j) for s andj { 1,2...,m} (14)

where: aj - fraction of phase j scope available due to internal dependencies

as,j - fraction of phase j scope available due to external dependencies with

supplying phase s
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The work availability constraints, aj and as,j, are based on the amount of work that has been

completed to date and therefore limit the degree to which tasks can be done concurrently. We

model these constraints with concurrence relationships. These functions describe the fraction of

the phase scope available for initial completion as it depends on the fraction of required

information available. The relationships answer the question "How much work can now be

completed based upon how the work has progressed thus far?" We describe work availability
constraints imposed by a phase on itself with the internal concurrence relationship (aj) and the

constraints imposed on a phase by supplying phases with external concurrence relationships (s,j

where s represents a supplying phase and j the receiving phase). The fraction of tasks available
as the basis for additional work due to an internal concurrence constraint (aj) is a function of the

fraction of the phase scope that is perceived to have been completed satisfactorily, i.e. the work

project managers expect do not require changes. The fraction of tasks perceived satisfactory is

the ratio of the work perceived satisfactory thus far and the phase scope. The number of tasks

perceived to be completed satisfactorily is partially a managerial decision. It includes at least the
sum of the work approved (Wj,a) and the work finished and released (Wj,f). In addition

development managers may decide to also include the work completed but not yet checked by
quality assurance (Wj,q) in the work perceived to be satisfactory. The impacts of this policy can

be investigated with our model. We include unchecked work based on the results of our field

studies where we found, for example, that programmers continued to write code based on prior

code even when that software had not been tested and approved. Tasks known to need rework or

awaiting coordination are not included because they do not make additional work available.

aj = fj((Wj,q + W,a + Wj,f)/Sj) (15)

where: aj - concurrence relationship of phase j

Internal concurrence relationships capture the degree of sequentiality or concurrence of the tasks

aggregated together within a phase, including possible changes in the degree of concurrence as

the work progresses. The internal concurrence relationships characterize the dependencies

represented by the diagonal terms in the Design Structure Matrix. As shown in Figure 4, all

internal concurrence relationships must lie strictly above the 45 ° line, otherwise work could not

be completed until it was already completed. Within the feasible region a variety of functional

forms are possible including nonlinear concurrence relationships. In general, more concurrent

processes are described by curves near the upper and left axes of the internal concurrence graph

and less concurrent processes are described by curves near the 45 ° line. Figure 4 shows the

internal concurrence relationship for the steel erection of a ten story office building in which the

floors are erected sequentially from the ground up. At the beginning of the project only the first
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floor (10%) is available to be completed. The completion of portions of the first floor make

available portions of the second floor. When the first floor is finished, 10% is completed and the

second floor is available, making 20% available for initial completion. This linear progression

continues until the completion of the ninth floor releases the final floor for completion (100%

available for initial completion when the phase is 90% complete).

External concurrence relationships describe the available work constraints between development

phases in an analogous manner. Testing, for example, cannot commence until a prototype is

completed. An external concurrence relationship describes the fraction of work that can be done

in a receiving phase based on the fraction of work released by a supplying phase. The external

concurrence relationships characterize the interphase dependencies represented by the off-

diagonal terms in the Design Structure Matrix. They are potentially nonlinear, allowing our

model to capture changes in the degree of dependence among phases as a project evolves. The

fraction of tasks released from the supplying phase is the ratio of the number of tasks released by

that phase (Ws,f) to the scope of the phase (Ss). The function is identically unity for all phases s

that do not supply information to phase j.

as,j = fas,j (Ws,f / Ss) (16)

where: as,j - concurrence between supplying phase s and receiving phase j

Concurrence relationships are characteristic features of a project's network structure and must be

estimated for each project. We tested our model against the behavior of a medium-sized chip

development project at a major U.S. semiconductor firm (the Python project). Ford and Sterman

(1998b) describe the protocol used to elicit these concurrence relationships and provide

examples. These workshops proved to be useful not only for model calibration but also helped

the members of the development team to understand each other's perspectives of the

development process.

As an example Figure 5 shows four expert estimates of the external concurrence relationship

between the product definition and design phases of the Python project. The product definition

phase develops product architecture and specifications based on the Python chip's market and

target performance. The designers use these specifications as the basis for the detailed design

embodied in the software code used to lay out the chip's individual components. Each estimate in

Figure 5 describes the mental model of a participant in the product definition or design phase

concerning the question "How much design work can be completed based on the fraction of the

product definition work that has been completed, approved and released?"
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Interestingly, the two "upstream" people (the marketing representative and the product architect)

believed the "downstream" people (the design manager and designer) could and presumably

should begin their work quite early, when few product specifications have been released, while

those downstream believed their work could only progress when a majority of the specifications

were released. These differences in mental models had led to conflict and delay in prior

development projects. The explicit description of these mental models initiated and facilitated

discussions for improving the organization's development processes.

Equations (1) through (16) describe a model that captures both process and managerial

constraints. Our model is generic in that it can describe many development phases and can

represent, through suitable parameterization, how physical and information development

processes and managerial policies constrain and propel work through different development

phases and control the quantity or timing of rework.

4. Concurrence-generated 90% Syndrome
We used the model to test whether the information interdependencies created by concurrent

development alone can cause the 90% syndrome. The Python project applied all the major

components of concurrent development including overlapping phases and cross functional teams.

The organization was well trained in concurrent development practices (Voyer, Gould and Ford

1997, Ford 1995). Figure 6 compares the Python project's original schedule and actual

performance, developed from records of the phase durations and completion dates. As is

common in the development process for semiconductor chips, and verified in our interviews with

Python developers and managers, the design phase planned to release its work in a single large

package, generating the vertical jump in planned progress. However after development began the

decision was made to design the Python chip in two components instead of one. This resulted in

two releases from design and therefore the two jumps in actual performance. Like the

Rattlesnake project (Figure 1) the Python project suffered from the 90% syndrome. The project

remained close to the original schedule through week 20 and was 73% complete by the original

deadline. But progress then slowed from 1.8% per week to 0.9% per week, and the project was

ultimately completed 77% late (week 69 versus 39).

We calibrated our model to the Python project. Parameter estimates are based on the literature

(e.g. Cooper and Mullen 1993) and our field studies. Figure 7 shows planned and actual project

performance as simulated by our model. Planned progress simulates management's plan for a

single design release, their assumption of no iteration, and overestimation of productivity.
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Experienced managers expect iteration (lower net productivity) but are often required to use
"stretch objectives" in project planning in the belief they keep motivation and pressures to

perform high. Stretch objectives are supported by the literature and our field data in which
Python project developers repeatedly described the unrealistic optimism used to plan projects,
including the assumption of few or no changes. Plans assuming no iteration can cause problems
in the allocation of available resources between iteration activities and planned activities and in

reduced productivity.

The model recreates the 90% syndrome experienced by the Python project. Differences between

our simulation and the project's actual behavior are largely due to resource impacts omitted from
the model, specifically staffing problems created by the unanticipated iterations. The similarity in
behavior patterns between Figures 6 and 7 indicates that the informational and physical

dependencies created by concurrence can generate the syndrome and cause projects to take

longer than planned. This suggests that even projects managed by highly skilled project

managers with adequate resources can experience the 90% syndrome.

Of particular importance to implementing concurrent development is the impact of concurrence

on schedule performance. Figure 8 shows the simulated Python project with: (1) the degree of
concurrence actually used, (2) a process in which all concurrence relationships are 25% more
overlapped than actual conditions, and (3) a process in which all concurrence relationships are
25% less overlapped In describing increased and decreased concurrence we retained the basic

shapes of the relationships, effectively shifting them left to increase concurrence and right to

decrease concurrence (see Ford 1996 for details). The traditional perspective suggests more

concurrence should help projects finish significantly earlier, while less should cause projects to

finish later. Figure 8 shows that decreasing concurrence delays the project 34 weeks (49%) but
that increasing concurrence by the same amount improves schedule performance by only 7%.

The weak response to enhanced concurrence and the persistence of the 90% syndrome arises
from unplanned iteration cycles to correct unanticipated errors. In an iteration cycle, the
discovery of a change is passed from the developers or managers in the discovering phase to
those in the originating phase and the rework required is coordinated among the affected phases.
Changes are made to the flawed tasks in the originating phase and to contaminated work in all
affected phases. The originally flawed work is re-inspected, re-released and arrives at the
location of its discovery again. For example, a test phase may discover an error in the chip such
as a short circuit across two layers. Suppose the error is traced to the design. Test engineers
notify and coordinate with the designers to specify the location and characteristics of the short
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circuit. The designers then must rework, recheck and re-release the design, followed by changes

in layout, tape out, masking, and prototype fabrication. The iteration cycle is completed when

testing of the redesigned prototype begins. Figure 2 and equations (2) - (11) with the appropriate

subscripts define this path in the model.

The impact of concurrence on schedule performance is asymmetric because the effects of

iteration cycles on schedule performance increase as projects become more concurrent. In more

internally concurrent projects more base work is initially completed before errors requiring

rework are discovered. In more externally concurrent projects, more work is performed before

rework requirements due to change requirements in other phases are discovered. Consequently,

errors generate additional rework and iteration cycles in more concurrent projects, offsetting

much of the schedule performance improvement gained from increased concurrence. Increased

concurrence also increases the average iteration path length by delaying the discovery of the

need for rework to phases farther from the generating phase in the project network.

5. Concealing Rework Requirements in Concurrent Development
While the information processing structure of concurrent development contributes to the 90%

syndrome, our field studies of concurrent development projects indicate managers and

developers behave in ways that exacerbate the syndrome. Here we focus on one common and

problematic behavior: purposefully concealing change requirements from development team

members. We have found evidence of concealing change requirements in many development

projects. Concealment can be used to temporarily reduce work. For example an engineer in a

leading electronics company reported to us that design engineers regularly delayed revealing

problems they discovered to avoid time-consuming document control work required by the

organization's engineering change notice process (Ford et al. 1993). However the practice of

concealing rework requirements is often more systemic due to people's dislike of bad news and

information that contradicts their beliefs. People in authority often "shoot the messenger" -

punishing those who convey bad news. Consequently, people suppress information they believe

will be unpleasant to their superiors or important customers. For example suppliers are reticent to

report that parts will be late even if they are integral members of their customer's development

team (Roth and Kleiner 1996, p. 43). The practice of hiding one's mistakes is institutionalized in

many organizations. A manager at a major automobile manufacturer we refer to as AutoCo

observed the pervasiveness of the practice of concealing discovered rework in the organization:
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"There is a basic cultural commandment in engineering - don't tell someone you have a problem

unless you have the solution. You're supposed to solve it - and then tell them." (Roth and Kleiner

1996, p. 13-14)

Concealment can be standard practice for entire projects. At a major defense contractor, weekly

meetings of project team leaders were known as "the liars' club" because everyone withheld

knowledge that their part of the project was behind schedule. Members of the liar's club

concealed development problems in the hope that someone else would be forced to admit

problems first, forcing the schedule to slip and letting them escape responsibility for their own

part's tardiness. Everyone in the liar's club knew that everyone was concealing rework

requirements and everyone knew that those best able to hide their problems could escape

responsibility for the project failing to meet its targets.

Purposefully concealing changes from managers and other team members is counterintuitive in a

concurrent development environment. The team concept of concurrent development is designed

to promote open and early sharing of problems. But our field work shows that this is often not

practiced, even in organizations staffed with competent, well-intentioned developers and

managers trained in concurrent development. What causes these managers to conceal change

requirements? Concealing rework requirements provides the manager of an individual phase

several benefits that make it an attractive policy beyond the avoidance of responsibility for poor

project performance cited above:

* Iteration is temporarily reduced in concealing phases, increasing the amount of work completed

and available to receiving phases. This improves apparent schedule performance, sometimes

allowing managers to meet a critical phase deadline they would miss if change requirements

were revealed. Concealment also reduces the starvation of receiving phases and pressure for

information from development team members.

* Reducing current iteration reduces the number of tasks acknowledged to need coordination and

rework and therefore the amount of work considered a problem or hindrance to progress. This

improves apparent quality performance.

* Problems that threaten the project schedule can be hidden and resolved during schedule

extensions blamed on other phase's rework if those phases extend the project deadline. This

reduces the blame for poor phase schedule performance the concealing manager must bear.
* Maintaining adequate apparent progress reduces the likelihood of upper management

intervening or replacing the manager with someone believed to be better able to meet phase

and project targets. Concealment enhances the manager's job security and authority.

19



It is tempting to believe that managers with better training or more experience in concurrent

development would not conceal change requirements by joining a liar's club. But consider the

predicament of managers of individual phases. They have committed themselves to complete

their phase by a given deadline. Aggressive deadlines and overly optimistic assumptions about

productivity and rework generate pressure to show regular progress toward these deadlines. The

pressure on managers of individual phases to show progress toward their deadlines can be

enormous. A manager at a major automobile maker said "...the only thing they shoot you for is

missing product launch...everything else is negotiable" (Repenning and Sterman forthcoming).

But the manager's phase has inherited flawed or incomplete work from its supplying phases and

has also generated rework due to internal causes, increasing the pressure. Managers have several

options once they realize that required rework will cause their phase to finish after the deadline.

First, they can identify their phase's problems to development team members and superiors and

bear responsibility for delaying the project. By doing so they expose themselves to the possibility

of looking bad twice, once now for delaying the project and again later if inherited changes or

their own phase's errors delay the phase again. Second, they can identify the errors their phase

has inherited from supplying phases but conceal the rework generated by their own phase,

blaming their peers for the problems their phase is experiencing. If this results in schedule slip,

the managers have gained time to solve the problems generated by their own phase without

having to take responsibility for them. But they have certainly alienated the managers of the

supplying phases they exposed and opened the door to having their phase's errors exposed by

managers of receiving phases eager for another deadline extension so they can safely resolve

their own problems. Finally, managers can join the liar's club by remaining silent about both

their own problems and those generated by other phases, claiming adequate progress and hoping

that someone else will be forced to confess and bear the wrath of superiors, providing time to

solve their own phase's problems in relative secret. Only by joining the liar's club can managers

avoid responsibility for failure, prevent retaliation by other managers and potentially solve their

own rework before it is exposed.

When viewed from the perspective of the manager of an individual phase a policy of

concealment is often rational. But interphase dependencies can cause major problems at the

project level. Solving problems without the assistance of development team members from other

phases can be impossible in the development of complex products such as high rise office

buildings or automobiles. Early in one AutoCo project the sum of the electric power demand by

individual systems (starter, headlights, etc.) exceeded the maximum output of the vehicle's

alternator by a factor of two. The problem could not be recognized and solved until all system

groups were aware of the problem and coordinated their actions (Roth and Kleiner 1996, p 38).
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The agency problems motivating concealment lead to a tragedy of the commons or prisoner's

dilemma. In the short run it is rational for individual managers to conceal change requirements.

Doing so worsens overall progress for the entire project. Eventually the errors causing delays are

discovered and exposed. So the liar's club is doomed At these times liar's club members may try

to reveal the flaws of other phases anonymously to gain time and shift blame but escape

retaliation. An AutoCo developer reported that "...the supplier will say things like (for example),

'You didn't hear it from me, but something is going to be late and somebody's lying to you. Don't

tell anyone I told you."' (Roth and Kleiner 1996, pp. 18-19). When receiving phases eventually

acknowledge inherited work requiring changes as the cause of their schedule failure they initiate

iteration cycles in which the generating and intermediate concealing phases must coordinate and

correct this work. Project performance then pays the cost of the temporary benefits received by
individual phase managers as the process-constrained iteration cycles degrade project

performance. The greater the delay in the revelation of rework requirements, the greater the costs
of remediation.

6. Modeling the Concealment of Discovered Rework Requirements
We model concealment of rework requirements by disaggregating the fraction of work requiring
rework discovered to need changes (p(alp)) into the fraction acknowledged (p(klp)a) and the

fraction concealed (p(alp)c). Although developers in the error-generating phase are aware of the

need to coordinate and change concealed rework requirements with other phases, they do not

alert other developers and initiate the required coordination. Therefore no action can be taken to

address these changes. Based on this reasoning we model concealed change requirements in the

same manner as tasks requiring rework that are not discovered during quality assurance, i.e. by

approving and releasing the work. The acknowledged fraction of tasks undergoing quality

assurance moves directly from the stock of work requiring checking to the stock of work

requiring coordination through the discovery of rework flow (d). The concealed fraction is added

to the flow of approved work (a).

p(Ilp)a = p(alp) - p(Xlp)c (17)
d = q * p(alp)a * p(p) (7a)
where: p(alp)a - fraction of work discovered to need rework if required and

acknowledged
p(xalp)c - fraction of work discovered to need rework if required but

concealed
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Notice that the total probability of a task requiring rework (p(p)) and scope (S) are not changed,

indicating a constant product complexity and project size. In calibrating our model to the Python

project (Figure 7) we assumed that the pressure to show progress caused developers and

managers of the Python project to conceal half of the rework requirements which they discovered

except in the final quality control phase where all remaining work is found and acknowledged.

For simplicity we assume the fraction of discovered problems concealed is the same for

internally generated rework needs and rework needs caused by inheriting flaws from supplying

phases. However our explicit modeling of internally and externally generated rework allows the

investigation of alternative assumptions such as greater concealment of internally generated

rework. Figure 9 shows simulations of the Python project with policies of concealing all and

none of the rework requirements discovered. Notice that maximum concealment shows faster

progress throughout the majority of the original 39 week schedule. This demonstrates that

managers of individual development phases can temporarily use concealment to effectively

address schedule pressure. However the concealment policy delays the last portion of the project

into the characteristic pattern of the 90% syndrome, causing the project to be completed 87% (35

weeks) later than originally planned and 11 weeks (17%) later than the project managed without

concealment. This illustrates that a concealment policy can cause or exacerbate the 90%

syndrome. Concealment is locally rational (for individual phase managers) but globally irrational

(for project management) and organizational success.

7. Discussion: Iteration Design and Management for Cycle Time Reduction
The frustration of competent and well-intentioned managers in concurrent development projects

can be understood as resulting from process-constrained progress, magnified by concurrent

development practices, and distorted by well-intentioned but narrowly-focused management

policies. Concealing rework requirements in response to the schedule pressure induced or

exacerbated by concurrent development practices shifts the burden of and responsibility for

change discovery away from individual concealing phases while improving apparent managerial

performance. Since this creates no large deviations from the behavior of projects without

concealment during most of the original project duration, managers do not receive signals that

could initiate preventive action. By the time concealed changes are discovered and

acknowledged, the project's structure has created a backlog of hidden rework. The resulting

iteration cycles delay completion and increase cost even when project resources are ample

because the process is constrained by the underlying recursive structure of information exchange

within concurrent development. Since managers typically have less influence over processes than

resources they have few effective tools and methods with which to accelerate throughput when

iteration cycles constrain progress. Indeed, attempts to remedy these delays through overtime and
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hiring can worsen the problem through fatigue, skill dilution, and other effects (Haddad 1996,

Thomas and Raynar 1994, Thomas 1990, Brooks 1978). The process-behavior interaction helps
explain how the 90% syndrome can occur in stable sized, competently managed, adequately

staffed projects.

Effective strategies for reducing cycle time in concurrent development projects are not obvious.

Our research suggests that strategies that simultaneously address process and behavioral drivers

of performance might be successful where process-based or behavior-based strategies would not.

Process-based concurrent development strategies have been proposed based on iteration (e.g.

Krishnan et al. 1995) or the parallel development of multiple options (Ward, Liker, Cristiano and
Sobek 1995) or both (Terwiesch, Loch and DeMeyer 1998).

The human resources and organizational development literature has focused on cross functional
development teams. One objective of these strategies is to broaden the perspectives of

development team members to include other members and the entire project as well the portion

for which they are directly responsible. However, changing the perspectives of managers and
developers from a focus on phase performance to project performance faces serious

implementation barriers. The bounded rationality of managers limits the scope and complexity
they can perceive, understand and use individually (Simon 1995, Beach 1997, Klein 1993) or in
teams (Brehmer 1998). Many development projects may be too big and complex for managers to
simultaneously "think globally" (at the project level) but "act locally" (operate in specific phases)

because it requires both the expansion of their mental models and aligning their local incentives
with the global goals of the project. Our field work indicates that when forced to choose, most

managers focus locally where they can have both an understanding of the impacts of policies and
the influence to implement those policies. Such a local focus has been shown to be a cause of

poor performance (Dmrner 1996).

Our research suggests that an effective strategy addresses the managerial behaviors that cause
iteration cycles to constrain progress. Iteration cycles can delay projects by being more in

number, longer in the distance which information must travel, slower in traversing that distance,
and occurring later than possible. Researchers have proposed process designs to manage iteration

cycle number, speed, length or timing. For example Terwiesch, Loch and DeMeyer (1998)
recommend "a fast process of problem detection, problem solving and engineering change
implementation" which increases iteration cycle speed. They suggest "loosening the coupling
(dependence) between development activities" and improving the accuracy of preliminary
information, both which reduce the number of cycles. McAllister and Backhouse (1996) suggest
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redesigning work flows to reduce the number of iteration paths in a project network. However all

of these processes become more difficult to manage with increased concurrence. Process changes

cannot improve concurrent development project performance if they do not also address the

behaviors that drive iteration cycles such as the policy of concealing change requirements.

Advanced information technology tools can play a role by acting on both processes and

behaviors simultaneously. For example Sabbagh (1995) reports Boeing's use of computer

assisted design and drafting (CADD) to identify conflicts among functional systems for use of

the limited space in the aircraft. This reduced the potential for concealing change requirements

as well as accelerating error detection and was an important factor in the success of the

development project. Established technologies can also effectively address both information

processes and development behavior simultaneously. Haddad (1996) describes how the

innovative architectural design of an automobile firm's technical center for product development

shortened communication paths (process) and increased the focus and commitment of

development team members (behavior), thereby contributing to a cycle time reduction of more

than twelve months. Designing process and policy changes to fulfill both information processing

and managerial behavior objectives can reduce cycle time more than addressing either in

isolation.

In this paper we have used a dynamic model of a development project to describe, quantify and

simulate how physical and information processes interact with managerial decision making to

constrain progress and cause project overruns. We have shown the critical role of iteration cycles

in explaining the 90% syndrome and how concealing discovered rework requirements is locally

rational but globally irrational. Such concealment is common in development projects. It arises

from the mental models of the managers and developers of individual phases and is amplified by

local incentives and organizational cultures favoring concealment. Incorporating the interactions

of development processes and behavior in development project changes can be critical for

improving performance.

Our work has several implications for concurrent development research. The model and

simulations demonstrate that effective modeling of development processes must integrate the

structure of information dependencies with the behavioral decision making of the actors. The

role of iteration cycles in the 90% syndrome demonstrates the need for explicitly including

iteration in project models. Tools and methods that reduce the opportunity for concealment of

known rework requirements can play an important role in cycle time reduction. Future research

can identify and test iteration cycle metrics that relate iteration to different forms of project and

phase performance and how specific iteration features constrain concurrent development
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progress. Additional investigations of the interaction of information processes and managerial

behavior can identify and describe other important linkages that constrain performance and

design process and policy changes for improvement. Understanding how development processes

and managerial behavior interact may lead to policies to improve concurrent development

projects.
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