
Solving the Convex Ordered Set Problem
with Applications to Isotone Regression

by
Ravindra K. Ahuja

James B. Orlin

SWP# 3988 February 1998

Solving the Convex Ordered Set Problem
with

Applications to Isotone Regression

Ravindra K. Ahuja*
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

email: ahuja(mit.edu

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

email: jorlin@mit.edu

(Revised January 7, 1998)

* On leave from Indian Institute of Technology, Kanpur 208 016, INDIA.

Solving the Convex Ordered Set Problem
with

Applications to Isotone Regression

Ravindra K. Ahuja1 and James B. Orlin2

ABSTRACT

The convex ordered setproblem is to minimize j=1 C(xj) subject to < x1 x 2 < 3 <

... < xn < u, where Cj(xj) is a strictly convex function of xj for each j = 1, 2, ... , n, and

and u are specified lower and upper bounds on the xj's. The convex ordered set problem

is a generalization of the isotonic regression problems with complete order, an important

class of problems in regression analysis. We describe additional applications of the

convex ordered set problem to different scenarios including inverse optimization and an

important subproblem in Dial-A-Ride Transit. In this paper, we first derive optimality

conditions for the convex ordered set problem and then use these conditions to develop a

generic algorithm that solves the convex ordered set problem as a sequence of at most

2n-1 single variable convex minimization problems. This algorithm determines an

integer solution of the convex ordered set problem in O(n2 log U) time, where U =

max{ ll, lul}. We next use a scaling technique in our generic algorithm and improve its

running time to O(n log U). When our algorithms are applied to isotonic regression

problems with different Lp norms, we get: (i) an O(n) algorithm for the quadratic cost

case (L 2 norm); (ii) an O(n log n) algorithm for the rectilinear cost case (L 1 norm); and

(iii) an O(n) algorithm for the unit weight minimax cost case (L norm), and an

O(min{n2 , n log U}) algorithm for the weighted minimax cost case. These time bounds

either match the best available time bounds to solve these problems or improve them.

1 Sloan School of Management, MIT, Cambridge, MA 02139, USA; On leave from Indian Institute of
Technology, Kanpur 208 016, INDIA.

2 Sloan School of Management, MIT, Cambridge, MA 02139, USA.

2

1. INTRODUCTION

In this section, we study the following problem, which we call the convex ordered

set problem:

Minimize Zl Cj(xj) (la)

subject to

I<xl< 2 < 3 < ... < Xn< U, (lb)

where Cj(xj) is a strictly convex function of xj for each j = 1, 2, ... , n, and I and u are

specified lower and upper bounds on the xj's. Let U = max{lll, lul}. The convex ordered

set problem finds applications in different scenarios including isotonic regression, inverse

optimization and an important subproblem in Dial-A-Ride Transit.

The isotonic regression problem is defined as follows. Given the vector a = {al,

a2 , ... , an} E R n and an integer number p, find x = {xl , x2 , ... , xn}, so as to minimize

llx - allp = (x - aj (2)

and subject to the isotonicity (or monotonicity) constraints xl < x2 < < xn. Since

minimizing P =l(xj - a)P is equivalent to minimizing, we shall henceforth assume

that lIx - allp = jl(X j - aj)P . The isotonic regression problem is an important problem

in regression analysis due to its applications. The isotonic regression problem arises in

statistics, production planning, and inventory control and has been studied extensively in

the literature. The books by Barlow et al. [1972] and Robertson et al. [1988] describe

several applications of the isotone regression problem. These books and the references

given below describe several algorithms for solving the isotone regression problem. The

convex ordered set problem considered by us includes the isotonic regression problem as

a special case since (xj - aj)P is a strictly convex function for every positive integer p.

In this paper, we prove several results concerning optimal solutions of the convex

ordered set problem and use these results to develop efficient. We first present a generic

algorithm that solves the convex ordered set problem as a sequence of at most 2n- 1 single

3

variable convex minimization problems. This algorithm has similarities to the well

known PAV (Pool Adjacent Violater) algorithms for the isotonic regression problem (see

Best and Chakravarti [1990] and Stromberg [1991]) and it determines an optimal integer

solution of the convex ordered set problem in O(n 2 log U) time. Our major contribution

in this paper is a scaling version of the generic algorithm which improves its running time

to O(n log U).

Since the isotonic regression problem is a special case of the convex ordered set

problem, our algorithms apply to the isotonic regression problem. In the table shown in

Figure 1, we compare the running times of our algorithms versus the running times of

existing algorithms for the isotonic regression problem for different cost structures due to

other researchers. In the table, for the sake of brevity we give only the selected references

for algorithms on isotonic regression problems. Some algorithms in the table obtain

integer-valued optimal solutions while others obtain real-valued optimal solutions. We

show in Section 4 that given a real-valued optimal solution of the convex ordered set

problem, we can convert it to an integer optimal solution in O(n)

rounding-off scheme. For all cost structures, our time bounds

available time bounds or improve them.

time by using a simple

either match the best

Figure 1. Comparison of the running times of our algorithms with the best available

time bounds for solving the isotonic regression problem.

4

Objective Function Solutions Studied by Best available Our time

(Minimization Version) (Real/Int) time bound bound

n wj xj* - ajl Real Robertson and Wright [1980], O(n2) 0(n log n)
~j=Wi lxj -ajl JMenendez and Salvador [1987],

Chakravarti [1989]

j=1 Wj (xj - aj) Real Best and Chakravarti [1990] O(n) O(n)

maxl xj - ajl:l < j < n} Real Ubhaya [1974a, 1974b], O(n) O(n)
Liu and Ubhaya [1997]

max{wj xj - aj 1: < j < n Real Ubhaya [1974a, 1974b], (n2) O(n2)
Liu and Ubhaya [1997]

max{wj lxj - ajl:l < j < n} Integer Liu and Ubhaya [1997] (n2) O(min{n2 ,

n log U})

n Cj (x; - aj), where Integer Stromberg [1991] O(n2 log U) O(n log U)

each Cj is a convex function

2. APPLICATIONS

Perhaps the most well known application of the convex ordered set problem is in

isotonic regression and for these applications we refer the reader to the books of Barlow

et al. [1972] and Robertson et al. [1988]. We describe two additional applications of the

convex ordered set problem.

2.1 DIAL-A-RIDE TRANSIT

Dial-A-Ride Transit (DART) is a shared taxicab system that typically serves areas

of low travel demand and/or a population with special needs. Customers call a dial-a-ride

agency sufficiently in advance (say, one day before) requesting to be carried from

specific origins to specific destinations during specified times. The agency dispatches a
vehicle to meet several such demands and customers are pooled to reduce the operational

costs. A vehicle schedule typically consists of picking up and dropping off of some
customers in a specific sequence, and at any point of time several customers can be on-
board the vehicle. Due to the customer pooling, the transit times for customers are larger

than the direct transit times, and the customers' pickup and delivery times often may not
be met. Consequently, customers specify a time window for the pickup time and a time
window for the delivery time, and a customer is picked up and delivered in its specified

time window. Thus, dial-a-ride transit problems are a subclass of vehicle routing

problems with time windows.

Dial-a-ride transit problems are extensively studied in the literature. We refer the

reader to the papers by Kontoravdis and Bard [1994], Desrosiers et al. [1995], and Ahuja

and Orlin [1996]. Researchers have developed exact as well as heuristic algorithms for

dial-a-ride transit problems. Since exact algorithms can solve only small sized problems,

heuristic algorithms have been more extensively studied. A heuristic algorithm typically

performs two functions: routing and scheduling. The routing part determines the route of

each vehicle - the order in which specific customers assigned to a vehicle will be picked

up and delivered. The scheduling part assigns a time schedule to the route - the times at
which the customers will be picked up and delivered. We will show that determining the

optimal schedule for a given route can be formulated as the convex ordered set problem.

Consider the following scheduling problem: We are given a sequence of stops (on

an increasing time scale) 1-2-3- n, where each stop denotes a pickup or a delivery

point. We assume that the vehicle takes tj time to go from stop j to stop j+l. Each stop j

5

has a desired pickup or delivery time aj and deviation from the desired time is penalized.

If the vehicle visits stop j at time xj, then the penalty is given by Cj(xj - aj), where Cj(xj -

aj) is a convex function of xj. Observe that the time window constraints can be

incorporated in the definition of the convex function by making the penalty too high for

the pickup/delivery outside the window limits. We assume that the vehicle is allowed to

wait with customers on board the vehicle. Allowing the vehicle to wait idly between the

stops permits greater flexibility and generally yields a lower cost solution. This vehicle

scheduling problem can be formulated as follows:

Minimize 'jnI Cj(xj - aj) (3a)

subject to

xj + tj xj+l for all j = 1, 2, ... , (n-l). (3b)

This formulation is somewhat different than the formulation of the convex

ordered set problem given in (1), but a transformation of variables will make them
j-1

equivalent. Let Y = xl, and yj = xj - tk. Substituting yj's in (3) gives us the
k=l

following formulation:

j-1

Minimize jl Cj(yj + tk) (4a)
k=l

subject to

Yj < j+l for all j = 1, 2,..., (n-l), (4b)

which is a special case of the convex ordered set problem (after suitable upper and lower

bounds have been imposed on yj's).

2.2 INVERSE OPTIMIZATION

Inverse problems have been studied originally by researchers working with

geophysical data. In his book, Tarantola [1986] defines inverse problems in the

following manner: "Given a certain amount of (a priori) information on some model

parameters, and given an uncertain physical law relating some observable parameters to

the model parameters, in which sense should we modify the a priori information, given

the uncertain results of some experiments". Recently, there has been a flurry of activities

on inverse problems corresponding to well known optimization problems (see, for

6

example, Ahuja and Orlin [1997a, 1997b, 1997c] for some recent results and additional

references). We can define an inverse optimization problem as follows. Let 2 denote

the set of feasible solutions of an optimization problem. Given a solution x* E * and an

a priori estimated cost vector c, the inverse optimization problem is to identify another

cost vector d so that dx* < dx for all x E 2 and such that the deviation of d from c is

minimum. Roughly speaking, the inverse optimization problem is to identify a cost

vector d which is nearest to a specified cost vector c and with respect to which the given
solution x* is an optimal solution of the optimization problem. In this sense of inverse

optimization, the inverse sorting problem can be stated as: Given n numbers al, a2, ... ,

a n, perturb these numbers to x 1, x2, ... , xn, respectively, so that xl < x2 < x 3 < ... < xn

and the cost of perturbation given by -l Cj(xj - aj) is minimum, where each Cj(xj - aj)

is a convex function of xj. Clearly, the inverse sorting problem is a special case of the

convex ordered set problem. We give below two applications of the inverse sorting
problem.

Job Shop Scheduling

Consider a job shop scheduling problem in which one wants to minimize the total
flow time (or, the weighted flow time). This problem can be solved by processing the
jobs in the ascending order of the shortest processing time (or, the weighted shortest
processing times). Suppose that the processing times are not known precisely and S
denotes the optimal schedule with respect to the estimated processing times. Suppose

that the processing times of jobs in this schedule are revealed to be a, a2, ... , a n. The

solution of the convex ordered set problem with >= Cj(xj - aj) as the objective function

is a measure of the inaccuracy of the schedule S. This gives the cost of perturbing the

aj's so that S is an optimal schedule with respect to the perturbed processing times. As

such, it is one metric for the deviation from optimality.

Chess Ranking

Players in chess (and other sports activities) are ranked through points. However,
the point rankings may not reflect the true playing ability. So one can propose an

alternate ranking R. The inverse optimization problem on R would be: What is the
minimum amount that one may perturb the point rankings so that the points are consistent

with R? This may be of interest if one proposes alternative rankings.

7

3. PRELIMINARIES

In this section, we describe the notation, state the assumptions, as well as develop

some results used later in this paper.

Assumptions

We consider the convex ordered set problem subject to the following two assumptions:

Assumption 1. Each function Cj(xj) is a strictly convex function of xj.

Assumption 2. Each function Cj(xj) can be evaluated in 0(1) time for a given value of

Xj.

Assumption 1 implies that the function Cj(xj) has a unique optimal solution value.

This result simplifies our subsequent presentation. This assumption is made without any

loss of generality since we may add (xj - L)2 to Cj(xj) for sufficiently small . (This can

be implemented using lexicography.) With this perturbation, there is also a unique
minimum integral solution. Assumption 2 allows us to analyze the worst-case
complexity of the algorithms developed in this paper since they all involve evaluating the
cost functions.

Minimizing Single-Variable Convex Functions

The first generic algorithm proposed in this paper proceeds by finding the minima

of a single-variable convex function F(O) that varies in the range [1, u]. There are several
well known search methods, including binary search and Fibonacci search, that maintain
a search interval containing the optimal solution and perform one or two function
evaluations to reduce the search interval by a constant factor (see, for example, Bazaraa,
Sherali and Shetty [1992]). These search methods terminate when the length of the

search interval decreases below some acceptable limit . The number of iterations

performed by these search methods is O(log(U/s)). Each iteration of these search

methods performs 0(1) function evaluations; hence, the running time of these search

methods is O(log(U-L)/s) evaluations of the function F(O). In case we want to find an

integer optimal solution of the function F(O), then we can terminate the search method

8

whenever s < 1. In this case the running time of the method will be the time taken by

O(log U) function evaluations.

Subproblems

The algorithms described in this paper solve the convex ordered set problem, with

variables xl < x 2 < ... < xn, by repeatedly solving it on a subset of given variables, which

we refer to as a subproblem. We define the subproblem P[p, q] as a convex ordered set

problem on the variables xp, xp+l, ... , xq only. The subproblem P[p, q] can be stated as:

Minimize Z=p Cj(xj) (5a)

subject to

l < Xp < xp+1 < ... < Xq < u. (5b)

We refer to the constraints (5b) as the feasibility constraints. We denote a

solution, not necessarily feasible, of the subproblem P[p, q] as x[p, q]. Thus, x[p, q] =

{Xp, Xp+ 1, .. ., Xq}. We denote the optimal objective function value of P[p, q] as z* [p, q].

We say that a feasible solution x[p, q] is a single-valued solution of P[p, q] if xp = xp+l =

... = Xq. We also denote the solution x for (5) when restricted to the subproblem P[p, q]

by x[p, q]. In other words, if x = {x1, x2, ... , Xn}, then x[p, q] = {Xp, xp+l, ... , xq}. In

view of our notation, P[1, n] refers to the original convex ordered set problem stated in

(1). We shall denote P[1, n] as P and denote its optimal solution z*[1, n] as z*.

An ordered subset of integers i 1, i2, ... , ik is said to be consecutive if ij = ij_1 + 1

for each j = 2, 3, ... , k. We abbreviate the consecutive subset {i, i+l, ... , j } by [i, j]. Our

algorithms described in this paper maintain consecutive subsets of { 1, 2, 3, ... , n}. We

shall usually refer to them more briefly as subsets. We call two (consecutive) subsets [i,

j] and [k, 1] adjacent if k = j + 1. If two subsets [i, j] and [k, 1] are adjacent, then the two

subproblems P[i, j] and P[k, 1] are also said to be adjacent. We represent a family Fof

subsets (or, simply a family) by a partition of { 1, 2, ... , n} into adjacent subsets. Each

family F defines a collection of subproblems. For example, if F = [[1, 4], [5, 5], [6, 8]],

then the associated collection of subproblems is P[1, 4], P[5, 5], and P[6, 8]. Our

algorithms described in this paper proceed by maintaining a family of subsets in every

iteration. We shall use the following result later in the paper.

9

Lemma 1. If Fis a family, then lCp z*[p, q] < z*.
(p,)EF

Proof. Let x* be an optimal solution of the problem P. Then, for each subset [p, q] E F,

x* [p, q] is a feasible solution of the subproblem P[p, q]. Since the optimal solution of the

subproblem P[p, q] must be at least as good as x*[p, q], we get z*[p, q] < Zq=p Cj(xj).

Summing these inequalities for all subproblems in F, we get z*[p, q]

(pq)F ZJ=P Cj(X) = ZJ=n C(x) = z*.

Single-Valued Solutions

Consider the subproblem P[p, q]. Suppose that we restrict attention to those

solutions of P[p, q] where each variable in the subproblem has the same value, that is, xp

= xp+1 = ... = Xq = 0 for some 0. This gives us the following objective function for the

subproblem:

F(p, q, 0) = YJ=P Cj(0). (6)

Since each function Cj(O) is a strictly convex function of 0, it follows that for

fixed values of p and q, F(p, q, 0) is also a strictly convex function and therefore
possesses a unique optimal solution. With our perturbation it also has a unique integer

solution. We denote by pq the value of 0 E [1, u] for which F(p, q, 0) attains its

minimum. If we require all variables for the subproblem P[p, q] to have the same value,

then xp = xp+1 = ... = xq = Opq defines its unique optimal single-valued solution. If this

solution also happens to be an optimal solution for the subproblem (4), we say that the

subproblem P[p, q] has a single-valued optimal solution. A subproblem P[p, q] may or
may not have a single-valued optimal solution. An important issue for our algorithmic

approach is to characterize subproblems with single-valued optimal solutions. We give

in Theorem 1 the necessary and sufficient conditions for subproblems with single-valued

optimal solutions; the proof of the theorem is given in Appendix.

10

Theorem 1. A subproblem P[p, q] has a single-valued optimal solution if and only if the

following sets of conditions are satisfied:

(i) pj > Opq for allj = p, p+l, ..., q; and (7a)

(i) Ojq < Opq for allj = p, p+l, ... , q. (7b)

4. PROPERTIES OF OPTIMAL SOLUTIONS

In this section, we characterize the optimal solutions of the convex ordered set

problem. We will use this characterization to prove the correctness of the convex ordered

set algorithm described in the next section. We also prove some additional results, which

allow us to develop highly efficient algorithms for solving the convex ordered set
problem. Special cases of some results in this section appear in the literature devoted to
the isotonic regression problem and use duality theory of linear or nonlinear
programming. Our proofs are stand-alone proofs and do not require duality theory.

Optimality Conditions

Let the solution x be an ordered sequence of n numbers that is not necessarily

feasible for (1). We define the family F(x), associated with the solution x, as the

collection of (consecutive) subsets satisfying the following property: two consecutive

indices (that is, j and j+l) are in the same subset if and only if the two variables

corresponding to these indices have the same value in x (that is, xj = xj+l). For example,

if x = {2, 3, 3, 1, 1, 2, 7}, then F(x) = {[1,1], [2, 3], [4, 5], [6, 6], [7, 7]}. We call a
(possibly infeasible) solution x a good solution if and only if x[p, q] is an optimal

solution of the subproblem P[p, q] for every [p, q] E F(x). Observe that by definition

each value in the solution x[p, q] is the same. Since x[p, q] is an optimal solution of P[p,

q], each value in it must equal Opq.

The following theorem gives a characterization of the optimal solutions of the

convex ordered set problem, which we refer to as the optimality conditions.

Theorem 2. A solution x* is an optimal solution of the convex ordered set problem if

and only if x* is both feasible and good.

11

Proof. We will first prove the necessity of the optimality conditions. Let x* be an

optimal solution of the convex ordered set problem. Clearly, x* must be feasible. We

next show that x* must be good. Define the family F(x*) of subsets. Suppose that for

some subset [p, q] E F(x*), x*[p, q] is not an optimal solution of P[p, q]; instead x'[p, q]

is an optimal solution of P[p, q] with lower objective function value. Now consider the

solution y defined as follows: yj = xj for j < p or j > q and yj = (+ x for p < j

< q, where is chosen to be sufficiently small so that Yp-l < yp and yq < Yq+l-1 Then y is a

feasible solution of the convex ordered set problem with cost lower than that of x*, which

contradicts the optimality of the solution x*. Therefore, x*[p, q] is an optimal solution of

every subproblem P[p, q] with [p, q] E F(x*).

We now show the sufficiency of the optimality conditions by proving that if the

solution x* is feasible and x*[p, q] is an optimal solution of P[p, q] for every [p, q] E

F(x*), then x* must be an optimal solution of the convex ordered set problem. Lemma 1

implies that [pq]F(x*) z*[p, q] < z*. The fact that x* is a feasible solution of (1) implies

that [* z* [p, q] > z*. Combining the preceding two inequalities, we get

q](x*)z*[p, q] = z*, establishing that x* is an optimal solution of the convex ordered

set problem. ·

Just as we defined good solutions, we can define good families. We call a family

F good if for each subset [p, q] F the subproblem P[p, q] has a single-valued optimal

solution. Notice that for each good solution x, we can associate a good family F(x) in the

manner defined earlier. Conversely, for a good family F, we can associate a good

solution x in the following manner: for every [p, q] E F we set Xj = pq for all j E [p, q].

Hence there is a one-to-one correspondence between good solutions and good families.

The algorithms described in this paper maintain good families. The algorithms explicitly

maintain only the family F but not the corresponding solution x, which can be uniquely

determined from F.

Consider a good family F. We call a pair of adjacent subsets [p, q] and [q+l, r]

out-of-order if pq > Oq+l,r and in-order otherwise. For example, if x = {2, 3, 3, 1, 1, 2,

7}, then the adjacent pair of subsets [2, 3] and [4, 5] are out-of-order, whereas all other

adjacent pairs of subsets are in-order. Observe that a good family F is feasible if and only

12

if the family F has no out-of-order pairs of subsets. This result in view of Theorem 1

implies the following property.

Property 1. The solution corresponding to a goodfamily Fis an optimal solution of the

convex ordered set problem if and only if Fhas no out-of-order pair of subsets.

Satisfying Optimality Conditions

Theorem 2 tells us that in our search for the optimal solution, we can limit our

search to solutions corresponding to good families. It is easy to obtain good but

infeasible families. Theorem 3 (to be proved next) tells us how to gradually convert a

good but infeasible family into a good and feasible family. Before we can prove this

theorem, we need to prove two lemmas.

Lemma 2. Suppose that the subproblem P[p, q] has a single-valued optimal solution

with each value equal to pq. Let the subproblem P '[p, q] be the subproblem P[p, q] with

the additional constraint that xq _< a, where a < Opq. Then the subproblem P'[p, q] also

has a single-valued optimal solution with each value equal to a.

Proof. Suppose that the solution y[p, q] = {yp, Yp+, ... , yq} is an optimal solution of the

subproblem P'[p, q]. This solution satisfies exactly one of the following two conditions:

(i) yp < ac and (ii) yp = a. If the solution satisfies the second condition, then yp = yp+l =

... = yq = a, and the lemma is true. We will now show that the first condition leads to a

contradiction.

Suppose that yp < oc. Further, let h denote the largest index satisfying yp = Yp+l =

· .. Consider the function F(p, h, 0). Notice that Opq < 0ph; for otherwise the

subsequence {xp, xp+l, ... , xq} defined as xp = xp+ = ... = h = ph, and xh+1 = xh+2 =

... = xq is a feasible solution of P[p, q] with a lower cost and thereby contradicting that

the subproblem P[p, q] has a single-valued optimal solution. Further, we have assumed

that yp < a. Therefore, yp < < pq < Oph. These inequalities together with the

convexity of the function F(p, h, 0) and the fact that F(p, h, 0) attains its minimum at Oph

imply that the subsequence y[p, q] = {yp, Yp+l, ... , yq} can be improved. To see this, let

= Yh+l - h, and let w[p, q] = {wp, wp+, p+l, wq} with w k = Yk + , 1 < k < h, and wk

13

= Yk, h+l < k < q. Then w[p, q] is a feasible solution of the subproblem P'[p, q] with

lower cost, contradicting that {yp, Yp+1, ., Yq} is an optimal solution of the subproblem

P'[p, q]. ·

The following result is complementary to Lemma 2 with an analogous proof.

Lemma 3. Suppose that the subproblem P[p, q] has a single-valued optimal solution

with each value equal to Opq. Let the subproblem P'[p, q] be the subproblem P[p, q] with

the additional constraint that xp a2 r where a Opq. Then the subproblem P [p, q] also

has a single-valued optimal solution with each value equal to a.

We are now ready to prove Theorem 3, which is the foundation stone of our

algorithms for the convex ordered set problem described in Sections 5 and 6.

Theorem 3. Suppose that each of the two adjacent subproblems P[p, q] and P[q+l, r]

has a single-valued optimal solution. If Opq _2 Oq+l,r then the subproblem P[p, r] also

has a single-valued optimal solution with Opr satisfying Oq+l,r -<' pr -< Opq

Proof. Clearly, if Oq+l,r = 0 pq then the subproblem P[p, r] has a single-valued optimal

solution. We will henceforth consider the case when Opq > Oq+l,r . Let x[p, r] = {xp,

xp+l, ..., Xq, ..., Xr} be an optimal (not necessarily single-valued) solution of the

subproblem P[p, r]. Let c = xq. We claim that c satisfies 0 q+l,r < c< Opq; for otherwise

(i) if a > Opq then y[p, r] = {yp, Yp+l, --, Yq, .--, Yr} defined as yp = Yp+l = ... = Yq = Opq

and Yk = k for k = (q+l), ..., r, is a lower cost solution of the subproblem P[p, r]

compared to the solution x[p, r]; and (ii) if ac < q+l,r then the solution y[p, r] = {yp, Yp+l,

.. , q, ... , Yr} defined as Yk = k for k = p, ... , q, and ... = yq = Oq+l, r and Yq+l = Yq+2 =

* . = Yr- 0 q+l,r is a lower cost solution of P[p, r] compared to the solution x[p, r]. Thus a

satisfies Oq+l,r < ac < 0pq. Now observe that the solution {xp, Xp+l, ..., Xq} must be an

optimal solution of the subproblem P[p, q] with the additional constraint that xq < a, and

the solution {Xq+1, ... , xr} must be an optimal solution of the subproblem P[q+l, r] with

the additional constraint that Xq+l aoc. Lemma 2 implies that xk = a, p < k < q, and

Lemma 3 implies that xk = a, (q+1) < k < r. Combining the two implications yields that

the subproblem P[p, r] has a single-valued optimal solution.

14

Converting Real Optimal Solutions to Integer Optimal Solutions

The optimal solution of a convex ordered set problem in general may or may not

be integral. In some situations, we may want only an integer solution of the convex

ordered set problem. We will describe a simple scheme which converts an optimal

solution x of the convex ordered set problem into an optimal integer solution y in O(n)

time. This result was proved for the quadratic cost case by Goldstein and Kruskal [1976].

Let x = {x1, x2, ... , xn} be an optimal solution of the convex ordered set problem. The

algorithm proceeds by considering a subset of non-integer numbers in the solution x with

the same integer value and rounding them up or down to the nearest integer. Consider a

subsequence {xp, xp+1 , ... , xq} of the solution x containing all non-integer numbers with

the same value of the integer part. It is easy to show using the convexity of functions

Cj(xj)'s that the numbers xp, xp+l, ... , xq will either be rounded down to LxpJ or rounded

up to Frxp consistent with the constraints (lb); for otherwise the solution can be

improved. Now consider the convex ordered set problem with the additional restriction

that the variables xp, xp+1, ... , xq must be integer-valued. The facts that (i) the variables

xp, xp+l, ... , xq will either be rounded off to Lxp I or to xpl, and that (ii) they must

satisfy (1 b), imply that the optimal solution of our restricted convex ordered set problem
will be one of the following solutions, S[k] for all k = p-l, ... , q, defined in the following
manner:

xlx2,...., xpl, [Xp], [Xp+l],..,[Xql, Xq+l,...,xn fork = p-l,

S[k] = {xlx . , xi2,, xpJ,Lxp+il,..., LxkJ,Fxk+ll, ...,[xqxq+l,...,xn for p< k <q,

{xl , X2, xpilLXp, Lxp+l, ... , Lxq, xq+i, ... , xn for k = q.

We evaluate the costs of these solutions and the least cost solution among these
solutions is the desired solution. Given the solution x, we can determine the cost of the
solution S[p-1] in O(q-p) time. Given the cost of the solutions S[k], we can determine the
cost of the solution S[k+l] in 0(1) time for every k = p, ... , q, because the two solutions
differ only in two terms and each term can be evaluated in 0(1) time. Consequently, we
can find the least cost solution among the solutions S[p-l], S[p], ... , S[q] in O(q-p) time.
We can repeat this process for the modified sequence by selecting another subsequence
of all non-integer numbers with the same integer part. Eventually, the entire solution of

15

the convex ordered set problem becomes integer. The total time taken by this method is

O(n).

The preceding discussion implies that obtaining an integer optimal solution of the

convex ordered set problem is no more difficult than obtaining a real optimal solution.

The converse result is not true and obtaining a real optimal solution is in general harder

than obtaining an integer optimal solution.

5. THE GENERIC ALGORITHM

Using Theorems 2 and 3, we can obtain a straightforward algorithm for solving

the convex ordered set problem. This algorithm always maintains a good family F. The

family F may contain some pairs of subsets which are out-of-order. In every iteration, the

algorithm selects an out-of-order pair of subsets [p, q] and [q+l, r] in F. Theorem 3

implies that the subproblem P[p, r] also has a single-valued optimal solution. The

algorithm thus replaces the subsets [p, q] and [q+l, r] by the subset [p, r]; we refer to this

process as merging. The algorithm repeatedly merges out-of-order pairs of subsets until

there are no out-of-order pairs. It follows by Property 1 that the good family finally

obtained by the algorithm is feasible, and its corresponding solution is an optimal

solution of the convex ordered set problem. In the literature devoted to isotonic
regression problems, this algorithm is known as the PAV (Pool Adjacent Violaters)

algorithm. The PAV algorithm has been studied by many researchers for different

special cases of the convex ordered set problem. Stromberg [1991] considers PAV

algorithm for the general convex cost case and obtains results comparable to those

obtained by us in this section. We give in Figure 2 an algorithmic description of our

generic convex ordered set algorithm.

algorithm convex ordered set;
begin

F= [[1, 1], [2, 2], ... ,[n, n]];
while there exists an out-of-order pair of adjacent subsets in F do
begin

select a pair of out-of-order subsets [p, q] and [q+l, r] in F;
replace the two subsets [p, q] and [q+l, r]

by the subset [p, r] and update F;
compute 0 pr;

end;

for each subset [p, q] E F do x = pq for all j [p, q];

x* is an optimal solution of the convex ordered set problem;

16

end;

Figure 2. The generic convex ordered set algorithm.

We now illustrate the convex ordered set algorithm using a numerical example.

Suppose that the cost function for the convex ordered set problem is j=1 (xj - aj) 2 with n

=9, al= 7, a 2 =8, a 3 = , a 4 =2, a 5
= 5, a6 =6, a 7

= 6, a 8=9, anda9 = 4. Forthe

quadratic cost function F(p, q, 0), Opq is given by Zjqp aj/(q-p+l). The table shown in

Figure 3 gives the details of the solutions obtained during different iterations of the
algorithm. In this illustration, we selected the leftmost out-of-order pair of subsets
violating the optimality condition for merging. The pair of subsets selected during an
iteration is shown in bold type. The optimal solution found by the algorithm is S = {4.5,
4.5, 4.5, 4.5, 5, 6, 6, 6.5, 6.5}.

Figure 3. Illustrating the generic convex ordered set problem.

We now analyze the worst-case complexity of the generic convex ordered set
algorithm. First we consider the time needed to identify the out-of-order pairs of subsets.
At the beginning of the algorithm, there are at most n out-of-order pairs of subsets.

17

Iteration 1 [p, q] [1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]
Opq 7 8 1 2 5 6 6 9 4

x[p, q] {7} {8} {1} {2} {5} {6 {6} {9} {4}

Iteration 2 [P, q [1,1] [2,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]
Opq 7 4.5 2 5 6 6 9 4

x[p, q] {7} {4.5, 4.5} {2} {5} {6} {6} {9} {4}

Iteration 3 [p, q] [1,3] [4,4] [5,5] [6,6] [7,7] [8,8] [9,9]
Opq 5.3 2 5 6 6 9 4

x[p, q] {5.3, 5.3, 5.3} {2} {5} {6} {6} {9} {4}

Iteration 4 [P, q] [1,4] [5,5] [6,6] [7,7] [8,8] [9,9]
Opq 4.5 5 6 6 9 4

x[p, q] {4.5, 4.5, 4.5. 4.5} {5} {6} {6} {9} {4}

Iteration 5 [p, q] [1,4] [5,5] [6,6] [7,7] [8,9]
Opq 4.5 5 6 6 6.5

x[p, q] {4.5, 4.5, 4.5. 4.5} {5} {6} {6} {6.5, 6.5}

Subsequently, whenever a merge operation is performed, a new out-of-order pair may be
created involving the newly created subsets. Using simple data structures, we can easily

keep track of the pairs of out-of-order subsets and select them in O(1) time per pair and in

O(n) total time. Consequently, identifying the out-of-order pairs of subsets is not a
bottleneck operation in the algorithm.

We next consider the merge operation. Each merge operation decreases the
number of subsets by one; hence, there will be at most n-1 merge operations. The

bottleneck operation in a merge operation is the computation of Opr for the subset [p, r]

and this involves determining the minimum of the convex function F(p, q, 0) =

Y=p Cj(aj - 0). We have seen in Section 3 that finding an integer optimal solution of a

convex function requires O(log U) function evaluations. Each evaluation of the function

F(p, q, 0) takes O(n) time since it may involve as many as n function evaluations, each of

which can be performed in O(1) time (from Assumption 2). Hence the following
theorem.

Theorem 4. The generic convex ordered set algorithm obtains an optimal integer

solution of the convex ordered set problem in O(n2 log U) time.

It is easy to see that if we want to determine an optimal fractional solution of the
convex ordered set problem where the fraction has a denominator of K, then the convex
ordered set algorithm would take O(n2 log(UK)) time.

6. AN IMPROVED CONVEX ORDERED SET PROBLEM

In this section, we will describe an improved convex ordered set algorithm that
determines an optimal integer solution of the convex ordered set problem in O(n log U)
time. The improved algorithm uses a scaling technique in the generic algorithm

described in Section 5 to obtain a speedup by a factor of O(n). Scaling techniques are

widely used in the literature to improve the running times of combinatorial algorithms.

We refer the reader to the book of Ahuja, Magnanti and Orlin [1993] for a discussion of
scaling algorithms as well as its many applications to network optimization problems.

A scaling algorithm typically decomposes an optimization problem into a series
of approximate problems and gradually refines the approximation. In the convex ordered

set algorithm described in Section 5, the computation of Opq was a bottleneck operation.

18

We needed Opq to identify out-of-order pairs of subsets. (In this section, Opq denotes the

optimal integer solution of the function of F(p, q, 0) since we are interested in the optimal

integer solution.) The scaling algorithm computes Opq approximately as Opq = A LOpq/Ai,

which is the largest integral multiple of A less than or equal to Opq. The algorithm

performs a number of scaling phases: we call a scaling phase with a specific value of A as

the A-scaling phase. The algorithm starts with A = 2 llog(U+ l)J and in each subsequent

scaling phase decreases A by a factor of 2. Eventually, A becomes 1 and the algorithm

terminates with an optimal integral solution of the convex ordered set problem.

In the A-scaling phase, the algorithm maintains 0pq for each subset [p, q] E F,pq . i *) .I >. .L . LL -pq

where Opq= A L0pq/A_. Since we are interested in the optimal integer solution of the

convex ordered set problem, Opq = 0 pq. Therefore, if A = 1 then 0pq = pq. The definition

of 0pq implies the following property:

Property 2. pq Opq < p + A.

Our scaling algorithm also uses the following lemma.

Lemma 4. For a pair of adjacent subsets [p, q] and [q+l, r],

(a) if W > +J then Opq> Oq+.,r; and

(b) if p < Wq+l, then pq < Oq+l,r

Proof. Observe that if 0pq < 0 q+,r then OA . The contrapositive of this result isPo of. Observe that if 0pq - q+l,rt

result in part (a). The proof of part (b) is similar. ·

Similar to the generic algorithm described in Section 5, our scaling algorithm

maintains a good family F of subsets; that is, for each subset [p, q] E F the subproblem

P[p, q] has a single-valued optimal solution. For a good family F, we can associate a A-

good solution in the following manner: for every subset [p, q] E F, we set xj = Op for all

19

j E [p, q]. Our scaling algorithm always maintains a good family and 0q for every

subset [p, q] E F, so that the corresponding good solution can be easily obtained. In the

A-scaling phase, we define a pair of adjacent subsets [p, q] and [q+l, r] to be A-out-of-

order if O 0> OA and A-in-order otherwise. We call a family F to be A-optimal if itpq q+l,rI

contains no A-out-of-order pair of adjacent subsets.

We are now in a position to describe the scaling algorithm for the convex ordered

set problem. We give an algorithmic description of the algorithm in Figure 4. The

algorithm starts with a sufficiently large value of A and a family F which is A-optimal. It

then repeatedly calls a procedure improve-approximation(F, A) which takes a 2A-optimal

family F and converts it into a A-optimal family F. The procedure first computes Opq for

each subset [p, q] E F. We will show later in Lemma 5 how it computes Opq using 2 .pq

It then identifies A-out-of-order pairs of subsets (say, [p, q] and [q+l, r]) and replaces

them by the merged subset [p, r]. It then computes Opr. When there are no A-out-of-

order pairs of subsets in the family F, the procedure terminates. The algorithm repeats

this process until A =1, at which point the solution associated with the family F satisfies
the optimality conditions and the algorithm terminates with an optimal solution of the
convex ordered set problem.

algorithm improved convex ordered set;
begin

A := 2 Llog(U+l)J
F:= [[1, 1], [2, 2], ... ,[n, nl;
if < 0 then temp := -A else temp := 0;
for each i := 1 to n do 0pq := temp;

while A > 1 do improve-approximation(F, A);

for each subset [p, q] E F do x = 0pq for all j E [p, q];

x* is an optimal solution of the convex ordered set problem;
end;

20

procedure improve- approximation(F A);
begin

A :=A/2;

for each subset [p, q] E F do compute 0pq

while the family F is not A-optimal do
begin

select a A-out-of-order pair of subsets [p, q] and [q+1, r];
replace them by the subset P[p, r] and update F;

compute pr;

end;
end;

Figure 4. The improved convex ordered set algorithm.

We will now discuss the worst-case complexity of the algorithm. The algorithm

executes the procedure improve-approximation O(log U) times. We will show that the

procedure can be implemented in O(n) time, thus giving a time bound of O(n log U) for

the algorithm. The potential bottleneck step in the algorithm is the computation of Oq .pq

The procedure uses 0q to compute OpAq . The following lemma establishes a relationship

between 02q and Opq.

Lemma 5. 0'- < M' < -' + .

Proof. Property 2 implies that Opq pq (Result 1) and Opq < Opq + A (Result 2).

Property 2 also implies that 02qA < pq (Result 3) and Opq < 02q + 2A (Result 4).

Combining Result 2 and Result 3 yields 02A < O + A, and therefore 2A < OA (because

both sides are integral multiples of A). This establishes the first inequality in the

statement of the lemma. Combining Result 1 and Result 4 yields 0pq < 0 2A + 2A, and
q 2pq

therefore pq < 02A + A, establishing the second inequality in the lemma and completing

the proof of the lemma. A

At the beginning of the procedure improve-approximation in the A-scaling phase,

we compute Opq for every subset [p, q] E F. From the previous scaling phase, we know

the value of 0pq. It follows from Lemma 5 that Op = 0pq or Opq = 0pq + A. If 0pqA + A >

21

u, then clearly pq = 0pq otherwise we proceed further. It follows from the convexity of

the function F(p, q, 0) and the fact that F(p, q, 0) attains its minimum at Opq, that if 0q +

A < Opq then pq = 2Aq + A; otherwise pq = 0pq . We check whether 0 2pq + A < pq in thepq pq pq pq pq

following manner. Let = 02pq + A. We compute F(p, q, P[-1) and F(p, q, [). If F(p, q,

[) < F(p, q, -1), then Opq = 02 + A; otherwise pq = 02q. This computation takes O(p-

q+1) time for the subset [p, q] and O(n) time for all the subsets in the family F.

The algorithm also determines the value of Opr for the subset [p, r] obtained by

merging the subsets [p, q] and [q+l, r]. Notice that we merge the subsets [p, q] and [q+l,

r] in the A-scaling phase only if OA > If this merging occurs then 2 = 2l ; foro if pq q+l,r 'i mrgg ocur t pq fq+lr

if 0pq > oq2l we would have merged the subsets in the 2A-scaling phase, and if 02p <

0 2A then by Lemma 4(b) Opq < O giving a contradiction in both the cases. Since
q+l,r q+lr'

0 2A = 02A it follows that 0 2A = 2A = 2A Lemma 5 implies that O = 2A or =
pq Pr pq q+l,r 0pr pr pr

02p + A whichever happens to give a lower value of the function F(p, q, 0). If 0 2prA + A >

u, then clearly pr = 0pr; otherwise we proceed further. If 0pr + A < Opr then Opr = 02A +

A; otherwise OA = 0 2prA . We check whether 0 2A + A < 0pr in the following manner. Let P

= 0 2Apr + A. We next compute F(p, r, -1) and F(p, r, 3). Now notice that F(p, r, 0) = F(p,

q, 0) + F(q+l, r, 0). Since both F(p, q, 0) and F(q+l, r, 0) have been determined earlier in

the algorithm for both 0 = [-1 and 0 = 3, we can compute both F(p, r, 3-1) and F(p, r, 3)

in 0(1) time. If F(p, r, [) F(p, , r, P-1), then pr = 02 + A; otherwise 0 = 02. We

have thus shown that an execution of the procedure improve-approximation takes O(n)

time, giving us the following theorem.

Theorem 5. The improved convex ordered set obtains an integer optimal solution of the

convex ordered set problem in O(n log U) time.

7. SPECIAL CASES OF THE CONVEX ORDERED SET PROBLEM

In this section, we will study three special cases of the convex ordered set

problem and develop faster algorithms. We consider the quadratic cost case (L 2 norm),

the minimax cost case (Loo norm), and the rectilinear cost case (L 1 norm). We consider

22

both the weighted and unweighted (that is, cj = 1 for all j) cases. In most cases, we obtain

optimal real-valued solutions. Using the method described in Section 4, an optimal real-

valued solution can be converted to an optimal integer-valued solution in O(n) time, if

needed.

Ouadratic Cost Ordered Set Problem

We will adapt the generic convex ordered set algorithm for this case. For the

quadratic cost ordered set problem, we assume that the cost function is given by

'j= cj(xj - aj)2, where the cj's and aj's are specified constants. For this cost function,

F(p, q, 0) = ~q=p cj(0-aj)2. It is easy to verify that F(p, q, 0) will achieve its minimum

value at 0pq = (q=p cjaj)/(q=p cj). In this case, a straightforward computation of

Opq takes O(q-p) = O(n) time and in view of our previous discussion we can solve the

convex ordered set problem in O(n2) time. However, we can do even better by slightly

modifying the algorithm. For each subset [p, q] in the family F, we maintain two

additional values apq and IPpq defined as follows: a = C cjaj and pq = q=p cjaj and

Notice that Opq = (Zpq/=pq. When we start the algorithm, each subset consists of a

singleton element and the computation of a, 3, and 0 takes a total of O(n) time. Now

consider the merging of two subsets [p, q] and [q+l, r]. Notice that capr = apq + aq+l,r,

3pr = 3pq + q+l,r, and Opr = apr/ 3pr. Then, we can determine Opr for the subset

generated by a merge operation in 0(1) time. The total time for the merge operations

over the entire algorithm is O(n). Consequently, the modified convex ordered set

algorithm can solve the quadratic cost problem in O(n) time. This time bound matches

the best available time for the quadratic cost isotonic regression problem due to several

researchers (see Best and Chakravarti [1990]).

Theorem 6. The unweighted and weighted versions of the quadratic cost ordered set

problem can be solved in O(n) time.

Minimax Cost Ordered Set Problem

We will next adapt the generic convex ordered set for the minimax cost ordered

set problem for the unit weight case. In this case, we assume that the cost function is

given by max{lxj - ajl: 1 < j < n}. For this cost function, F(p, q, 0) = max{l0 - ajl: p < j

23

< q}. It is easy to verify that F(p, q, 0) achieves its lowest value at Opq = /2[max{aj: p < j

< q}+ min{aj: p <j < q}]. We can use a technique similar to that for the quadratic cost

case to compute the 0 value for a merged problem in 0(1) time. For each subset [p, q],

we maintain capq = max{aj: p < j < q}and Ppq = min{aj: p < j < q}, and whenever two

subsets [p, q] and [q+l, r] are merged to form the subset [p, r], we update capr =

max{apq, Cq+l,r}, Ppr = min{f3pq, 3q+l,r} and recompute Opr = +2{apr + pr} . All of

these operations can be performed in 0(1) time per merge and in O(n) time over the

entire algorithm. This time bound matches the O(n) time bound obtained by Liu and

Ubhaya [1997] for the unweighted case.

We next consider the weighted version of the minimax ordered set problem, that

is, where the objective function is to minimize max{cjlxj - ajl: 1 <j < n}. Our approach

for the unweighted case does not apply to the weighted version because there is no closed

form formula for determining the value of 0 for which F(p, q, 0) attains the lowest value.

In this case, = max{cjlxj - ajl: p <j < q} = max{max{cj(xj - aj), cj(aj - xj)}: p < j < q},

which is the upper envelope of 2(q-p+l) linear functions. If the slopes of all linear

functions are already arranged in non-decreasing order, then their upper envelope as well

as the lowest point on the envelope can be determined in O(q-p+l) = O(n) time. Thus

when we apply the generic convex ordered set algorithm to this case, we maintain for

each subproblem P[p, q] the slopes of the linear functions in F(p, q, 0) in non-decreasing

order. When we merge two subproblems P[p, q] and P[q+l, r], then the sets maintaining

the slopes are merged too, and the merging of these two ordered sets can be done in O(r-

p) = O(n) time. Consequently, each iteration of the generic convex ordered set algorithm

can be implemented in O(n) time, and the total time taken by the algorithm is O(n2). This

time bound matches the O(n2) time bound obtained by Liu and Ubhaya [1997] for the

weighted case.

We next consider the adaptation of the improved convex ordered set algorithm for

the weighted minimax case. Let amin = min{aj : 1 < j < n} and amax = max{aj : 1 < j < n}.

It is easy to see that in the optimal solution, each xj will satisfy amin < xj < amax.

Consequently, for this case U = max{lll, ul} = max{lajl : 1 < j < n}. When the improved

convex ordered set algorithm is applied to this problem, it obtains an integer optimal

solution of the problem in O(n log U) time. Under the similarity assumption, that is, U =

O(nk) for some integer k, the preceding time bound becomes O(n log n). Under this

24

assumption or whenever log U = o(n), it improves the time bound of O(n2) due to Liu and

Ubhaya [1997]. We have shown the following result.

Theorem 7. The unweighted minimax cost ordered set problem can be solved in O(n)

time and its weighted version in O(n2) time. An integer optimal solution of the weighted

minimax cost ordered set problem can be obtained in O(n log U) time.

Rectilinear Cost Ordered Set Problem

We will now consider adaptation of the generic convex ordered set algorithm for

the rectilinear costs, that is, where the objective function is ZJi cjlxj - ajl, with cj's and

aj's being specified constants. For this problem, F(p, q, 0) = j=p cjl0 - aji, and it is

well known (see, for example, Francis and White [1976]) that a "median solution" is its

optimal solution. A solution 0 equal to some aj with no more that half of the sum of cj's

on either side is said to be a median solution, that is, 0 = ak for some k satisfying yk= cj

</2 j= c as well as j=k+l c < /2 j=l cj . We can determine the exact value of Opq

for a subset P[p, q] in O(q-p) = O(n) time by applying a median finding algorithm.

Clearly, in this case the exact computation of Opq takes O(q-p) = O(n) time and,

consequently, we can solve the convex ordered set problem in O(n2) time.

We next consider the adaptation of the improved convex ordered set algorithm for

the rectilinear cost problem. For this case, U = max{lajI 1 < j < n}. When the improved

convex ordered set algorithm is applied to this problem, it runs in O(n log U) time. We
will show that a simple transformation can be used to modify the problem so that all data

is integer and U = n and, consequently, the improved convex ordered set algorithm will

solve this problem in O(n log n) time.

The improved convex ordered set algorithm proceeds by determining Opq values

for the subproblems P[p, q] obtained during its execution. The Opq value is the minimum

value of the function F(p, q, 0) = zq=p, cjlaj - 01. It is well known (see, for example,

Francis and White [1976]) that a "median solution" is the optimal solution of the function

F(p, q, 0). A solution 0 equal to some aj with no more that half of the sum of cj's on

either side is said to be a median solution, that is, 0 = ak for some k satisfying

25

cj < l/2 < j=q c j and _Cj < ½/2 q cj . Now observe from this formula that while
aj<ak aj>ak

determining the median solution, the magnitude of the aj's is unimportant; it is the

relative ordering of the aj's with respect to one-another that is important. This

observation allows us to use the following method to determine the median solution for

any subproblem. We sort aj's in the non-decreasing order. Let G(j) denote the position of

aj in this order. For example, if n = 5, a1 = 50, a2 = 10, a 3 = 70, a4 = 20, and a 5 = 40, then

a(l) = 4, v(2) = 1, v(3) = 5, a(4) = 2, and a(5) = 3. Observe that the median solution for

subproblem P[p, q] is ak for some k satisfying Zcj < /2 Z q cj and
6(j) <o(k) j=p

cj < ' j=p cj . We next replace each aj by o(j) and apply the improved convex
o(j) >o(k)

ordered set algorithm. For the modified problem, all data is integer and U = O(n), hence
the improved convex ordered set algorithm would determine an optimal solution of this
problem in O(n log n) time. In the optimal solution y*, each number varies between 1 to
n. We can convert the optimal solution y* of the modified problem into an optimal

solution x* of the original problem in the following manner: xj* = aj if and only if yj* =

o(j). Notice that the optimal solution x* of the original problem may or may not be
integer.

We have thus shown that the rectilinear cost ordered set problem can be solved in
O(n log n) time. This improves the best available running time of O(n2) for the same
problem due to Chakravarti [1989]. Chakravarti [1989] claims that his algorithm can be
implemented in O(n log n) time, but implementation details are not provided to obtain
this time bound. Hence we could not verify the claimed O(n log n) running time. We
summarize the preceding discussion in the form of the following theorem:

Theorem 8. The unweighted and weighted versions of the rectilinear cost ordered set
problem can be solved in O(n log n) time.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Office of Naval Research under
contract ONR N00014-96-1-0051 as well as a grant from the UPS Foundation.

26

REFERENCES

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, NJ.

Ahuja, R. K., and J. B. Orlin. 1996. Routing and Scheduling Algorithms for ADART.

Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1997a. Inverse optimization, Part I: General problem and

linear programming. Working Paper, Sloan School of Management, MIT,

Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1997b. Inverse optimization, Part II: Network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Ahuja, R. K., and J. B. Orlin. 1997c. Combinatorial algorithms for inverse network flow

problems. Working Paper, Sloan School of Management, MIT, Cambridge, MA.

Barlow, R. E., D. J. Bartholomew, D. J. Bremner, and H. D. Brunk. 1972. Statistical

Inference under order restrictions. Wiley, New York.

Bazaraa, M., H. Sherali, and C. M. Shetty. 1992. Nonlinear Programming: Theory and

Algorithms. John Wiley and Sons.

Best, M. J., and N. Chakravarti. 1990. Active set algorithms for isotonic regression; a

unifying framework. Mathematical Programming 47, 425-439.

Chakravarti, N. 1989. Isotonic median regression; a linear programming approach.

Mathematics of Operations Research 14, 303-308.

Desrosiers, J., Y. Dumas, M. M. Solomon, and F. Soumis. 1995. Time constrained

routing and scheduling. Handbooks in Operations Research and Management

Science, Volume 8: Network Routing, North Holland, Amsterdam.

Francis, R. L., and J. A. White. 1976. Facility Location and Layout. Addison-Wesley,

Reading, MA.

27

Goldstein, A. J., and J. B. Kruskal. 1976. Least-square fitting by monotonic functions

having integer values. Journal ofAmerican Statistical Association 71, 370-373.

Kontoravdis, K, and J. F. Bard. 1994. A GRASP for the vehicle routing problem with

time windows. ORSA Journal on Computing 7, 10-23.

Liu, M. H., and V. A. Ubhaya. 1997. Integer isotone optimization SIAM Journal on

Optimization 7, 1152-1159.

Menendez, J. A., and B. Salvador. 1987. An algorithm for isotonic median regression.

Computational Statistics and Data Analysis 5, 399-406.

Robertson, T., and F. T. Wright. 1980. Algorithms in order restricted statistical inference

and the Cauchy mean property value. Annals of Statistics 8, 645-651.

Robertson, T., F. T. Wright, and R. L. Dykstra. 1988. Order Restricted Statistical

Inference. John Wiley & Sons, New York.

Stromberg, U. 1991. An algorithm for isotonic regression with arbitrary convex distance

function. Computational Statistics and Data Analysis 11, 205-219.

Tarantola, A. 1987. Inverse Problem Theory: Methods for Data Fitting and model

Parameter Estimation. Elsevier, Amsterdam.

Ubhaya, V. A. 1974a. Isotone optimization, I. Journal of Approximation Theory 12, 146-

159.

Ubhaya, V. A. 1974b. Isotone optimization, II. Journal of Approximation Theory 12,
315-342.

28

APPENDIX

Theorem 1. If a subproblem P[p, q] has a single-valued optimal solution, then the

following sets of conditions are satisfied:

(a) pj 2 Opq for allj =p, p+l, ..., q; and (7a)

(b) Ojq Opq for allj =p, p+l,..., q. (7b)

Proof. We first prove the necessity of these conditions. Suppose that the subproblem

P[p, q] has a single-valued optimal solution x[p, q] = {xp, Xp+l, ... , Xq} with Xp = xp+l =

... = q = X pq. We will show that this solution will satisfy the conditions stated in (7).

We will prove this result by contradiction. Suppose that the subproblem P[p, q] violates

(7). Then there are two possibilities to consider.

Case la. The subproblem P[p, q] violates (7a). Suppose that for some index h, 1 < h <

q, Oph < pq. Define the solution y[p, q] = {yp, Yp+l, ... , Yq} as follows: yp = Yp+l = =

Yh = ph, and Yh+l = Yh+2 = ... = Yq = Opq Since Oph < pq, the solution y[p, q] satisfies

the feasibility constraints (4b) and hence is a feasible solution of the subproblem P[p, q].

Let z[p, q] and z'[p, q] respectively denote the costs of the solutions x[p, q] and y[p, q].

It is easy to see that z[p, q] - z'[p, q] = F(p, h, Opq) - F(p, h, Oph) . Since the function F(p,

h, 0) is a strictly convex function of 0 and achieves its minimum value at 0 = 0 ph, it

follows that F(p, h, Opq) > F(p, h, Oph) . This implies that z[p, q] > z'[p, q], contradicting

that the solution x[p, q] is an optimal solution of the subproblem P[p, q].

Case lb. The subproblem P[p, q] violates (7b). Suppose that for some index h, 1 < h <

q, the subsequence satisfies Ohq > 0 pq. Using the reasoning analogous to that in Case 1, it

can be shown that the solution y[p, q] = {Yp, Yp+l, ... , Yq} defined as yp = Yp+l = ... =

Yh-1 = pq and Yh = Yh+l = ..-- = Yq = hq is a lower cost solution than x[p, q], thereby

contradicting that the solution x[p, q] is an optimal solution of the subproblem P[p, q].

We will now prove the sufficiency of the theorem. Suppose that a subproblem P[p,

q] satisfies the conditions in (7). We will show that the subproblem P[p, q] has a single-

valued optimal solution. Let x[p, q] = {xp, xp+l, ... , xq} be the optimal solution of the

subproblem P[p, q]. If xp = xq = Opq' then the solution x[p, q] is a single-valued solution

and the theorem is true. If xp = xq 0Opq, then by the convexity of the function F[p, q, 0],

29

the solution y[p, q] defined as yj = Opq for all j = p, p+l, ... , q is a lower cost solution

than x[p, q], contradicting the optimality of the solution x[p, q]. We will henceforth

consider the case when xp < xq. There are two cases to consider: xp < pq and xp >2 pq,

which we will consider separately.

Case 2a. Xp < pq. Choose the index r so that xp = xp+1 = ... = xr < Xr+l. Let a = min

{Xr+l, Opq}. Define the solution y[p, q] as follows: yj= a for all j = p, p+l, ... , r and yj =

Xj for all j = r+l, ... , q. It follows from the convexity of the function F(p, r, 0) and the

fact that Op. 2 Opq (from (7a)) that the solution y[p, q] is a lower cost solution than x[p, q],

contradicting the optimality of x[p, q].

Case 2b xp Ž Opq. Since xp < xq, it follows that xq > Opq. Choose the index r so that xr 1l <

Xr = ... = Xq. Let a = maxxr.1, Opq}. Define the solution y[p, q] as follows: yj = xj for

all j = p, ... , r-l and yj = a for all j = r, r+l, ... , q. It follows from the convexity of the

function F(r, q, 0) and the fact that 0 rq > Opq (from (7b)) that the solution y[p, q] is a

lower cost solution than x[p, q], again contradicting the optimality of x[p, q].

We have thus shown that all cases except the one in which xp = Xq = 0pq result in

contradictions. This completes the proof of the sufficiency and also the proof of the
theorem. ·

30

