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ABSTRACT

The capacitated minimum spanning tree problem is to find a minimum cost spanning tree with an

additional cardinality constraint on the sizes of the subtrees incident to a given root node. The

capacitated minimum spanning tree problem arises as a fundamental subproblem in many

telecommunication network design problems. The capacitated minimum spanning tree problem

is a hard combinatorial problem and existing exact algorithms can solve only small size

problems. Therefore, there has been substantial interest in developing heuristic procedures for

this problem. Currently, the best available heuristic procedures for the CMST problem are the

tabu search algorithms due to Amberg et al. [1996] and Sharaiha et al. [1997]. These algorithms

use neighborhood structures that are based on exchanging a single node or a set of nodes

between two subtrees. In this paper, we generalize their neighborhood structures to allow

exchanges of nodes among multiple subtrees simultaneously. Our first neighborhood structure

allows exchanges of single nodes among several subtrees. Our second neighborhood structure

allows exchanges that involve multiple subtrees. The size of each of these neighborhood

structures grows exponentially with the problem size. To search the neighborhood efficiently we

transform each feasible exchange into a "subset-disjoint" cycle in a graph, called the

improvement graph. Our approach, which is based on the cyclic transfer neighborhood structure

of Thompson and Orlin [1989], transforms a profitable exchange into a negative cost subset-

disjoint cycle in the improvement graph. We heuristically identify these cycles by a

modification of the shortest path label-correcting algorithm. Our computational results with local
improvement and tabu search algorithms based on these neighborhood structures are very

encouraging. For the unit demand case, our algorithms obtained the best known solutions for all

benchmark instances, and improved some. For the heterogeneous demand case, our algorithms

improved the best known solutions for most of the benchmark instances, with improvements by
as much as 18%.

1Industrial & Systems Engineering, University of Florida, Gainesville, FL 3261 1.
2 Sloan School of Management, MIT, Cambridge, MA 02139.
3 Operations Research Center, MIT, Cambridge, MA 02139.
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1. INTRODUCTION

The capacitated minimum spanning tree problem (CMST) is a fundamental problem in

telecommunication network design. In this problem, we are given a central processor and a set of

remote terminals with specified demands for traffic that must flow between the central processor

and terminals. The objective is to build a minimum cost network to carry this demand. Between

any pair of terminals or between the central processor and the terminals, there is a potential link

that can be included for a given cost. The problem is to design a network connecting the terminal

with the central processor so that the traffic on any arc of the network is at most K and the total

design cost of the network is minimum. When the demands of all terminals are equal to one, then

the problem reduces to finding a rooted spanning tree in which each of the subtrees incident to

the root node contains at most K nodes. In the literature, this unit demand problem is referred to

as the capacitated minimum spanning tree problem. More generally, we refer to the problem of

non-unit demand case, that is, the heterogeneous demand case, as the capacitated minimum

spanning tree problem. In this paper, we develop and analyse heuristic procedures for the

capacitated minimum spanning tree problem.

Let G = (N, A) be a complete undirected graph. Let N = {0, 1, 2, ... , n} denote the node

set, and let node 0 denote the source node or the central processor. Each node i E N\{0} has an

associated demand di that must be fulfilled by sending flow from the source node. Each arc (i, j)

E A has an associated cost cij, and a capacity K that limits the maximum flow on the arc. The

capacitated minimum spanning tree problem can be conceived of as a partitioning problem

where the node set N\{0} is partitioned into L subsets R[1], R[2], ... , R[L] satisfying

keR[p] dk < K for each p, 1 < p < L. Let T[p] denote a minimum (cost) spanning tree over the

node subset R[p]u{0} for each p, 1 < p < L, and T* denote the union of these trees. We define the

cost of the tree T* as (,j)T.'}cij We illustrate these definitions using Figure 1, where we

partition N into three subsets R[1] = {1, 4, 5, 10, 11, 15}, R[2] = {2, 6, 7, 12, 16}, and R[3] = {3,

8, 9, 13, 14}. We assume that each node has unit demand and K = 6. The minimum spanning

trees over these node subsets are as shown. The cost of the tree T*is 104. The capacitated

minimum spanning tree problem is to identify the node partitions so that the resulting tree T*
has the minimum possible cost.
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Figure 1. Example of a capacitated spanning tree where each node has unit demand.

There is a substantial research literature devoted to the capacitated minimum spanning

tree problem. The survey paper by Gavish [1991] gives a detailed understanding of

telecommunication design problems where the capacitated minimum spanning tree problem

arises. The recent paper by Amberg et al. [1996] presents an excellent survey of exact and

heuristic algorithms for the CMST problem. Typically, exact algorithms can solve problems of

size less than 50 nodes. A cutting plane algorithm by Hall [1996], and Lagrangian relaxation

based approaches by Gouveia [1995, 1996], and Gouveia and Martins [1996, 1998] obtain good

solutions for the capacitated minimum spanning tree problem and gave linear programming

based upper bounds on the percentage error. Amberg et al. [1996] and Sharaiha et al. [1997]

have suggested tabu search algorithms for solving the capacitated minimum spanning tree

problem. The website maintained by J.E. Beasley (http://www.ms.ic.ac.uk/info.html) provides

benchmark instances of the capacitated minimum spanning tree problem. We obtained the best

known solution values for these benchmark instances from Luis Gouveia.

In this paper, we focus on neighborhood search algorithms for the capacitated minimum

spanning tree problem. The performance of a neighborhood search algorithm critically depends

upon the neighborhood structure, the manner in which we define neighbors of a feasible solution.

Currently, the best available neighborhood structures to our knowledge are those of Amberg et

al. [1996] and Sharaiha et al. [1997]. Amberg et al.'s neighborhood structure is based on

exchanging single nodes between two subtrees. The nodes can be anywhere in the subtrees and

may not always be the leaf nodes of the subtrees. For example, in Figure 1, exchanging nodes 11

and 12 between T[l] and T[2] gives a neighbor of the solution shown. The neighborhood

structure due to Sharaiha et al. moves a part of a subtree, from one subtree to another or to the

root node. For example, in Figure 1, we can obtain a neighbor by deleting the node subset {5, 11,

15} from T[1] and attaching it to the root node. The number of neighbors in both of these

neighborhood structures is no more that n2. Both papers report computational results of tabu
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search methods based on their neighborhood structures. Amberg et al. report results on the unit-

demand instances and Sharaiha et al. report results on both unit-demand and heterogeneous

demand instances. Amberg et al. obtained the best known solutions for all the benchmark

instances for the unit demand case and Sharaiha et al. obtained the best known solutions for the

heterogeneous demand case.

In this paper, we suggest two new neighborhood structures that can be regarded as

generalizations of the above two neighborhood structures. Both the neighborhood structures are

based on the cyclic exchange neighborhood structure developed by Thompson and Orlin [1989].

Glover [1996] refers to this type of exchange as ejection chains. Thompson and Psaraftis [1993]

and Gendreau et al. [1998] have used this neighborhood structure to solve vehicle routing

problems and obtained impressive results. We use cyclic exchange neighborhood structures to

solve the capacitated minimum spanning tree problem.

Our first neighborhood structure allows exchanges of single nodes spanning several

subtrees. For example, in Figure 1, one possible modification of T may be described as follows:

(i) node 5 moves from T[1] to T[2], (ii) node 7 moves from T[2] to T[3], and (iii) node 9 moves

from T[3] to T[1]. In general, a move can span some or all of the subtrees in T. Our second

neighborhood structure allows moves which exchange subsets of nodes (a sub-subtree of a

subtree) spanning several trees. For example, in Figure 1, one possible exchange consists of (i)

node 5, 11, and 15 move from T[1] to T[2], (ii) nodes 12 and 16 move from T[2] to T[3], and (iii)

nodes 9, 13, and 14 move from T[3] to T[1].

Our neighborhood structure allows exponentially large number of neighbors of a solution.

Therefore, an explicit enumeration of the entire neighborhood will, in many cases, be

prohibitively expensive. We develop a heuristic search technique based on the concept of

improvement graph which converts each possible cyclic exchange into a "subset-disjoint" cycle

in the improvement graph and converts a profitable cyclic exchange into a negative cost cycle.

We heuristically identify negative cost subset-disjoint cycles using a modification of the shortest

path label-correcting algorithm. To judge the efficacy of these neighborhood structures, we

developed local improvement and tabu search algorithms and tested them on standard benchmark

instances. For the unit demand case, our algorithms obtained the best known solutions for all

benchmark instances and improved some. For the heterogeneous demand case, our algorithms

improve the best known solutions for most of the benchmark instances.
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2. NOTATION

In this section, we describe the notation used in the rest of the paper. We also use some

graph notation in this paper, such as trees, subtrees, paths, and cycles. We omit the definitions of

some standard terms here and refer the reader to the book of Ahuja, Magnanti and Orlin [1993].

Suppose that T is a spanning tree, where node 0 is a specially designated node, called the

source node. We assume that arcs in the tree T denote the parent-child relationship, the node

closer to the source node being the parent of the node farther from the source node. For each

node i in T, we denote by Ti the subtree of T rooted at node i. We denote by Si the set of

descendants of node i, that is, children of node i, children of their children, and so on. For

example, in Figure 1, T5 denotes the subtree rooted at node 5 in T[1] and S 5 = {5, 11, 15}.

We refer to the children of the source nodes as root nodes and the trees rooted at the root

node as rooted subtrees. We will often refer to the rooted subtrees simply as subtrees, when the

rooted subtree will be obvious from the context. For any node i, we denote by T[i] as rooted

subtree containing node i. We denote by S[i] the set of nodes contained in the subtree T[i]. For

example, in Figure 1, for each node i = 4, 5, 10, 11, and 15, T[i] = T[1] and S[i] = {1, 4, 5, 10,

11, 15}.

For a subset S of nodes, we let d(S) = Eis di We say that the subset S is feasible if and

only if d(S) < K. If S is feasible we denote by c(S) the cost of a minimum cost tree spanning the

node set Su{0}. We say that the rooted subtree T[i] isfeasible if Ej Tildj < K, and T is feasible

if T[i] is feasible for each i E N\{0}.

3. EXISTING NEIGHBORHOOD STRUCTURES

A neighborhood search algorithm for the capacitated minimum spanning tree problem

starts with a feasible tree T. Using a neighborhood structure, it defines neighbors of T; those

solutions that can be obtained from T by performing an "exchange". It then identifies a suitable

neighbor, replaces T by it, and repeats this process until a suitable termination criteria is reached.

The performance of a neighborhood search algorithm crucially depends on the neighborhood

structure. In this section, we review two existing neighborhood structures due to Amberg et al.

[1996] and Sharaiha et al. [1997]. We assume in this section that each node i E N\{0} has unit

demand. We make this assumption for simplicity of notation. The non-unit demand case can be

handled in a similar manner.
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Neighborhood Structure due to Amberg et al's

The neighborhood search method due to Amberg et al. uses a node exchange procedure

that transforms one feasible solution to a neighboring solution by changing the assignment of

nodes in the subtrees; such a transformation is called a move. Their procedure considers two

types of exchanges:

Node Shift: A node shift move chooses one node and moves it from its current subtree to

another subtree.

Node Exchange: A node exchange chooses two nodes belonging to different subtrees and

exchanges them.

The nodes selected for shift or exchange may not always be the leaf nodes of the subtrees

they belong to. Further, after the shift or exchange move, the subtrees may readjust themselves

so that each subtree is a minimum spanning tree over the node set it spans. The procedure allows

only feasible exchanges, that is, moves which do not violate the capacity constraints. We show in

Figure 2(a) a feasible node shift, where node 15 moves from the subtree T[1] to the subtree T[2].

We show in Figure 2(b) a feasible node exchange where node 11 in the subtree T[1] is

exchanged with node 6 in the subtree T[2].
K=6

(a)
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(b)

Figure 2. Illustrating neighborhood structure due to Amberg et al.

It is easy to see that there are Q(nL) node shifts and fQ(n 2) node exchanges, where L is

the total number of subtrees in the solution T. The cost of a node shift or a node exchange is

calculated by determining the impact of the move on the objective function value. The cost of a

node shift which shifts node i from the subtree T[i] to the subtree T[j] is c(S[i]\{i}) - c(S[i]) +

c({i}uS[j]) - c(S[j]), and this can be determined by solving (or, reoptimizing) two minimum

spanning tree problems. The cost of a node exchange which exchanges node i with node j is

c({j}uS[i]\{i}) - c(S[i]) + c({i}uS[j]\{j}) - c(S[j]), and this too can be determined by solving

two minimum spanning tree problems. It can be shown that each spanning tree problem can be

solved in O(K) time for the unit demand case. Consequently, this method takes O(n2K) time to

determine the most profitable node shift or a node exchange.

Neighborhood Structure due to Sharaiha et al.

The neighborhood search method due to Sharaiha's et al. performs cut and paste

operations. A cut and paste operation consists of cutting either the whole subtree or a part of a

subtree and then connecting (pasting) it either to the source node or to some other subtree. We

illustrate this operation in Figure 3, where the part of the subtree T[1] rooted at node 5, the

subsubtree T5, is cut from T[1] and connected to the source node by using the minimum cost arc

between T5 and the source node. If the method deletes the arc (i, j) and adds in the arc (k, 1),

then the cost of the cut and paste operation is ckl - cij. There are Q(n2 ) possibilities of cut and

paste operations and it takes (K 2) time to identify the cost of each such operation.

Consequently, the method takes O(n2K 2) time to determine the most profitable cut and paste

operation.

7



Figure 3. Illustrating the neighborhood structure due to Sharaiha et al.

4. NODE-BASED CYCLIC AND PATH EXCHANGE NEIGHBORHOOD STRUCTURES

Our first neighbourhood structure is a generalization of the neighbourhood structure of

Amberg et al. [1996] and allows changes that involve more than two subtrees, we call such

changes as multi-exchanges. We allow two types of multi-changes - cyclic exchanges and path

exchanges.

Cyclic Exchanges

Let T be a tree satisfying the capacity constraints. We represent a cyclic exchange as i-

i2 -i3 -...- ir-i1, where the nodes i 1, i2, i3, ... , ir belong to different rooted subtrees, that is, T[ir] •

T[is] for r • s. The cyclic exchange il-i2 -i3 -...- ir-il represents the following changes: node il

moves from the subtree T[il] to the subtree T[i2], node i2 moves from the subtree T[i2] to the

subtree T[i3], and so on, and finally node ir moves from the subtree T[ir] to the subtree T[il]. We

call the cyclic exchange il-i 2 -i3 -...- ir-i1 feasible if the changed tree satisfies the capacity

constraint. In other words, the cyclic exchange il-i2-i3-...- ir-i is a feasible move if only if the

set of nodes {ip. 1}uS[ip]\{ip} is feasible for every p = 1, 2, ... , r where i0 = ir. Let T' denote the

new feasible (capacitated) tree. We define the cost of this cyclic exchange as c(T') - c(T).
Observe that

c(T')- c(T) = 1_(c({ip1} u S[ip]\ {ip})- c(S[ip])). (1)

In other words, we solve minimum spanning trees over the new node subsets. The

difference between the costs of new subtrees and the previous subtrees gives the cost of the
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cyclic exchange. We call the cyclic exchange profitable if c(T') < c(T) and non-profitable

otherwise. We illustrate the cyclic exchange using the numerical example shown in Figure 4.

A cyclic exchange may increase the number of subtrees of T. While computing

c({ip,}uS[ip]\{ip}) when it obtains a minimum spanning tree over the node subset

{0, ip 1 }uS[ip]\{ip}, two or more arcs in it may be incident to the node 0; in this case a single

subtree becomes two or more subtrees. A cyclic exchange cannot decrease the number of
subtrees.

Path Exchanges

We now define a path exchange. We represent a path exchange as il-i2- ...- ir, where the

nodes i1, i2 , ... , ir belong to different subtrees. The path exchange il-i2- ...- ir represents the

following changes: node i moves from the subtree T[il] to the subtree T[i2], node i2 moves from

the subtree T[i2 ] to the subtree T[i3 ], and so on, and finally node ir.l moves from the subtree T[i r_

1] to the subtree T[ir]. This exchange is similar to the cyclic exchange except that no node moves

from the subtree T[ir] to the subtree T[il]. In this exchange, the subtree T[il] loses one node and

the subtree T[ir] gains one node. We call the path exchange il-i2 - ...- ir feasible if the changed

tree satisfies the capacity constraints. In other words, the path exchange il-i 2- ...- ir is a feasible

exchange if only if {ip 1}uS[ip]\{ip} is a feasible set of nodes for every p = 2, 3, ... , r. If

T' denotes the changed tree after this path exchange has been performed, then the cost of this

path exchange is

c(T ')-c(T) = c(S[i,] \ + {i p} uS[ip}) + c({ir} S[ir]) - p=l C(S[ip]). (2)

This path exchange is profitable if c(T') < c(T) and non-profitable otherwise. We

illustrate a path exchange using the numerical example shown in Figure 5. We point out that a

path exchange can increase the number of subtrees in T, as in the case of cyclic exchange. But

contrary to a cyclic exchange, a path exchange can also decrease the number of subtrees in T. We

observe that in a path exchange il-i2 - ...- ir, the subtree T[il] loses a node. If it consisted of a

single node, then the number of subtrees will decrease.
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K=5

(a)
(b)

Figure 4. Illustrating the cycle move.
(a) A feasible tree before the cycle move.
(b) The tree after the cycle move 3-9-12-17-3.

K:

(hl

(a)

Figure 5. Illustrating the cycle move in tree-based neighborhood structure.
(a) The tree before the move.
(b) The tree after the move 3-9-15-21-26-3.



Neighborhood

For a given tree T, we define another tree T' as a neighbor of T if T' is a feasible

capacitated tree and can be obtained from T by performing a cyclic or path exchange. We define

the neighborhood of T as a collection of all trees which are neighbors of T. The neighborhood

based on the cyclic and path exchanges is very large. Examining the entire neighborhood to

identify a profitable exchange may be an extremely time-consuming task. For the unit-demand

capacitated minimum spanning tree problem with n nodes and capacity K, the neighborhood of a

tree may contain as many as Q(Kn/K ((n/K) - 1)!) solutions, which grows exponentially with the

problem size n. We will suggest a heuristic that does not enumerate the entire neighborhood but

is quite effective in practice. It identifies a profitable move in time comparable to those of other

neighborhood structures due to Amberg et al. and Sharaiha et al. The basic idea underlying our

scheme is the concept of the improvement graph, which we define next.

Improvement Graph

The concept of improvement graph is originally due to Thompson and Orlin [1989], and

Thompson and Psaraftis [1993]. The improvement graph for the node-based neighborhood

structure is defined with respect to a feasible tree and is represented by GI(T). The graph G 1(T) is

a directed graph with the same node set as the graph G. There is a one-to-one correspondence

between nodes in G and those in G1(T). The arc set in G'(T) is defined in a manner so that each

cyclic or path exchange with respect to T defines a directed cycle in G1(T), and the cost of the

cycle equals the cost of the corresponding exchange.

We now explain how to construct the improvement graph G1(T) for a given tree T. The

node set of G'(T) is N, the same as that of the network G, but the arc set is in general different.

A directed arc (i, j) in G1(T) signifies that node i leaves the subtree T[i] and joins the subtree T[j]

and simultaneously node j leaves the subtree TOj]. To construct the improvement graph, we

consider every pair i and j of nodes in N, and add arc (i, j) if and only if (i) T[i] • T[j], and (ii)

{i}uS[j]\{j} is a feasible subset of nodes. We define the cost aij of arc (i, j) as

aij = c({i}Ius[]\{j}) - c(S[j]). (3)

We call a directed cycle il-i2- ...-ir-il in the improvement graph subset-disjoint if the

subtrees T[il], T[i2 ], ... , T[ip] are different rooted subtrees, that is, T[ip] • T[iq] for p • q. Our

algorithms use the following result.
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Lemma 1. (Thompson and Orlin [1989]) There is a one-to-one cost-preserving correspondence

between cyclic exchanges with respect to the tree T and directed subset-disjoint cycles in G'(T).

Proof. Consider a cyclic exchange il-i 2 - ...-ir-i1 with respect to the tree T and let T' denote the

changed tree after the cyclic exchange. It follows from the definition of the cyclic exchange that

T[ip] • T[iq] for p • q, and that the set of nodes {ip 1}uS[ip]\{ip} is feasible for every p, 1 < p <

r. Consequently, il-i 2- ...-ir-i 1 is a subset-disjoint directed cycle in G'(T). The cost of the cycle

W = il-i2 - ...- ir-i1 in G1(T) is

c(W) = Zr c == = (c({ip 1} U S[ip1\ ip})- c(S[ip ])) = c(T')- c(T), (4)

where the first equality follows from (3) and the second equality follows from (1). We have thus

shown that a cyclic exchange il-i2 - ...-- i-i1 with respect to T induces a subset-disjoint directed

cycle il-i2- ...- ir-il in the improvement graph G1(T), and both have the same cost. The converse

result, that a subset-disjoint directed cycle il-i 2- ...- ir-il in the improvement graph G1(T) induces

a cyclic exchange il-i 2- . ..- ir-il of the same cost, can also be proved similarly.

We next explain how to determine the costs of arcs in the improvement graph. We use

the expression given in (3) to compute arc costs. The expression (3) contains two terms. We

assume that the cost c(S[j]) of each rooted subtree T[j] is already known. Hence to determine ij,

we need to compute c({i}uS[j]\{j}). This involves deleting a node j from T[j] and adding node i

to it, and determining the cost of the minimum spanning tree. To solve a minimum spanning tree

over the node set {i}uS[j]\{j}, we need to consider the arc set which is the union of the current

spanning tree over T[j]\{j} and the arcs (i, h) for every h E S[j]\{j}. In the case of unit demands,

the graph over which the minimum spanning tree problem is being solved contains O(K) nodes

and O(K) arcs. This problem can be solved in O(K) time (Han et al. [1995]). We have thus

shown that we can determine the cost of one arc in the improvement graph in O(K) time, and the

costs of all the arcs in O(n2K) total time.

Indentifviniz Path Exchanges

In the previous discussion, we explained how to convert a cyclic exchange with respect to

a feasible tree T into a subset-disjoint cycle in the improvement graph G'(T) with the same cost.

We will now explain how to convert a path exchange with respect to T again into a subset-
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disjoint cycle with the same cost. This transformation requires the augmentation of the

improvement graph by adding some nodes and arcs. We create a pseudonode for each rooted

subtree in T, and an extra node called the origin node v. For notational convenience, we will
refer to each original node i in the improvement graph as a regular node. In the improvement

graph, we connect the origin node v to each regular node i using the arc (v, i) and set its cost to

c(S[i] \{i}) - c(S[i]) (see, for example, Figure 6). We also connect each pseudonode h to the

origin node v using the arc (h, v) and set its cost to 0. We also connect each regular node i to

each pseudonode h if node i does not belong to the rooted subtree represented by the pseudonode

h, say T[h], and ZkT[h]dk + di < K; this arc signifies that node i moves from the subtree T[i] to

the subtree T[h], but no node moves out of T[h]. Consequently, we define the cost of the arc (i, h)
as

aih = c(S[h] u{i}) - c(S[h]). (5)

It follows from (5) that aih denotes the cost of attaching node i to Th. Using arguments

similar to what we used for the cyclic exchange case, it can be shown that there is one-to-one

cost-preserving correspondence between the path exchanges with respect to the tree T and

subset-disjoint cycles in G1(T) that pass through the origin node v. We will henceforth refer to

the augmented improvement graph as the improvement graph G1(T) since it is a data structure

that helps us to identify both the profitable cyclic and path exchanges.

To summarise, using the concept of improvement graph, we have transformed the

problem of finding profitable exchanges into identifying negative (cost) subset-disjoint cycles in
G1(T). We discuss next how to identify such cycles.

Identifyin2 Negative Subset-Disioint Cycles

A directed cycle il-i2- ...-ir-il in the improvement graph G1(T) is a negative subset-

disjoint cycle if each node in it belongs to a different subtree of T and its cost is negative. There

exist several algorithms to identify negative (directed) cycles, but finding a negative subset-

disjoint cycle is an NP-hard problem (Thompson and Orlin [1989]). Accordingly, we developed

a heuristic algorithm to find negative cost subset-disjoint cycle. We now describe this heuristic

algorithm.

Our heuristic algorithm is a simple modification of the well known label-correcting

algorithm for the shortest path problem. We used the dequeue implementation of the label
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correcting algorithm (also known as Pape's [1980] algorithm) which is considered to be very
efficient in practice. A label-correcting algorithm determines a shortest path from a specified

node s to every other node in the network with arc costs given by acij's. A label-correcting

algorithm maintains two indices with each node j: d(j), the distance label of the node j, and

pred(j), the predecessor index of node j. The distance label d) is either oo, indicating that the
algorithm has yet to discover a directed path from node s to node j, or it is the length of some
directed path from the source to node j. The predecessor index, pred(j), records the node prior to
node j in the current directed path of length d(j). The predecessor indices allow us to trace the
current shortest path from the node j back to the node s. Let P[j] denote the current directed path

from node s to node j. The optimality conditions for the shortest path problem require that d(j) <

d(i) + ij for each arc (i, j) in the network. The basic step in a label-correcting algorithm is to

identify an arc (i, j) violating its optimality condition, that is, d(j) > d(i) + aij, and decrease the

distance label d(j) to d(i) + ij; this step is called the distance update step. The algorithm

repeatedly performs distance update steps and terminates when all the arcs satisfy their
optimality conditions. To identify an arc (i, j) violating its optimality condition efficiently, the

algorithm maintains a list, LIST, of nodes with the property that if an arc (i, j) violates its
optimality conditions then LIST must contain node i. At each iteration, the algorithm selects a
node i from LIST, removes it from LIST, and examines it by performing a distance update step
for all arcs emanating from node i.

To identify negative-cost subset-disjoint cycles in the improvement graph, we make just
one modification in the label-correcting algorithm. We require that the current directed path P[j]
from node s to each node j is a subset-disjoint path, that is, the nodes in the path P[j] belong to
different rooted subtrees. Though this requirement is difficult to enforce for all nodes and at all
steps of the algorithm, we try to enforce it as much as we can. While executing the label-
correcting algorithm, whenever we remove a node i from LIST, we check whether its current

path P[i] is a subset-disjoint path, that is, all nodes in it belong to different subtrees of T. If not,
then we do not examine node i; otherwise we set d(i) equal to the length of the path P[i] and
examine arcs emanating from it one by one. While examining the arc (i, j), we check whether

d(j) < d(i) + aij. If this condition is satisfied, we skip the arc (i, j) and examine another arc

emanating from node i. If d(j) > d(i) + aij, then there are three cases to consider:

Case 1. Node j is a pseudonode. If node j is a pseudonode, then arc (i, j) signifies that node i

moves from the subtree represented by the pseudonode j. In this case, we check whether d(i) +

aij < 0, and if yes then we have discovered a profitable path exchange. To see this, recall from
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our earlier discussion that each pseudonode j has a directed arc (j, v) of zero cost going into the

origin node v and the origin node v has a zero cost arc (v, s) going into node s. Hence P[i]u{(j,

v)}u{(v, s)} is a directed cycle. Further, since d(j) > d(i) + aij, the cost of this cycle is negative.

Case 2. Node j is a regular node and P[i]c{(i, j)f is a subset-disjoint path. We update d(j) :=

d(i) + aij and set predo) = i. In this case, we simply extend the subset-disjoint path to node j by

adding the arc (i, j) to the path to node i.

Case 3. Node j is a regular node and P[i]u(i, j)} is not a subset-disjoint path. We check

whether node j P[i]. This case will occur when node j belongs to a subset which has already

been visited (that is, node j belongs to one of the subsets containing nodes in P[i]). It is also

possible that we have visited node j itself earlier (that is, j E P]), in which case we have

discovered a subset-disjoint cycle. Since d(j) > d(i) + aij, it is easy to see that this cycle has a

negative cost.

We are now in a position to describe our method to identify negative subset-disjoint
cycles. We apply the modified label-correcting algorithm, as described above, with some regular

node as node s. The modified label-correcting algorithm during its execution can discover

several profitable cyclic or path exchanges or none of them. We can quit the modified label-

correcting algorithm when it finds the first profitable exchange, or let it run to completion and

keep track of the most profitable exchange.

Our empirical investigations revealed that the success of the modified label-correcting

algorithm in finding profitable exchanges depends upon which regular node is used as node s. If

we apply it just once with some regular node as node s, we miss many profitable exchanges. We

thus applied the modified label-correcting algorithm multiple times with different nodes as the
starting nodes, once for each regular node. The running time of our method for finding profitable

exchanges is n times the time taken by a single execution of the modified label-correcting
algorithm. Our modifications to the label-correcting algorithm worsen its running time by at
most a factor of L (the number of subtrees in T), but in practice, the increase in the running time
is much less.

5. TREE-BASED NEIGHBORHOOD STRUCTURE

In this section, we describe another neighborhood structure for the capacitated minimum
spanning tree problem. It is a variation of the node-based neighborhood structure described in the
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previous section and can be thought of as a generalization of the neighborhood structure of

Sharaiha et al., briefly described in Section 3. Whereas our node-based neighborhood structure

uses cyclic or path exchange of single nodes, our tree-based neighborhood structure uses cyclic

or path exchange of parts of the subtrees (often containing more than one node). The parts of

subtrees that the tree-based neighborhood structure moves around are also trees; we call them

subsubtrees to distinguish them from rooted subtrees.

As earlier, let T be a feasible tree with T[1], T[2], ... , T[L] as its subtrees. Recall that we

denote by T[i] the subsubtree rooted at node i and by S[i] the set of nodes contained in T[i].

Similar to our first neighborhood structure, we allow two types of exchanges - cyclic exchanges

and path exchanges. As earlier, we represent a cyclic exchange as il-i2 - ...-ir-i1 , where the nodes

i1, i2, ... , ir belong to different subtrees. Then the cyclic exchange with respect to T in the tree-

based neighborhood structure represents the following changes - nodes in the subsubtree Til

move from the subtree T[il] to the subtree T[i2 ], nodes in the subsubtree Ti2 move from the

subtree T[i2] to the subtree T[i3 ], and so on, and finally nodes in the subsubtree Tir move from

the subtree T[ir] to the subtree T[il]. We call such a cyclic exchangefeasible if the changed tree

satisfies the capacity constraints. In other words, the cyclic exchange il-i2 - ...- ir-il is a feasible

exchange if and only if

kTi[ Idk + keTi dk - EkTi dk < K, for every p = 1, 2, ... , r, (6)

where Ti = Tir. Let T' denote the new feasible capacitated tree obtained after this cyclic

exchange. We define the cost of this cyclic exchange as the change in the cost of the tree, which

is, c(T') - c(T). Observe that

c(T') - c(T) = r c(Sip u S[p\ Sip)- c(S[p]), (7)

where Si = Sir. We call this cyclic exchange profitable if c(T') < c(T) and non-profitable

otherwise. We can define a path exchange il-i2- ...- ir similar to the cyclic exchange, with the

difference that no subsubtree moves out of the subtree Tir. We call a path exchange feasible if the

modified tree after the path exchange is feasible, and call it profitable if the cost of the modified

tree strictly decreases.
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For a given tree T, we call another tree T' a neighbor to T if T' can be obtained from T by

performing a cyclic or path exchange. We define the neighborhood of T as a collection of all

neighbors of T. We point out that the neighborhood of T in the tree-based neighborhood structure

is different from the neighborhood of T in the node-based neighborhood structure. The tree-

based neighborhood structure cannot move just the non-leaf nodes to other subtrees and the

node-based neighborhood structure cannot move more than one node.

Similar to the case of node-based neighborhood, we can define an improvement graph

G 2(T) so that each cyclic or path exchange defines a subset-disjoint cycle in G2(T) and the

converse result is also true. The structure of the graph G 2(T) is similar to that of the graph G1(T).

An arc (i, j) in G 2(T) with T[i] T[j] signifies that the node subset Si leaves the subtree T[i] and

joins the subtree T[j] and simultaneously the node subset Sj leaves the subtree T[j]. Hence we

add the arc (i, j) to G2(T) if and only if 'kESsldk + kS i d k - kSj dk K. We define the

cost of the arc (i, j) as

Oij = c(SiuS[j]\Sj) - c(S[j]). (8)

In other words, 3ij represents the cost of deleting the node set Sj from the subtree Tj and

adding Si to it. Using arguments similar to those we used in the node-based neighborhood

structure, it can be shown that there is a one-to-one cost-preserving correspondence between

cyclic exchanges with respect to T and subset-disjoint cycles in G2(T).

We next consider the path exchanges with respect to the feasible tree T. Using the same

method we used for the node-based neighborhood structure, we augment the improvement graph

by adding a pseudonode for each subtree in T and an origin node v, and some arcs so that there is

a one-to-one correspondence between path exchanges with respect to T and subset-disjoint cycles

in G2(T) passing through the origin node, and both have the same cost. The only difference is in

the manner in which we define the cost of the arc (i, h) when h is a pseudonode, and the cost of

the arc (v, i) where v is the origin node. In this case we define them as

Pih = c(S[h]uSi) - c( S[h]), (9a)

Pvi = c(S[i]\Si). (9b)

where Pih is the cost of adding Si to T[h] and Pvi is the cost of removing the subsubtree T i from

T[i]. These transformations convert a profitable cyclic or path exchange into a negative subset-
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disjoint cycle in the improvement graph G 2(T). We can find negative coat subset-disjoint cycles
in G2(T) using exactly the same method we described in Section 4.

Determing e's

We next describe how to compute ij's for all arcs in the improvement graph G2(T). We

use the expression (8) to compute 3Pij's. The second term in (8) is already known. We next

consider the first term in (8). This term involves computing a minimum spanning tree over the

node set SiuS[j]\Sj . To do so, we delete the subsubtree Tj rooted at node j; this gives us a

minimum spanning tree T[j]\Tj over the node set S[j]\Sj. We next add to T[j]\Tj the node set Si

and all arcs between S i and S[j]\Sj and solve a minimum spanning tree problem; this gives us a

minimum spanning tree problem over the node set SiuS[j]\S j. In case all nodes have unit

demands, we solve the minimum spanning tree problem over a subgraph with K nodes and K2

arcs using Prim's [1957] algorithm and it takes O(K 2) time. We thus take O(K 2) time to

compute a single Pij and O(n2 K2) time to compute all Pij's.

6. NEIGHBORHOOD SEARCH ALGORITHMS

To determine the effectiveness of the two neighborhood structures developed in this
paper, we used them in neighborhood search algorithms. We implemented local improvement

algorithms and tabu search algorithms. We implemented efficient and straightforward versions
of these algorithms and expect that there are opportunities for further enhancements of

algorithms. All our neighborhood search algorithms start with a feasible solution T which is

subsequently improved upon. Further, a neighborhood search algorithm is typically applied

many times starting at different feasible solutions. We thus need an algorithm which can
generate different starting solutions. In this section, we describe the details of the algorithm used

to generate different feasible solutions, and also of our neighborhood search algorithms.

Determining Startin! Solutions

A neighborhood search algorithm is often sensitive to its starting solution - better the
starting solution, the faster is the convergence and, often, the quality of the local solution is

better. In addition, a neighborhood search is typically applied many times starting with different
feasible solutions. We thus need a mechanism to generate multiple good feasible solutions of the
capacitated spanning tree problem. In our empirical investigations we have used a randomized
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version of the Esau-William's algorithm (see, Esau and William [1966]), which is perhaps the

most popular construction based heuristic algorithm for the capacitated minimum spanning tree

problem. The Esau-William algorithm starts with each subtree containing a singleton node. In

each iteration, the algorithm joins two subtrees into a single subtree so that the new subtree

satisfies the capacity constraints and the savings achieved by the join operation are maximum. In

our version of Esau-William algorithm, at each iteration we determine the p most profitable join

operations for some small value p. We then generate an integer random number k uniformly

distributed between 1 to p and perform the kth most profitable join operation. This method in

general provides a new feasible tree each time it is applied. Since at each step it performs one of
the p most profitable join operations, the feasible tree obtained is generally a good tree. In our

investigations, we used p = 3.

Local Improvement Algorithms

A local improvement algorithm is perhaps the simplest neighborhood search algorithm.

Our local improvement algorithm for the capacitated minimum spanning tree problem starts with

a feasible solution T obtained through the randomised Esau-William algorithm. Each subtree in

the starting solution T is converted into a minimum spanning tree over the subset of nodes it

contains. The local improvement algorithm checks if there exists a profitable exchange with

respect to T. If yes, it performs the exchange, obtains a new solution, and replaces T by the new

improved solution. This process is repeated until there is no profitable exchange with respect to

T. At this point, the solution T is a locally optimal solution. This completes one run of the local

improvement algorithm. In the next run, we start with another feasible solution of the capacitated

spanning tree problem obtained again through the randomised Esau-William algorithm and

convert it into a locally optimal solution by performing a sequence of profitable exchanges. We

continue in this manner until either we have performed enough runs or the total time taken by the

algorithm has reached a specified upper bound.

We implemented local improvement algorithm using both the node-based and tree-based

neighborhood structures. We refer to the local improvement algorithm with the node-based

neighborhood structure as the algorithm "IMP1" and the local improvement algorithm with the

tree-based neighborhood structure as the algorithm "IMP2". In both algorithms, we identify

profitable exchanges by identifying negative subset-disjoint cycles in the improvement graph.

We had the option to improve the current solution using the first profitable exchange found or

using the most profitable exchange in the neighborhood. In both local search algorithms, we

improved the current solution using the first profitable exchange identified. We also specified an
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upper bound on the total time and allowed the algorithms to perform as many runs as possible

within the specified time.

Tabu Search Algorithms

Tabu search is a more sophisticated neighborhood search algorithm and has been very

successful in solving difficult combinatorial optimization problems. Amberg et al. [1996] and

Sharaiha et al. [1997] developed tabu search algorithms, which are currently the two best

available neighborhood search algorithms to solve the capacitated minimum spanning tree

problem. We refer the reader to the survey papers of Glover [1989, 1990] and the book by

Glover and Laguna [1997] for additional material on tabu search algorithms.

Our tabu search algorithm for the capacitated minimum spanning tree problem uses only

the "short term memory". It starts with a feasible solution T obtained through randomized Esau-

William algorithm. It checks if there is a profitable exchange with respect to T that honors the

tabu rules. If yes, it performs it; otherwise, it selects the least costly interchange that it has found

using the heuristic described in Section 5 and which is not currently on the tabu list. It performs

this interchange and the reversal of the applied exchange is added to the tabu list unless this

exchange improved the best solution over all previous iterations. Our tabu criteria is the

following: if the exchange involves the nodes i, i2, ... , ir then we add each one of them to a tabu

list for some time; that is, we do not allow the nodes i, i2 , ... , or ir to be part of any exchange for

a certain number of iterations, called tabu time. We used a tabu time of 10 for problems less than

100 nodes. For larger size problems, we set the tabu time to be 10% of the number of nodes. For

our tabu search algorithms, we set an upper limit of 50 or 100 on the number of such iterations

depending upon the problem size. When the tabu search algorithm terminates in this manner it

completes one run of the algorithm. In the next run, we start with another feasible solution of the

capacitated spanning tree problem obtained again through the randomized Esau-William

algorithm and apply the tabu search algorithm again. We continue in this manner until either we

have performed enough runs or the total time taken by the algorithm has reached a specified

upper bound. We implemented the tabu search algorithm using both the node-based and tree-

based neighborhood structures. We refer to the tabu search algorithm using the node-based

neighborhood structure as the algorithm "TABU1" and the tabu search algorithm using the tree-

based neighborhood structure as the algorithm "TABU2". In both algorithms, we specified an

upper bound on the total time and allowed the algorithms to perform as many runs as possible

within the specified time limit.
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7. COMPUTATIONAL RESULTS

In this section, we present preliminary computational results of our neighborhood search

algorithms using the two neighborhood structures suggested in this paper. We wrote computer

programs for our algorithms in C programming language, and tested them on the DEC alpha

computer at the University of Massachusetts, Amherst. We tested our algorithms on four classes

of benchmark problems given below, of which the first three problem classes are available at the
website with URL: http://www.ms.ic.ac.uk/info.html. We developed the fourth problem class

ourselves. Some details of these problem classes are given below:

tc problem class: Randomly generated problems; nodes in a square grid; all pairs of nodes are
connected; arc costs between different nodes are linearly related to the Euclidean distance

between the nodes; two problem sizes: 40 and 80 nodes; K = 5, 10, and 20; and the root node is

in the center of the grid. There are 35 problems in this class.

te problem class: Same as the tc problem class except that the root node is in the corner of the

grid instead of the center. This problem class is considered to be somewhat harder than the tc

problem class. There are 25 problems in this class.

cm problem class: Randomly generated problems; nodes have heterogeneous demands which

varies from 0 to 100; K = 200, 400, and 800; problem sizes: 50, 100 and 200 nodes. There are 45

problems in this class.

aos problem class: Randomly generated problems; problem sizes 100, 200, 300, 400, and 500;

half the problems have unit demands and the other half have heterogeneous demands; half the

problems have K = 200 and the other half have K = 400. There are 40 problems in this class.

We applied all the four algorithms, IMP1, IMP2, TABU1, and TABU2, to all the above

benchmark problems. We applied our algorithms for 100 seconds for problems with fewer than
50 nodes, for 200 seconds for problems with at least 50 nodes and at most 100 nodes, for 500

seconds for problems with at least 100 nodes. We compared the best objective function value

obtained by these algorithms with the best previously available objective function values; we

obtained these values from Luis Gouveia. For the aos problem class, no best known solutions

were available; for these problems we noted the improvements over the solutions obtained by the
Esau-William's method. We give in Tables 1, 2, and 3, the percent deviations from of the best

known solutions for all of our four algorithms for the three problem sets, tc class, te class, and
cm class, respectively. For all problem classes, tabu search algorithms obtains better results than

20



local improvement algorithms. We also plot the percent deviations of the tabu search algorithms

for the tc, te, and cm classes in Figures 7, 8, and 9. Our principle findings are the following:

1. For the tc and te problem classes, TABU1, the tabu search algorithm using the node-based

neighborhood structure, obtains the best available objective function value for all problems,

and improves the solution values of three instances.

2. For the cm problem class, TABU2, the tabu search algorithm using the tree-based

neighborhood search algorithm, improves almost all the previous best known solutions. The

average improvement is around 3% and the maximum improvement is 18%.

3. We find that the two neighborhood structures have different strengths. The node-based

neighborhood structure is quite effective for solving unit demand problems, and the tree-

based neighborhood structure is very effective in solving heterogeneous demand problems.

We have the following observations that may partially explain to justify the relative

performance of the two tabu search algorithms. For the unit-demand case, exchanges of two

nodes i and j belonging to two rooted subtrees are always possible but exchanges of two

subsubtrees Ti and Tj may not be possible because the subsubtrees may contain a different

number of nodes. Consequently, the neighborhood for TABU1 is generally a larger

neighborhood than that of TABU2. Perhaps this explains in part why TABU1 performs better

than TABU2. For the heterogeneous demand case, exchanges of two nodes are not always
possible because nodes different demands and subtrees may not have enough spare capacity. In

order to add one node to a subtree to T i (say, of large demand), we may have to remove several

nodes of smaller capacity from T i. The neighborhood of TABU2 admits these possibilities.

Perhaps this explains in part why TABU2 performs better than TABU1 for the heterogeneous

case.

In Figure 10, we report our results on the aos problems with unit demands. We plot the

percent improvements obtained by our two tabu search algorithms over the solutions obtained by

the Esau-William's algorithm. In the figure, DEC denotes problems where arc costs are

proportional to the Euclidean distance between the two endpoints of the arc, and SDEC denotes

problems where arc costs are proportional to the square of the Euclidean distances. We find a
marked difference in the improvements for the Euclidean and the squared Euclidean cases. It

appears that the Euclidean case is relatively easy to solve and these exist a large number of

solutions that are not too far from the optimal solution and it is easy to find such a solution. In

the squared Euclidean case, it appears much more difficult to get close to the optimal solution.
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Table 1. Table of results of algorithms on unit-demand problems with
central depot in the center.

percentage deviation from best known solutions New
Problem-ID Best Knovn EW IMP1 TABU11 IMP2 TABU2 Best Kno

n=40K=10tc-1 498 1.606 0.000 0.000 0.000 0.000 498
n=40K=10tc-2 490 2.857 0.000 0.000 0.000 0.000 490
n=40K=lOtc-3 500 4.800 1.600 0.000 0.000 0.000 500
n=40K=O1tc-4 512 3.516 0.000 0.000 0.000 0.000 512
n=40K=10tc-5 504 0.000 0.000 0.000 0.000 0.000 504
n=40K=10 Otc-6 498 0.803 0.000 0.000 0.000 0.000 498
n=40K=10tc-7 508 0.787 0.000 0.000 0.000 0.000 508
n=40K=10tc-8 485 0.000 0.000 0.000 0.000 0.000 485
n=40K=10tc-9 516 0.000 0.000 0.000 0.000 0.000 516
n=40K=10tc-10 517 1.934 0.000 0.000 0.000 0.000 517
n=40K=5tc-1 586 1.877 0.000 0.000 0.000 0.000 586
n=40K=5tc-2 578 1.730 0.000 0.000 (.000 0.000 578
n=40K=Stc-3 577 5.373 0.000 0.000 0.000 0.000 577
n=40K=5tc-4 617 3.566 0.000 0.000 0.000 0.000 617
n=40K=Stc-5 600 2.333 0.000 0.000 0.500 0.833 600
n=40K=5tc-6 590 1.525 0.000 0.000 0.000 0.000 590
n=40K=5tc-7 609 1.970 0.000 0.000 0.000 0.000 609
n=40K=Stc-8 553 2.170 0.000 0.000 0.181 0.000 553
n=40K=5tc-9 599 8.681 0.000 0.000 2.671 0.000 599
n=40K=Stc-10 600 5.500 0.000 0.000 0.000 0.000 600
n=80K=10tc-1 888 7.095 0.000 0.000 0.676 0.450 888
n=80K=10tc-2 877 5.245 0.000 0.000 1.368 0.000 877
n=80K=10tc-3 880 3.864 0.227 0.000 0.682 0.000 880
n=80K=10tc4 868 6.106 0.000 0.000 0.922 0.461 868
n=80K=10 Otc-5 1002 2.695 0.000 0.000 0.000 0.000 1002
n=80K=20tc-1 834 0.480 0.000 0.000 0.000 0.000 834
n=80K=20tc-2 820 3.659 0.000 0.000 0.000 0.000 820
n=80K=20tc-3 828 1.449 0.000 0.000 0.000 0.000 828
n=80K=20tc-4 820 1.220 0.000 0.000 0.000 0.000 820
n=80K=20tc-5 916 3.493 1.856 0.000 0.000 0.000 916
n=80K=5tc-1 1099 6.187 0.091 0.000 3.549 2.639 1099
n=80K=5tc-2 1100 6.364 0.182 0.000 3.091 2.545 1100
n=80K=5tc-3 1073 6.151 0.000 0.000 2.050 1.771 1073
n=80K=5tc-4 1080 6.852 0.000 0.000 2.963 1.944 1080
n=80K=5tc-5 1287 5.905 0.078 0.000 1.943 1.632 1287

Average deviation 3.366 0.115 0.000 0.588 0.351



Table 2. Table of results of algorithms for unit-demand problems with
central depot in the corner

percentage deviation from best known solutions New
Problem-ID Best Known EW IMP 1 TABU I IMP2 TABU2 Best Known

n=40c=1 Ote-1 596 7.215 0 0 0.671 0 596
n=40c=lI Ote-2 573 8.551 0 0 0 0 573
n=40c=lOte-3 568 7.746 0 0 0.176 0 568
n=40c=1 Ote-4 596 0.671 0 0 0 0 596
n=40c=lOte-5 572 3.671 0.35 0 0.35 0.35 572
n=40c=5te- 1 830 3.976 0 0 1.807 0.964 830
n=40c=5te-2 792 5.177 0 0 1.01 0.379 792
n=40c=5te-3 797 4.642 0 0 1.255 1.757 797
n=40c=5te-4 814 6.265 0 0 0.246 1.106 814
n=40c=5te-5 784 4.464 0 0 0.383 0.383 784
n=80c=lOte-1 1651 3.937 2.023 0 2.698 3.25 1651
n=80c=l Ote-2 1643 5.904 0.061 -0.243 0.365 1.096 1639
n=80c=1 Ote-3 1688 5.391 0.237 -0.059 1.066 0.77 1687
n=80c= Ote-4 1629 8.840 0.368 0 2.149 1.842 1629
n=80c=lOte-5 1603 6.550 0.561 0 1.123 1.185 1603
n=80c=20te-1 1275 2.588 0 0 0.235 0.392 1275
n=80c=20te-2 1225 6.122 -0.082 0 0.245 0.408 1224
n=80c=20te-3 1267 5.919 1.342 0 0 0 1267
n=80c=20te-4 1265 8.379 0 0 0.711 0 1265
n=80c=20te-5 1240 4.032 0 0 0.081 0.081 1240
n=80c=5te- 1 2544 3.223 0 0 0.354 0.432 2544
n=80c=5te-2 2551 1.960 0.196 0 0.706 0.862 2551
n=80c=5te-3 2612 2.489 0 0 1.417 1.531 2612
n=80c=5te-4 2558 2.893 0.156 0 1.212 1.407 2558
n=80c=5te-5 2469 1.620 0 0 0.324 0.486 2469

Average deviation 4.889 0.208 -0.012 0.743 0.747



Table 3. Table of results of algorithms on the heterogeneous demand problems.

perentage deviation from best known solutions New
Problem-ID Best Known EW IMPI TABU1 IMP2 TABU2 Best Known

CM50R1K200 1135 0.617 -3.26 -3.26 -2.996 -2.996 1098
CM50OR2K200 1023 -2.151 -4.79 -4.79 -3.812 -4.203 974
CM50R3K200 1229 1.627 -2.929 -3.499 -1.709 -1.465 1186
CM5OR4K200 811 2.219 -1.356 -1.356 -1.356 -1.233 800
CM5OR5K200 970 -1.753 -4.021 -4.33 -4.124 -4.33 928
CM50R1K400 726 -1.102 -6.198 -6.198 -4.821 -5.096 681
CM50R2K400 642 2.492 -1.713 -1.09 -1.558 -0.467 631
CM50R3K400 741 -0.270 -0.81 -0.81 -0.81 -0.81 735
CM50OR4K400 583 -2.058 -2.573 -2.744 -2.744 -2.573 567
CM50OR5K400 628 1.752 -2.707 -2.548 -2.548 -2.548 612
CM50R1K800 544 -4.779 -8.64 -9.007 -9.007 -9.007 495
CM5OR2K800 531 2.825 -2.825 -3.013 -3.013 -3.013 515
CM50R3K800 554 1.083 -2.527 -3.971 -3.249 -3.43 532
CM5OR4K800 472 4.025 0.636 0.636 0.636 -0.212 471
CM5OR5K800 501 2.395 -1.397 -1.397 -1.796 -1.397 492
CM10OR1K200 551 21.960 -2.904 -4.174 -4.537 -5.626 520
CM100R2K200 616 28.409 -1.461 -2.11 -1.786 -2.273 602
CM100R3K200 608 20.888 -5.428 -6.579 -9.211 -9.704 549
CM100R4K200 445 21.798 3.371 3.146 -0.225 -0.225 444
CM100R5K200 442 33.258 2.941 1.131 -0.226 -3.394 427
CM100R1K400 259 17.761 4.633 3.861 -1.544 -2.317 253
CM100R2K400 278 24.460 2.878 3.597 0 0 278
CM100R3K400 238 21.429 4.622 2.101 -0.84 -0.42 236
CM100R4K400 223 20.628 4.036 4.933 -1.794 -1.794 219
CM100R5K400 227 22.907 4.405 2.643 -1.322 -0.881 224
CM100R1K800 182 18.132 2.198 4.396 0 0 182
CM100R2K800 179 15.084 1.117 2.235 0 0 179
CM100R3K800 175 14.286 3.429 4 0 0 175
CM100R4K800 183 8.197 2.732 3.825 0 0 183
CM100R5K800 187 9.091 2.674 2.139 -0.535 -0.535 186
CM200R1K200 1147 16.739 -8.195 -8.457 -8.893 -9.59 1037
CM200R2K200 1505 9.834 -15.748 -15.814 -18.272 -18.272 1230
CM200R3K200 1464 20.287 -3.62 -2.527 -5.943 -6.626 1367
CM200R4K200 1017 23.206 -2.95 -2.852 -5.9 -7.375 942
CM200R5K200 1145 18.777 -13.188 -10.218 -13.712 -14.323 981
CM200R1K400 421 16.627 3.325 1.663 -4.276 -5.226 399
CM200R2K400 498 31.526 4.217 8.835 -1.807 -2.41 486
CM200R3K400 587 22.828 1.874 2.044 -3.237 -3.578 566
CM200R4K400 404 23.020 5.198 4.95 -1.733 -1.485 397
CM200R5K400 442 16.290 1.81 0.452 -3.394 -3.846 425
CM200R1K800 256 25.781 4.688 6.25 0.391 0 256
CM200R2K800 296 11.149 4.73 3.716 0.338 -0.676 294
CM200R3K800 362 8.564 3.315 3.315 0 0 362
CM200R4K800 276 15.217 5.797 7.971 0 0 276
CM200R5K800 295 10.508 4.746 6.102 -0.339 -0.678 293

Average deviation 12.790 -0.442 -0.373 -2.927 -3.201
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Accordingly, our tabu search algorithms are able to obtain solutions with percent improvement
as much as 40%.

We performed additional tests to determine the effectiveness of the multi-exchange

neighborhood structure over the two-exchange neighborhood structure. We considered

variations of our tabu search algorithms where we performed only two-exchanges and do not

allow changes involving more than two subtrees. We allowed both algorithms to run for the

same time. We plot in Figure 11, the percentage deviation of the tabu search algorithm with the

multi-exchange neighborhood vs. the tabu search algorithm with two-exchange neighborhood on

aos problems with unit demand and squared Euclidean costs. We observe that the algorithm with

the multi-exchange neighborhood exhibits the superior performance and its performance
improves with the increase in problem size.

We wanted to determine the bottleneck operation in the algorithm. The algorithm

repeatedly performs two major operations: (i) construction of the improvement graph, and (ii)

determining negative cost subset-disjoint directed cycles in the improvement graph. Using

profiling we determined the time spent by the computer problem in these two operations. We
found that the algorithm spends about 2/3 of its time in constructing improvement graphs, and
about 1/3 of its time in identifying negative cost subset-disjoint cycles. The reader may recall
that the construction of an improvement graph requires solving spanning tree problems which is

a time-consuming step. Faster spanning tree algorithms may reduce the time taken by this

operation.

8. SUMMARY AND CONCLUSIONS

In this paper, we suggested two new node-based and tree-based neighborhood structures
for the capacitated minimum spanning tree problem by generalizing two existing neighborhood

structures. Whereas the existing neighborhood structures consider changes involving only two
subtrees, our neighborhood structures consider changes involving several subtrees, which could

be as many as the total number of subtrees in the current solution. The number of such

exchanges grow exponentially with the problem size, but we suggested a shortest path based

technique that heuristically identifies profitable changes in a low order polynomial time. Our
preliminary computational results are very encouraging and both the neighborhood structures

have their own relative strengths. The node-based neighborhood structure is more effective for
solving capacitated minimum spanning tree problems where all nodes have unit (or,
homogenous) demand, and the tree-based neighborhood structure is more effective for problems
with heterogeneous demands. A tabu search algorithm using the node-based neighborhood
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structure obtained the best known solutions for all the 60 benchmark instances with unit demands

and improved three of these solutions. Another tabu search algorithm using the tree-based

neighborhood structure when applied to 35 benchmark instances improved most of the best

known solutions; with the average improvement around 3.2% and the maximum improvement as

much as 18%.

In our empirical investigations, we have implemented fairly straightforward tabu search

algorithms and made no specific efforts to fine tune them. We believe that more sophisticated

tabu search algorithms will perform even better; we leave this issue as an issue for future

research. We can also develop simulated annealing algorithms using the suggested

neighborhood structures; we again leave this issue for future research. The basic ideas

underlying our neighborhood structures are also applicable to those combinatorial optimization

problems where the problem can be conceived of as a set partitioning problem and each part can

be optimized separately. Some problems where this structure arises naturally are the vehicle

routing problem, the multi-traveling salesman problem, parallel machine scheduling problems,

facility location problems, exam scheduling problems, clustering and graph partitioning, and

graph coloring problems. We intend to apply the ideas contained in this paper for such problems.
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