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ABSTRACT

Dial-a-ride transit (DART) is a shared taxicab system that typically serves areas

of low travel demand and/or populations with special needs. Dial-a-ride transit problems

are very difficult combinatorial problems and can be solved exactly only when the

problem size is very small. Practical problems of larger size are mostly solved

heuristically either by construction-based algorithms or improvement-based algorithms.

Several of these heuristic algorithms proceed by starting with a vehicle route and

performing insertions either to improve the route or to add a customer to the route. Faster

methods for determining the feasibility or infeasibility of such insertions can have a

dramatic effect on the efficiency of such algorithms and we focus on such methods in this

paper. The schedule of a vehicle typically consists of picking up and dropping off of

some customers in a specific sequence and at any point in time several customers can be

on-board the vehicle. Existing literature on DART makes a simplifying assumption that a

vehicle is not allowed to wait while customers are on board the vehicle. In this paper, we

relax this assumption. We show that given a vehicle route, determining its schedule (that

is, when the vehicle should pick-up and drop-off customers so as to honor customers

pickup and delivery time windows, transit times restrictions between stops, maximum

waiting time constraints, and ride time constraints) can be formulated as a shortest path

problem with possibly negative arc lengths. We next develop several tests which allow

us to detect the infeasibility of many possible insertions in a specified vehicle route in

0(1) time after suitable preprocessing has been done.

1 Sloan School of Management, MIT, Cambridge, MA 02139, USA; On leave from Indian Institute of
Technology, Kanpur 208 016, INDIA.

2 The Volpe National Transportation Systems Center, Kendall Square, Cambridge, MA 02142, USA.
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1. INTRODUCTION

Dial-A-Ride Transit (DART) is a form of mass transit system that typically serves

areas of low travel demand and/or a population with special needs. It is a shared taxicab

system and is run with a fleet of vehicles operating on flexible routes without fixed

schedules. It can also serve as an alternate means of transportation for handicapped

people and senior citizens. Customers call the dial-a-ride agency requesting to be carried

from some specified point to another specified point. The agency in turn is responsible

for dispatching a fleet of vehicles to meet such demands during a typical day of

operation. The aim of the dial-a-ride system to provide a high quality of service at a

reasonable cost.

Dial-a-ride transit problems are extensively studied in the literature, and we refer

the reader to the papers by Jaw et al. [1986], Kontoravdis and Bard [1994], Desrosiers et

al. [1995] for further pointers to the literature devoted to this topic. Researchers have

developed exact as well as heuristic algorithms for dial-a-ride transit problems. Since

exact algorithms can solve only small sized problems, heuristic algorithms have been

more extensively studied. A heuristic algorithm typically performs two functions:

routing and scheduling. The routing part determines the route of each vehicle - it assigns

customers to a vehicle and the order in which the vehicle will visit the customers

assigned to it. The scheduling part assigns a time schedule to the route - the times at

which customers will be picked up and delivered. In this paper, we will consider the

scheduling part and focus on determining the feasibility of a specified route; that is, given

a route can we determine customer pickup and drop-off times so that the route satisfies

various user-specified constraints. To be more specific, the scheduling problem we study

in this paper, can be stated as follows. Given a route of a vehicle through n stops 1-2- ...

- n (that is, the order in which some customers will be picked up and delivered), does

there exist a feasible schedule that honors customers pickup and delivery time windows,

transit times restrictions between stops, maximum waiting time constraints, and ride time

constraints?

Most of the existing models studied in the literature on DART do not allow the

vehicle to wait while customers are on board the vehicle. While this assumption is

reasonable in many situations, it is unnecessarily restrictive. This restriction might

eliminate many good schedules. In this paper, we relax this requirement but it is at the

expense of making the problem more time-consuming to solve. We note that in practice

one must permit schedules with passengers waiting for the following reason: there may

2



be last-minute cancellations due to which a vehicle may need to be rescheduled. If the

vehicle skips the cancelled pickup and there are customers on board the vehicle, then

waiting times are introduced. Not allowing a vehicle to wait with customers on board the

vehicle may result in the route being infeasible. It also leads to interesting problem

structures that one can exploit.

Researchers have developed relatively straightforward algorithms for scheduling

vehicles when passenger waiting times are not permitted (see, for example, Jaw el al.

[1986]). In scheduling problems where vehicle is not allowed to wait with customers on

board the vehicle is relatively simple. In this case, the route can be decomposed into

subroutes where each subroute corresponds to the route of the vehicle during which at

least one customer is on board, and there are no customers on board the vehicle in

between any two subroutes. For such a subroute, the pickup time of the first customers

determines the pickup/delivery time of each stop in the route, since the vehicle moves

directly from one stop to another without waiting. In this case, the scheduling problem

consists of determining the pickup times of the first customer in each subroute in the

specified route.

In this paper, we first describe the mathematical model for the scheduling

problem and show that finding a feasible schedule for a given can be transformed into a

shortest path problem with possibly negative arc lengths. This model can be solved in

O(n2 ) time using standard and well known shortest path label-correcting algorithms. We

next focus on the problem of determining the feasibility of inserting a new customer trip

request into a vehicle's route. A new customer trip requests adds two new stops in the

vehicle route - one corresponding to the pickup stop and one corresponding to the

delivery stop. Given an existing route consisting of n stops, a customer trip request can

be inserted in O(n 2) ways: the customer can be picked up right after stop i and delivered

right after stop j, where i and j vary from 1 to n. Among these O(n2) potential insertions,

only a few will be feasible, that is, satisfy all the time windows, maximum waiting time,

maximum riding time, and vehicle capacity constraints. Using our shortest path

approach, we can determine the feasibility of each potential insertion in O(n2 ) time, but

using this approach for each possible insertion will require a total of O(n4) time, which is

unnecessarily time-consuming. We prefer fast algorithms that can identify feasible
insertions quickly among all potential insertions. In this paper, we develop three tests for

determining the infeasibility of an insertion. Each of these tests runs in 0(1) time.

Though we believe that most infeasible insertions will "flunk" at least one of these tests,
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our tests do not guarantee that every infeasible insertion will flunk at least one of these

tests. Further, each feasible insertion is guaranteed to pass all the three tests.

2. MATHEMATICAL FORMULATION OF THE FEASIBILITY PROBLEM

In this section, we will discuss the constraint of the dial-a-ride transit problem and

formulate the feasibility problem as a shortest path problem. We use some graph

notation in this and the rest of the sections, such as paths, cycles, and walks. We refer the

reader to the book of Ahuja, Magnanti and Orlin [1993] for these notation.

A vehicle must visit a specified sequence of n pickup and delivery stops 1-2-3- ...

-n. Let denote the set of pickup stops. For a pickup stop i E , b[i] customers are

picked up to be taken to the delivery stop m(i). We denote by bi , for each i =1, 2, ... , n,

the time when the vehicle visits stop i. The 6i's are the decision variables in our

formulation. Clearly, 61 < 62 < 3 < ... < 6.

1. Time window constraints. Each pickup (or delivery) stop has a pickup (or delivery)

time window (li, ui), and the customer can be picked up anytime during its time

window. In other words, i < i < ui, for each i = 1, 2, ... , n.

2. Minimum transit time constraints. Let ti denote the minimum transit time to go

from stop i to stop i+l. Minimum transit time constraints require that 6i + ti < 6i+1 for

each i =1, 2, ... , (n-l). Notice that since ti 2 0, the constraints 8i + ti < 6i+ 1 for each i

=1, 2, ..., (n-l) subsume the constraints 61 < 82 < 63 < ... < n-. Further, notice that

we allow the vehicle to wait while going from one stop to the next. If we denote by

w i the waiting time while going from stop i to stop i + 1, then wi = 6i+1 - i - ti, for

each i =1, 2, ... , n.

3. Maximum waiting time constraints. We require that the waiting times in between

the stops are nonnegative and bounded by , that is, 0 < wi < , for each i = 1,

2, ... ,n-1.

4. Maximum ride time constraints. We require that the actual ride time of a customer

does not exceed its maximum permissible ride time. Let i denote the minimum

direct time from the pickup stop i to the delivery stop m(i) (that is, the minimum
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travel time needed to go directly from stop i to stop m(i)). We denote the excess ride

time to go from the stop i to the stop m(i) by ri, where ri = 6 m(i) - i - ci, for each i E

P, where P is the set of pickup stops. We require that ri is no more than -r, which we

assume to be a constant factor of zi, say .8ti. In other words, ri must satisfy the

following ride time constraints: ri < ri, for each i E P.

5. Vehicle capacity constraints. We also assume that the vehicle has a limited capacity

to carry passengers that we are not allowed to exceed. The number of customers on

board the vehicle can be determined directly from the order in which customers are

picked up and delivered, and do not depend upon the vehicle arrival and pickup times.

For a specified route of the vehicle, this constraint can be easily checked in O(n) time

by walking through the route and determining the maximum occupancy of the

vehicle. If the maximum occupancy is less than or equal to the vehicle capacity, then

the route is feasible with respect to the vehicle capacity constraints. We will

henceforth assume that the given route satisfies the vehicle capacity constraints.

However, we will return to this constraint in Section 3 when we consider the

feasibility of inserting new stops.

We summarize the preceding discussion by putting together all the constraints.

li < i < ui, for all i = 1, 2, ... , n, (la)

8i+ - i = t i + w i, for all i = 1, 2,..., n-1, (lb)

O <wi< w_, for all i = 1, 2, ... , n-1, (Ic)

6m(i) - i = Ti + ri, for all i E P;, (id)

ri < ri, for all i E P. ( e)

We reformulate the constraints in (1) by (i) substituting inequalities in (1c) in the

equations (b), substituting inequalities in (le) in the equations (d), and introduce a
dummy variable 60 in the inequalities in (la) whose value is set to zero. These changes

yield the following equivalent set of constraints:

b0 - i < -li, for all i = 1, 2, ... , n, (2a)

8i- 60 < i, for all i = 1, 2, ... ,n, (2b)

8i - 8i+l < -ti, for all i = 1, 2, ... , n-1, (2c)

8i+ - 6i < (ti + ), for all i = 1, 2, ... ,n-1, (2d)
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6m(i) - (i < (hi + ri ), for all i E , (2e)

60 = 0. (2f)

The constraints in (2) are a special case of the system of difference

constraints (see, for example, Ahuja, Magnanti, and Orlin [1993], Section 4.2). The
system of difference constraints is a collection of inequalities of the form wj - wi < fij,

where the RHS is a constant and the LHS is the difference of two variables. To solve a

system of difference constraints, such as the one given in (2), we define a constraint

graph G in the following manner. The constraint graph has a node corresponding to each
of the variables (there are n+l such variables 60, 61, 62, ... , 6n), and an arc

corresponding to each difference constraint in (2) (there are about 4.5n such constraints).
For each difference constraint j - 6i < cij, we associate an arc (i, j) of length cij in G. We

illustrate this formulation using a numerical example shown in Figure (a) consisting of

six stops. We assume that stops 1, 2, and 4 are pickup stops with m(1) = 5, m(2) = 3, and

m(4) = 6. For the route given in Figure 1(a), we show in Figure 1(b) the corresponding

constraint graph.

It is well known that a system of difference constraints, such as the one given in

(2), is feasible if and only if the corresponding constraint network does not contain any

negative cost cycle. We can determine the presence of a negative cycle in a network by

using a label-correcting shortest path algorithm, for example, the FIFO label-correcting

algorithm given in Ahuja, Magnanti and Orlin [1993]. The label-correcting algorithms

typically require that all the nodes are reachable by a directed path from the source node

for the shortest path problem. Notice that if we use node 0 as the source node, then it
satisfies the reachability requirement and also ensures that 60 = 0, which we require for

the validity of our formulation. A label-correcting algorithm either indicates the presence

of a negative cycle or provides the shortest path distances. In the former case, the system

of difference constraints has no solution, and in the latter case the shortest path distances
6i's constitute a feasible solution of (2). The running time of the FIFO label-correcting

algorithm is O(nm), but since for the constraint graph satisfies m = O(n), the algorithm

runs in O(n2 ) time. In practice, however, label-correcting algorithms run much faster

than indicated by their worst-case running times. So we believe that the feasibility of the

constraints (2) in practice can be determined very efficiently, perhaps linear in terms of

the number of nodes in the constraint graph.
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(a)

T2+r 2

(b)

Figure 1. Illustrating the construction of the shortest path
network.

If the constraints in (2) are found to be feasible, then a label-correcting algorithm

yields the shortest path distances 6*. These shortest path distances satisfy the property

that for each stop i, 6 is the earliest time when the vehicle can visit stop i among all

feasible schedules.

3. DETERMINING THE FEASIBILITY OF AN INSERTION

In this section, we shall study the problem of determining the infeasibility of

inserting a new trip segment into a vehicle's route. Given the route of a vehicle 1-2-3-

...- n, we want to know whether a group of h customers can be picked up between stops p

and p+l, and delivered between stops q and q+l. Each of these tests runs in 0(1) time,
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and we believe that most infeasible insertions will "flunk" at least one of these tests.

Moreover, each feasible insertion is guaranteed to pass all the three tests. All of these

tests are sufficient but not necessary. Consequently, if an insertion passes each of these

tests, then it does not necessarily mean that the insertion is feasible. We will need to use

the shortest path formulation described in Section 2 to determine correctly whether it is

feasible or not. However, we believe that the shortest path approach will not be used

very often because collectively the three infeasibility tests will identify most of the

infeasible insertions.

Our three infeasibility tests focus on different sets of constraints. Our first

infeasibility test described in Section 3.1 checks whether the insertion will satisfy the

vehicle capacity constraints. Our second infeasibility test described in Section 3.2 checks

whether the insertion will satisfy the time window and minimum transit time constraints

of all the stops. Our third infeasibility test described in Section 3.3 checks all the

constraints except the vehicle capacity constraints and the maximum waiting time

constraints.

3.1 Infeasibility Test-I

This infeasibility test determines in O(1) time whether the pickup of h customers

between the stops p and p+l and delivery between the stops q and q+l will satisfy the

vehicle capacity constraints. However, before this infeasibility test can be applied, we

need to do some preprocessing that takes O(n2 ) time. (Notice that if we average out this

preprocessing time over O(n2) total possible insertions, it also becomes O(1) per

insertion.) Let occupancy[i, j] for j > i denote the maximum number of persons on board

the vehicle as it goes from stop i to stop j prior to dropping off or picking up customers at

stop j. We can determine the occupancy values for all valid pairs of stops in O(n2 ) time

using the algorithm given below.
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algorithm maximum-occupancy;
begin

for i : = 1 to n do person[i]: = 0;
for each i E g do

forj := i to (m(i) - 1) do personlj]: = person[j] + b[i];

for i: = 1 to (n- 1) do

begin

occupancy[i, i+l]: = person[i];

for j := (i + 2) to n do

occupancy[i, j]: = max{occupancy[i, j-1], person[j-1]};

end;

end;

The above algorithm first computes person[i], which denotes the number of

persons on board the vehicle when it leaves stop i. It then uses the person vector to

determine the occupancy values for all valid pairs of stops. Clearly, the algorithm runs in

O(n2 ) time. Suppose that the occupancy values have been computed and we want to

determine whether the vehicle can accommodate h additional customers who need to be

picked up between the stops p and p+l and delivered between the stops q and q+l. To do

so, we compare the value (h + occupancy[p, q]) with the vehicle capacity. If (h +

occupancy[p, q]) is greater than the vehicle capacity, then the insertion violates the

vehicle capacity constraints; otherwise it doesn't.

3.2 Infeasibility Test-II

In this section, we describe an algorithm that identifies insertions violating the

time window and the minimum transit time constraints. This algorithm, however, does
not identify insertions that violate the maximum waiting time constraints (that is, w i <

w-) or the maximum ride time constraints (that is, ri ri ). The algorithm requires O(n)

time to do some preprocessing of the data for the scheduling problem. After the

preprocessing has been done, it can determine infeasible insertions in 0(1) time per

insertion.

Let 8 denote a feasible schedule of a vehicle. Then 8 must satisfy the following

constraints:
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li < i, for all i = 1, 2, ... , n, (3a)

8i < Ui, for all i = 1, 2, ... , n, (3b)

5i - 5-1 2> ti-l, for all i = 2, 3, ... , n. (3c)

For the given route of the vehicle, the vehicle can visit the stops according to

many schedules satisfying (3). We first determine the earliest time the vehicle can visit
various stops and still satisfy the constraint in (3). Let tai, 1 < i < n, denote the earliest

time the vehicle can visit stop i in any schedule satisfying (3). We will use an inductive
argument to calculate ai's for increasing values of i. Clearly, ca = 11. Now suppose that

we know ai.1 for some i > 1. The condition (3a) implies that a i > li, and the condition

(3c) implies that ci >2 ail + ti-.1. Hence, ai = max{l i , ai 1 + ti-l}. If ai > ui, then the

vehicle cannot honor the constraint (3b) and there exists no feasible schedule satisfying
(3). The preceding discussion suggests the following O(n) method to determine ai's.

algorithm compute-a;
begin

al := 11;

for i := 2 to n do
begin

ai: = max {l i , ai-l + ti- };
if c i > u i then stop as there is no feasible schedule;

end;
end;

We next determine the latest time the vehicle can visit various stops and still
satisfy the constraint in (3). Let i, 1 < i < n, denote the latest time the vehicle can visit

stop i in any schedule satisfying (3). We will use an inductive argument to calculate Pi's

for decreasing values of i. Clearly, 3n = In. Now suppose that we know Pi+l for some i <

n-1. The condition (3b) implies that 3i < ui, and the condition (3c) implies that P3i < j3i+ -

ti. Hence, i = min{u i, [3i+1 - ti}. If Pi < li, then the vehicle cannot honor the constraint

(3a) and there exists no feasible schedule satisfying (3). The preceding discussion
suggests the following O(n) method to determine 3Pi's.
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algorithm compute-p;
begin

3n: =Un;
for i: = (n- ) downto n do
begin

3i : = min{ui, Pi+l - ti};
if Pi < i then stop as there is no feasible schedule;

end;
end;

The above methods determine in O(n) time whether there exists a schedule

satisfying (3). We shall henceforth assume there exists a vehicle route satisfying (3) and
thus the qa's and 3Pi's are well defined. We now address the question whether a new trip

request can be feasibly inserted into the vehicle's route. Adding a new customer trip

request into a vehicle's route amounts to adding two stops: one corresponding to the

pickup of the customer and another corresponding to the delivery of the customer.

Suppose that the new trip request adds stop A between stop p and stop p+l, and adds stop
B between stop q and stop q+l (see Figure 2). Let tAl and tA2, respectively, denote the

time needed to go from stop p to stop A and stop A to stop p+l. Similarly, let tBl and

tB2, respectively, denote the time needed to go from stop q to stop B and stop B to stop

q+l.

Figure 2. Illustrating insertion of a customer trip request in a route.

Let (p denote the earliest schedule after the insertion of stop A and prior to the
insertion of stop B. We will show how to obtain (p from . It is easy to see that (pi = ai

for all i = 1, 2, ... , , pA = max{lA, cap + tA1}, and Pp+l = max{lp+l, PA + tA2} We
claim that pi for all i = p+2, p+3, ... , n, is given by the following formula:

(Pi = max{oci, (Pp+1 + tp+l + tp+2 + .... + ti-l}. (4)
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The correctness of (4) can be easily established by performing induction on the
value of i. The equation (4) allows us to compute pi for any i > p+2 in 0(1) time if

suitable preprocessing has been done. Let R[i] = t + t2 + ... + til denote the total ride

time from stop 1 to stop i. We can compute R[i] for all i in O(n) time. In terms of R[i],

(4) can be stated as

(Pi= max{xi, qPp+l + R[i] - R[p+2], (5)

which permits us to compute any pi in 0(1) time. The (pi's computed using (4) or (5)

satisfy the constraints (3a) and (3c) because these constraints have been used in deriving
(4). But (Pi may violate the constraints in (3b) which may make the route of the vehicle

infeasible after the insertion of stop A. If (PA > UA, then clearly the route is infeasible.

For other stops, the following lemma gives us a simple condition to determine the

feasibility of the schedule (p.

Lemma 1. The schedule (o is a feasible schedule if and only if Jp+l p+l

Proof. Clearly, if (Pp+l > I3p+l, then stop p+l cannot be visited within its specified time

window and (p is not a feasible schedule. Note that 13p+l is unaffected by the stop A since

the algorithm for computing 3p+l computes i's in the decreasing order of the index i.

We now prove the converse result that if (p is not a feasible schedule then Pp+l > Pp+l-

We prove this result by contradiction. Suppose that p is not a feasible schedule. Then,

(Pr > Ur for some r > p+l. Since car < ur, it follows from (4) that

Pr = (Pp+l + tp+l + tp+2 + -.. + tr1, (6)

Further, it follows from the definition of 3Pi's that

Pp+l < r - tr-1 - tr-2 -- - tp+l. (7)

The conditions in (6) and (7) imply that

Pr- Ur < p+ - p+l1 (8)

Hence if (Pr > ur, then (Pp+l > 3p+l, which is what we wanted to establish. The

lemma now follows. ·
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It follows from Lemma 1 that to determine whether stop A can be feasibly
inserted or not, we simply check whether PA < UA and (Pp+l < p+l. If both the

constraints are satisfied, then there exists a feasible schedule with stop A being inserted;

otherwise there is no feasible schedule. We next consider the insertion of stop B. First

we need to determine the earliest time to visit stop q after stop A has been inserted. It
follows from (4) that (pq = max{czq, Pp+l + R[q] - R[p+2]}. Next observe that pB =

max{lB, (Pq + tBl} and (Pq+1 = max{lq+l, PB + tB2}- Using similar arguments as we used

in the case of stop A, it can be shown that the insertion of stop B is feasible if and only if

(PB < UB and Pq+1 < Pq+l. We summarize our discussion in this section by the algorithm

given below. The running time of the algorithm is 0(1) per insertion.

algorithm infeasibility-test-II(A, B);
begin

PA := max{lA, p + tA};

(Pp+I := max {Ip+l, PA + tA2};
if (PA > UA then the insertion is infeasible;
if (Pp+1 > p+I then the insertion is infeasible;

pq := max{cZq, (Pp+l + R[q] - R[p+2]};

PB :=max{lB, Pq + tBl};

Pq+l := max{lq+l 1, B + tB2};
if PB > UB then the insertion is infeasible;

if 9Pq+1 > f3q+1 then the insertion is infeasible;
end;

3.3 Infeasibility Test-III

We shall now describe our third infeasibility test. This test is able to identify

insertions violating the time window constraints, the minimum transit time constraints,

and the maximum ride time constraints for all stops except for the newly added stops:

pickup stop A between the stops p and p+l and the delivery stop B between the stops q

an q+l. This algorithm does not identify insertions that violate the maximum waiting
time constraints (that is, wi < w). As in the previous section, we assume that the vehicle

takes tA1 time to go from stop p to stop A and tA2 time to go from stop A to stop p+1,

and it takes tB1 time to go from stop q to stop B and tB2 time to go from stop B to stop

q+l. Our algorithm requires O(n2 log n) in preprocessing. Subsequently, it tests the

infeasibility of an insertion in 0(1) time. This algorithm spends more time in
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preprocessing than the algorithms presented in Section 3.2, but is less restrictive in the

types of infeasibilities it will discover.

We have shown in Section 2 that the constraints (2) associated with the sequence

of stops 1-2-3- ... -n is associated with a shortest path problem on the constraint graph G

= (N, A). In this feasibility test, we do not include the arcs corresponding to the

maximum waiting time constraints, that is, the arcs (i, i+l) for all i =1, 2, ... , n-1, of
length ti +, and we will ignore the maximum waiting time constraints in this

infeasibility test. Let G' denote this network. Recall that this network has n nodes and

O(n) arcs. Let P*[i, j] denote the shortest path from node i to node j in G' and d*[i, j]

denote its length. We can determine d*[i, j] for all node pairs [i, j] by solving an all-pairs

shortest path problem. The all-pairs shortest path problem can be solved in O(nm + n2

log n) time by applying the label-correcting algorithm once and then using Dijkstra's

algorithm (n-1) times (see, for example, Ahuja, Magnanti, and Orlin [1993], Section 5.6).

Since the constraint graph has m = O(n), the running time of this algorithm becomes O(n2

log n).

If we insert the pickup of a new trip segment between the stops p and p+l and the

delivery between the stops q and q+1, then the new stop sequence becomes 1 - 2 - 3 - ...

- p - A - p+l - ... - q - B - q+1 - ... n. To determine the impact of this change on the

feasibility of the solution, we need to determine the changes in the corresponding

constraint graph and ensure that no negative cycles are created due to this change. We

test for feasibility under the assumption that the vehicle does not introduce any new

waiting time before or after visiting the stops. If this schedule is infeasible, it will also be

infeasible when additional waiting time is introduced. Adding the stop A increases the

ride time from stop p to stop p+l; earlier it was tp and after the insertion it becomes tp,

which equals the time needed to go from stop p to stop A plus the time needed to go from

stop A to stop p+l. Clearly, t'p tp. Similarly, adding the stop B increases the direct

ride time from stop q to stop q+1 to tq where t'q > tq. In terms of the graph G', it

implies that the costs of the arcs (p+l, p) and (q+1l, q) decrease. Thus, we need to check

whether decreasing the costs of arcs (p+1, p) and (q+l, q) creates any negative cycles or

not.

We will now consider the case that the costs of two arcs in the constraint graph,

say, of arcs (u, v) and (k, ), decrease, and we need to determine whether it creates any
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negative cycles. We denote by cuv and ckl the modified arc costs, and denote by G" the

modified constraint graph. For every pair of nodes i and j, let d'[p, q] denote the length

of the shortest path from node i to node j. Observe that d'[i, j] < d*[i, j] for every node

pair i and j, since decreasing costs of arcs (u, v) and (k, 1) does not increase the cost of

any path but might actually decrease it. Also observe that if the shortest path from node i

to node j does not contain the arc (u, v) or (k, 1), then d'[i, j] = d*[i, j]. The following
lemma states the necessary and sufficient conditions for the presence of a negative cycle

in G".

Lemma 2. The network G "contains a negative cost cycle if any one of the following

three conditions is satisfied: (i) d*[v, u] + c < O; (ii) d*[l, k] + c < 0; and (iii) c +

d*[v, k] + c l + d*[l, u] < O. If none of these three conditions is satisfied, then the

network G" does not contain any negative cost cycle.

Proof. We first show that if any of the three conditions (i), (ii) and (iii) are satisfied, then

G" contains a negative cost cycle. If d*[v, u] + cuv < 0, then the directed cycle W = P*[v,

u]u{(u, v)} has cost d'[v, u] + c < d*[v, u] + cuv < 0, implying that W is a negative

cycle. Similarly, it can be shown that if d*[l, k] + c < 0 then W = P*[l, k]u{(k, I)} is a

negative cycle. If c + d*[v, k] + cl + d*[l, u] < 0 then W= {(u, v)}uP*[v, k]u{(k,

I)}uP*[, u] is either a negative cycle or a negative cost directed walk. In the latter case,

W may be expressed as the sum of the arc-disjoint directed cycles, at least one of which

is negative.

We next prove the converse result that if the network G" contains a negative cycle

W, then at least one of the conditions in (i), (ii), and (iii) must be satisfied. The negative

cycle W must contain the arc (u, v) or (k, I) or both, because the network did not contain

any negative cycle before decreasing the costs of the arcs (u, v) and (k, 1). If W contains

the arc (u, v) but not arc (k, 1), then it is of the form {(u, v)}uP[v, u], where P[v, u] is a

directed path from node v to node u and does not contain any of the arcs (u, v) and (k, ).

Hence the length of the path P[v, u] is at least d'[v, u] = d*[v, u]. Consequently, the

length of the cycle W is at least d*[v, u] + cuv. Since W is a negative cycle, we get d*[v,

u] + cu < 0, establishing that condition (i) is satisfied. Using similar arguments, it can

be shown that if W contains the arc (k, I) but not (u, v), then condition (ii) is satisfied.

We next prove that if W contains both the arcs (u, v) and (k, 1), then condition (iii) is
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satisfied. In this case, W = {(u, v)}uP[v, k]u{(k, I)}uP[I, u], where P[v, k] is a directed

path from node v to node k and P[l, u] is a directed path from node I to node u. Note that

both the paths P[v, k] and P[l, u] do not contain any of the arcs (k, I) and (u, v).

Consequently, d'[v, k] = d*[v, k] and d'[1, u] = d*[l, u]. Hence, the length of the cycle W

is at least cu + d*[v, k] + c + d*[l, u]. Since W is a negative cycle, it follows that

cur + d*[v, k] + ckl + d*[l, u] < 0, thereby satisfying condition (iii). This completes the

proof of the lemma. ·

It follows from Lemma 2 that to check the presence of negative cycles in G", we

simply check three conditions: (i) d*[v, u] + cv < 0; (ii) d*[l, k] + c < 0; and (iii) cuv +

d*[v, k] + c + d*[l, u] < 0. If any of these three conditions is true, then G" contains a

negative cycle implying that the new insertion is not feasible. If these conditions are not

true, then the insertion will satisfy the feasibility constraints with respect to all the stops

1-2-3- ... -n. However, the insertion may lead to infeasibilities for the constraints

corresponding to the new stops A and B.

We point out that if we include the maximum waiting time constraints too in our

formulation, then adding the two new stops will decrease the costs of two arcs (p+l, p)

and (q+l, q), and will increase the cost of two arcs (p, p+l) and (q, q+l). It appears

difficult to determine the presence of a negative cycle in O(1) time with respect to these

changes. We thus did not consider the maximum waiting time constraints in our

infeasibility test.

4. SUMMARY

In this paper, we considered the following problem which is solved repeatedly by

heuristic algorithms for dial-a-ride transit problems: Given the route of a vehicle through

n stops 1-2- ... - n, does there exist a feasible schedule that honors customers pickup and

delivery time windows, transit times restrictions between stops, maximum waiting time

constraints, and ride time constraints? Most of the existing models studied in the

literature on dial-a-ride transit problems do not allow the vehicle to wait while customers

are on board the vehicle. Our model relaxes this assumption. We show that the problem

of determining a feasible route through the n stops while honoring all constraints can be

formulated as a shortest path problem and solved in O(n2 ) time. We next consider the

problem of inserting a customer pickup trip request in the vehicle's route. This problem

can be solved in O(n2 ) time using our shortest path approach by determining the
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feasibility of the new set of stops; however, faster approaches can be developed that

could detect the infeasibilities of possible insertions in O(1) time. In this paper, we

developed three such infeasibility tests which consider different sets of constraints. The

table shown in Figure 3 summarizes the characteristics of our shortest path model and the

three infeasibility tests we developed in this paper.

Figure 3. Summary of the various infeasibility tests developed in this paper.
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Infeasibility Test Constraints Considered Preprocessing Time per

Time Insertion
Feasibility Test (i) Time window constraints None o(n 2 )
(Section 2) (ii) Minimum transit time constraints

(iii) Maximum waiting time constraints
(iv) Maximum ride time constraints

Infeasibility Test-I (i) Vehicle capacity constraints O(n2 ) 0(1)
(Section 3.1)
Infeasibility Test-II (i) Time window constraints O(n) 0(1)
(Section 3.2) (ii) Minimum transit time constraints
Infeasibility Test-III (i) Time window constraints O(n 2 log n) 0(1)
(Section 3.3) (ii) Minimum transit time constraints

(iii) Maximum ride time constraints
for all stops except the newly added stops
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