
Algorithms for the Simple Equal Flow Problem

by
Ravindra K. Ahuja

James B. Orlin
Giovanni M. Sechi

Paola Zuddas

SWP# 3960 June 1997

7__R_·__________________I^----------_-_

ALGORITHMS

FOR

THE SIMPLE EQUAL FLOW PROBLEM

Ravindra K. Ahuja*
Faculty of Management &

Rutgers Center for Operations Research (RUTCOR)
Rutgers University

New Brunswick, NJ 08903, USA

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

Giovanni M. Sechi
Dept. of Hydraulics

University of Cagliari
09123 Cagliari, Sardinia

ITALY

Paola Zuddas
Dept. of Hydraulics

University of Cagliari
09123 Cagliari, Sardinia

ITALY

(Revised May 25, 1997)

* On leave from Indian Institute of Technology, Kanpur - 208 016, INDIA.

1

Algorithms for The Simple Equal Flow Problem

Ravindra K. Ahujal , James B. Orlin2 , Giovanni M. Sechi3 , and Paola Zuddas4

ABSTRACT

In this paper, we study a variant of the minimum cost flow problem where

each arc in the specified set R of arcs must carry the same amount of flow. This

problem, which we call the simple equalflow problem, arose while modeling some

real-life problems. In this paper, we describe one application of the simple equal

flow problem arising in water resource system management. We consider the

simple equal flow problem in a directed network with n nodes, m arcs, and where all

arc capacities and node supplies are integer and bounded by U. In this paper, we

develop several algorithms for the simple equal flow problem - the network

simplex algorithm, the parametric simplex algorithm, the combinatorial parametric

algorithm, the binary search algorithm, and the capacity scaling algorithm. The

binary search algorithm solves the simple equal flow problem in O(log(nU))

applications of any minimum cost flow algorithm. The capacity scaling algorithm

solves it in O(m log(nU)(m + n log n)) time. These algorithms can be easily

modified to obtain an integer solution of the simple equal flow problem.

1 Faculty of Management and Rutgers Center for Operations Research (RUTCOR), Rutgers University,
New Brunswick, NJ 08903. On leave from Indian Institute of Technology, Kanpur 208 016, INDIA.

2 Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

3 Dept. of Hydraulics, University of Cagliari, 09123 Cagliari, Sardinia, ITALY.

4 Dept. of Hydraulics, University of Cagliari, 09123 Cagliari, Sardinia, ITALY.

1. INTRODUCTION

In this paper, we study a variant of the minimum cost flow problem, which

we call the simple equal flow problem. This problem is defined as follows. Let G =

(N, A) be a directed network defined by a set N of n nodes and a set A of m directed

arcs. Each arc (i, j) e A has an associated cost cij and an integer capacity uij. Each

node i e N has an associated integer number b(i) representing its supply if b(i) > 0

and its demand if b(i) < 0. Let R c A be a specified set of arcs. Let S = A - R. The

simple equal flow problem is a minimum cost flow problem where each arc in R is

required to carry the same amount of flow. This problem can be mathematically

stated as follows:

Minimize X (i, j)eA cij xij (la)

subject to

Z Xij - . Xji =b(i)forallieN, (lb)

{j:(ij)eA} j:(j,i)eA}

0 xij < uij for all (i, j) e A, (ic)

xij = xkl for every pair of arcs (i, j) and (k, I) in R. (id)

The simple equal flow problem arose while modeling several real life

problems. We describe here an example of a water resource management problem.

Water is a scarce commodity in Sardinia due to scanty rainfalls. Its efficient

utilization is of utmost importance to the economy of the state. It is a multiperiod

(or, dynamic) problem and the planning period typically consists of five years or

longer. This dynamic problem may be transformed into a static problem by using a

standard technique of time-expanding the underlying network. In this technique,

(see, for example, in Ahuja, Magnanti and Orlin [1993], we first discretize the time

3

horizon into a finite number of periods (typically, each period represents a month),

and replicate the underlying network for each period. We then connect relevant

nodes of different time periods by additional arcs. The time-expanding techniques

for water resource management have been proposed by Simeone [1974], Sechi and

Zuddas [1995], and Sechi and Zuddas [1987]. The model requires that the same

quantity of water be available for each period for drinking purposes. This

requirement gives rise to the equal flow constraints on a set of arcs in the time-

expanded network. Hence the water resource management problem is a simple

equal flow problem.

For a more refined analysis of this water resource management problem, it is

desirable to consider a shorter time period, which leads to larger number of

replications of the underlying network, thereby increasing the size of the network

substantially. Since this model is used within a decision support system to answer

a variety of "what if" questions, an efficient algorithm for solving the simple equal

flow problem is required. Linear programming techniques are not well-suited for

solving the simple equal flow problem due to their excessive time and memory

requirements. The network flow based algorithms developed in this paper allow

us to solve the simple equal flow problem in a highly efficient manner for different

scenarios and management policies.

Ali, Kennington and Shetty [1988] have studied a similar variant of the

minimum cost flow problem, where K pairs of arcs {(ik, k), (Pk, qk)} are specified

and the decision problem is to optimize (d) subject to (lb), (c), and the following

constraints:

XikJk = Xpkqk for each k = 1, 2, ,K. (2)

They refer to this problem as the equal flow problem. This problem finds

applications in federal matching of funds to various projects (Beck, Lasdon and

4

Engquist [1983]). An integer version of the equal flow problem studied by Ali et al.

(where arc flows must be integer) is NP-complete and finds applications in crew

scheduling (Carraresi and Gallo [1984]), estimating driver costs for transit

operations (Turnquist and Malandraki [1984]), and the two-duty period scheduling

problem (Shepardson and Marsten [1980]). Ali et al. [1988] present a heuristic

algorithm to solve the equal flow problem using a Lagrangian relaxation

technique. This technique relaxes the equal flow constraints, yielding the

minimum cost flow problem, and uses subgradient optimization technique to

solve the Lagrangian dual.

The problem presented here is simpler than the equal flow problem studied

by Ali et al. [1988] and, therefore, we call it the simple equalflow problem. The

simple equal flow problem can be solved more efficiently. Indeed, it is

polynomially solvable. In this paper, we pursue two different algorithmic

approaches to solve the simple equal flow problem. In the first approach, we

model the problem as a generalization of the minimum cost flow problem where

one column has a "non-network" structure. We then develop a special-purpose

primal simplex algorithm for solving it. The resulting algorithm generalizes of the

well known network simplex algorithm for the minimum cost flow problem. In

the second approach, we model the simple equal flow problem as a parametric

minimum cost flow problem, yielding several algorithms: (i) a parametric simplex

algorithm, (ii) a combinatorial parametric algorithm, (iii) a binary search

algorithm, and (iv) a capacity scaling algorithm. The latter two algorithms run in

polynomial time. The binary search algorithm solves the simple equal flow

problem as a sequence of O(log(mU)) = O(log(nU)) minimum cost flow problem.

The capacity scaling algorithm solves the simple equal flow problem in O(m log U

(m + n log n)) time. Integer versions of the simple equal flow problem can also be

solved in the same time.

5

For the sake of brevity, we shall henceforth refer to the simple equal flow

problem as the equal flow problem.

2. NETWORK SIMPLEX ALGORITHM

The equal flow problem is a linear programming problem and, therefore,

linear programming methods can be adapted to solve it. An adaptation of the

simplex algorithm for network flow problems is often referred to as a network

simplex algorithm. In this section, we work out the details of the network simplex

algorithm for the equal flow problem.

The network simplex algorithm for the equal flow problem generalizes the

network simplex algorithm for the minimum cost flow problem studied

extensively in the literature (see, for example, Kennington and Helgason [1980],

Grigoriadis [1986], and Ahuja, Magnanti and Orlin [1993]).

2.1 PROBLEM REFORMULATION

For the network simplex algorithm, it will be helpful to reformulate the

equal flow problem. We will henceforth assume that the set S = N - R of arcs

contains at least one spanning tree. There is no loss of generality in this

assumption because we can add artificial arcs with large costs. Since each arc (i, j) e

R carries equal flow, we may substitute all of these arcs by a single variable xR.

Substituting xij = xR for each arc (i, j) e R in (1) gives the following statement of the

equal flow problem:

Minimize (i, j)S Cij Xij + CR XR (3a)

subject to

Z Xij - x)i + d(i) xR = b(i) for alli e N, (3b)

{j:(i,j)eS} {j:(j,i)eS}

6

0 < xij < ij for all (i, j) e S, (3c)

0 < XR < UR, (3d)

where CR = (ij)ER Cij, UR = min{uij: (i, j) e R}, and the vector d is the sum of the

column vectors corresponding to the arcs in R. The equal flow problem can

alternatively be expressed in the matrix notation in the following manner:

Minimize cx + cR xR (4a)

subject to

Nx + d XR = b, (4b)

0 x u, (4c)

0 < xR < uR, (4d)

where N is the node-arc incidence matrix of the network G' = (N, S). Notice that

d(i) represents the difference of the number of arcs in R emanating from node i and

the number of arcs entering node i. This observation yields the following:

Property 1. The vector d satisfies the following conditions:

(a) d(i) is integer for each node i E N;

(b) -(n-1) < d(i) < (n-l) for each node i N;

(C) iEN d(i) = O ;

(d) -K < EeH d(i) K for any subset H of nodes.

We may point out that the equal flow problem is a special case of the

minimum cost flow problem plus an additional variable. In general, the minimum

cost flow problem plus an additional variable has the rank of the constraint matrix

equal to n, but the equal flow problem has the rank of the constraint matrix equal to

7

(n-l) (see Lemma in Section 2.2). This property leads to a more efficient algorithm

for the equal flow problem compared to the (general) minimum cost flow problem

with an additional variable.

2.2 STRUCTURE OF THE BASIS

A basis of the linear programming problem is a collection of r basic variables

XB whose columns in the constraint matrix are linearly independent, where r is the

rank of the constraint matrix. A basis structure of a bounded variable simplex

algorithm (that is, a linear programming problem with upper bounds on variables)

consists of a set of basic variables XB, a set of nonbasic variables xL at their lower

bounds, and a set of nonbasic variables xU at their upper bounds. The following is a

well known result in linear programming and characterizes the basis of a linear

programming problem.

Property 2. Let XB represent a subset of variables for the linear programming

problem . x = b, and !' denote the submatrix of corresponding to the variables in

XB. Then the variables in xBdefine a basis if and only if the system of equations AB

= b is a unique solution.

An alternative way to represent the basis of a linear programming problem is

by the index set B of variables, and we shall henceforth adopt this notation. In this

notation, we represent the basis structure by (B, L, U). For the network flow

problem, the index set represents the sets of arcs because there is a one-to-one

correspondence between flow variables (xij's) and arcs ((i, j)'s). Consequently, the

sets B, L, and U, will henceforth represent the sets of arcs. We shall, however, make

an exception for the variable xR because it does not represent a single arc but denotes

the set R of arcs. In other words, except the variable xR, we shall interchangeably

refer to a variable xij, (i, j) S by the arc (i, j) and vice-versa.

8

The network simplex algorithm for the minimum cost flow problem derives

its efficiency from the fact that its basis is a spanning tree. We will show in Lemma

2 that the basis of the equal flow problem is a variant of a spanning tree. W e define

the concept of a two-tree. A two-tree is a set of two node-disjoint trees T' and T"

that together span all nodes. (Alternatively, a two-tree is a spanning tree of G

minus a tree arc.) We refer to a two-tree as a good two-tree if d(T') * 0. Observe that

Property 1 implies that d(T') = - d(T") and, therefore, d(T') • 0 if and only if d(T") 0.

We are now ready to discuss the structure of the basis for the equal flow problem.

Lemma 1. The constraint matrix of the equal flow problem has rank equal to (n-i).

Proof. Observe that summing n constraints in (3b) yields a zero row (here we use

Property l(c)). Thus the rank of the equal flow problem is at most (n-l). Now

consider any spanning tree T of S. Our assumption implies that there always exists

such a tree. Since T contain (n-l) arcs which, due to the acyclicity of T, are linearly

independent, it follows that the rank of the equal flow problem is at least (n-l).

Combining these results with our previous result establishes the lemma.

Lemma 2. A basis of the equal flow problem either (i) consists of a spanning tree of

S, or (ii) consist of a good two-tree in S and XR.

Proof. A basis of the equal flow problem either contains x R or it does not. In the

latter case, the basis is a spanning tree of S. W e now consider the former case. In

this case, the basis contains XR and an acyclic set of (n-2) arcs of S. Notice that an

acyclic set of (n-2) arcs must be a two-tree. We will show later in Section 2.4 that the

flow associated with a two-tree plus the equal flow arcs is unique if and only if the

two-tree is a good two-tree. Using this result in conjuction with Property 2 implies

that the two-tree in the basis must be a good two-tree. This completes the proof of

the lemma.

9

We give an example of the two possibilities of the basis in Figure 1. Figure

l(a) gives the underlying network where arcs in R are represented by dotted lines.

Figure l(b) shows a spanning tree basis not containing XR, whereas Figure l(c) shows

a basis containing xR. In case, a basis of the equal flow problem consists of a

spanning tree, we denote it by T and if it consists of a good two-tree plus xR then we

denote it by T' uT" u{XR}.

(a) (b) (c)

Figure 1. Illustrating the basis of the equal flow problem.

2.3 OBTAINING FLOW FOR A BASIS STRUCTURE

Each basis structure of the equal flow problem has an associated flow vector x.

If B = T, then we can obtain the flow x associated with the basis structure (B, L, U)

using the same method as used in the network simplex algorithm for the

minimum cost flow problem. In case B = T' uT" u{xR}, then we need a different

method, which we describe next.

We first compute the flow variable xR. The procedure compute-xR given in

Figure 2 describes a method to compute the value of xR. The procedure uses the fact

that d(T') X 0, which is true because T' is part of a good two-tree. W e may point out

that if we select the tree T" in place of T' we would obtain the same value of xR

because b(T") = -b(T'), u(T") = -u(T'), and d(T") = -d(T').

10

procedure compute-xR;
begin

b(T'): = iT' b(i);

d(T'): = ieT' d(i);

u('): = Z Uij - uij;
{ifTy jrfT (i'j)=U} (jeT jT' (i,j)} {i j (ij)eU}

compute XR : = [b(T') - u(T')]/d(T');
end;

Figure 2. Procedure to compute the flow on the equal flow arcs.

Once we know the flow on the equal flow arcs, then there is a unique flow on

arcs in T' and T" that will also satisfy the mass balance constraints. The method to

compute the flow on arcs in T' (or T") is the standard method used in the network

simplex algorithm. The flow x thus obtained is the basic solution associated with

the basis structure (B, L, U). If 0 < x < u, then it is a basic feasible solution; otherwise,

it is not a basic feasible solution.

We illustrate our procedure on the numerical example shown in Figure 3(a).

Assume that all nonbasic arcs are at their lower bounds. Then, b(T') = 2 and d(T') =

1. Hence xR = b(T')/d(T') = 2. Setting flow equal to 2 gives the updated

supplies/demands shown in Figure 3(b). The flows on tree arcs that satisfy these

supplies/demands are shown in Figure 3(c).

1 3

-1 -3

(a) (b) (c)

Figure 3. Illustrating the computation of flows associated with a basis structure.

!

11

In proving Lemma 2, we used the fact that the flow associated with a basis

T'uT" u{xR} is unique. The proof follows from our preceding discussion. The

procedure compute-xR yields a unique value of xR satisfying the mass balance

constraints across the cut. The flow on arcs in T' and T" satisfying the remaining

mass balance constraints is then uniquely determined.

The solution associated with a basis structure of the equal flow problem may

be noninteger. But each arc flow will be a rational number of the form p/q, where q

is no more than K (recall that K = RI); we call such a number a K-fractional

number. To see this, observe from Property l(d) that the value of xR computed in

the procedure compute-xR is always a K-fractional number. Since the flow on equal

flow arcs is a K-fractional number, the flow on tree arcs will also be a K-fractional

number.

2.4 OBTAINING NODE POTENTIALS FOR A BASIS STRUCTURE

Each basis structure (B, L, U) of the equal flow problem has an associated set

of node potentials x, which is obtained by setting cij = 0 for each variable in the

basis B. If B = T, then we can obtain the node potentials Xt using the same method

as used in the network simplex algorithm for the minimum cost flow problem.

However, if B = T'uT" uxR, then this method needs to be modified as described

next. Assume, as earlier, that the subtrees T' and T" have the roots r' and r".

We need to find the node potentials 7 so that cRij = 0 for each arc (i, j)

T' uT" and CTR = cR - lieN d(i) 7t(i) = 0. To do so, we first determine a set of node

potentials ir so that cij = 0 for each arc (i, j) e T uT". We first set n(r') = 0 and

compute the node potentials of nodes in T' by using clij = 0 for each arc (i, j) e T'.

Then we set it(r") = 0 and compute the node potentials of nodes in T" by using clij =

0 for each arc (i, j) e T. Next we compute cr R = cR - lieN d(i) I7(i). If cR = , then

12

it is the set of node potentials associated with the basis structure (B, L, U). If c/XR 0,

then we modify the node potentials in the following manner:

7(i) for all i e T'

i7(i) + c/d(T") for all ie T" (5)

Observe that since T" is a part of a valid two-tree, d(T") • 0, and potentials can

always be modified in the manner indicated by (5). It can be easily verified that the

modified node potentials 7' satisfy crij = 0 for each arc (i, j) e T' uT".

show that they also satisfy c R = 0. Observe that

cR = cR - RieN d(i) i (i) = CR - ieN d(i) i7(i) - iT"

W e will now

d(i) c R/d(T"),

= C - C = ° .
We illustR th c omputation of node potentials on the basis shown in

We illustrate the computation of node potentials on the basis shown in

Figure 4(a) (the number besides each arc gives its cost). Suppose that node 1 is the

root of the tree T' and node 9 is the root of the tree T". Figure 4(b) gives the node

potentials obtained by setting 7c(1) = 7(9) = 0 and using cij = 0 for all tree arcs. We

next compute CR = CR - ieN d(i) ir(i) = 25. Since d(T") = -1, we obtain cR/d(T") =

-25. Adding -25 to the potentials of nodes in T" gives the potentials associated with

the current basis structure which in shown in Figure 4(c).

5

-7 -7

(b) (C)(a)

Figure 4. Illustrating the procedure compute-potentials.

n' W

13

2.5 ALGORITHMIC DESCRIPTION

We are now in a position to describe the details of the network simplex

algorithm for the equal flow problem. We give in Figure 5 an algorithmic

description of the network simplex algorithm. In the subsequent subsections, we

will give a detailed description of the various steps in the network simplex

algorithm.

algorithm network-simplex;
begin

determine an initial feasible basis structure (B, L, U);
let x be the flow and Xt be the node potentials associated

with this basis structure;
while some nonbasic variable violates its optimality condition do
begin

select an entering variable violating its optimality condition;
add entering variable to the basis and determine the leaving variable;
perform a pivot operation, update the basis structure, flow x, and

the node potentials;
end;

end;

Figure 5. Network simplex algorithm for the equal flow problem.

2.6 OBTAINING INITIAL BASIS STRUCTURE

In the initial basis structure, we may have a full artificial basis. To do so, we

introduce an additional node s, an arc (s, j) for each node j e N with b(j) < 0, and arc

(j, s) for each node j e N with b(j) 0. We set the cost and capacity of these

additional arcs equal to M, where M is a sufficiently large number. The initial basis

B is a spanning tree containing all arcs leaving or entering node s. All other arcs are

nonbasic arcs at their lower bounds. The variable xR is also a nonbasic variable. To

simplify the notation, we assume that the initial network G contains the artificial

arcs.

14

2.7 OPTIMALITY TESTING AND SELECTING ENTERING VARIABLES

Let (B, L, U) be a feasible basis structure of the equal flow problem. Suppose

that B = T' uT" uxR. In this case, we check whether the basis structure satisfies the

following optimality conditions:

cj > 0 for each arc (i, j) E L, (6a)

cij < 0 for each arc (i, j) e U. (6b)

In case, B = T, then XR is a nonbasic variable and we must test out its

optimality conditions given in (7) in addition to the ones given in (6).

CR > 0 if XR is at its lower bound, (7a)

cER < 0 if XR is at its upper bound. (7b)

If the given basis structure satisfies the optimality condition, it is optimal and

the algorithm terminates. Otherwise, the algorithm selects a nonbasic arc in L u U

violating the condition in (6) or XR violating the condition in (7). The selected

variable is added to the basis and a pivot operation is performed. Different rules for

selecting entering arcs, called pivot rules, yield algorithms with different empirical

behavior. We can use any of the pivot rules used for the network simplex

algorithm for the minimum cost flow problem.

2.8 SELECTING THE LEAVING VARIABLE

Let (B, L, U) be a basis structure of the equal flow problem with the associated

flow x. Suppose we have selected an entering variable. We will now describe a

method to determine the leaving variable. There are four cases which need to be

considered separately.

Case 1. B = T, and the entering variable is not xR (see Figure 6(a)).

15

Case 2. B = T, and XR is the entering variable (see Figure 6(b) for an example of this

case).

Case 3. B = T' uT uxR, and the arc corresponding to the entering variable has both

the endpoints in the same tree T' or T" (see Figure 6(c) for an example of this case).

Case 4. B = T uT" uR, and the arc corresponding to the entering variable has its

endpoints in different trees (see Figure 6(d) for an example of this case).

(a) (b)

(c) (d)

Figure 6. Different possibilities for the entering variable.

It is easy to observe that in Cases 1 and 3 methods to perform the flow

changes and to determine the leaving variable are the same as in the network

simplex algorithm for the minimum cost flow problem; we therefore omit

discussion of these two cases. W e next consider the determination of leaving arcs

in the Cases 2 and 4.

We first consider Case 2, where XR is the entering variable. If x R enters at its

lower (upper) bound, then we increase (or decrease) flow on arcs in R by one unit,

and using standard techniques in network flow theory determine the change sij in

16

the flow on any arc (i, j) e T. We next determine the maximum flow that can be

increased (or, decreased) on arcs in R using the following inequalities:

0 < Xij + s ij < uij for each arc (i, j) e T and < u R. (8)

At this value of , flow on some arc in T or on xR equals its lower or upper

bound, which becomes a nonbasic variable. Replacing the leaving variable by the

entering variable gives us a new basis structure.

We next consider Case 4 where the entering variable corresponding to the arc

(k,) has its two endpoints in two different subtrees. W e assume that arc (k,) e L,

node k lies in T', and node 1 lies in T". Other cases can be handled similarly.

Suppose we augment one unit of flow on arc (k, 1) which takes it from node k in T'

to node I in T". To satisfy the mass balance constraints, this flow must come to

nodes in T' using the arcs in R. It is easy to see that the value of xR will increase by

1/d(T") units. Next we must determine the flow change on arcs in T' and T" so that

the mass balance constraints are satisfied at all the nodes; we can determine this

using standard techniques in network flow theory. Let sij denote the change in the

flow on an arc (i, j) e T' uT" if the flow on arc (k,) is increased by one unit. The

maximum change , that can be sent on arc (k, 1), can then be determined using (8).

To summarize, we observed that the steps of the primal simplex algorithm

for the equal flow problem have a close resemblance with the steps of the primal

simplex algorithm for the minimum cost flow problem. The computational

requirements for the primal simplex algorithm for the equal flow problem are

slightly higher than for the minimum cost flow problem; but we believe that they

will be higher by not more than a factor of two. Since the primal simplex algorithm

for the minimum cost flow problem is known to be extremely efficient in practice,

we believe that the primal simplex algorithm for the equal flow problem will be

almost equally efficient.

17

3. PARAMETRIC ALGORITHMS

In this section, we describe the parametric algorithms for the equal flow

problem. These algorithms treat xR as a parameter instead of a variable. Recall

from Section 2 that the equal flow problem is a minimum cost flow problem plus

the additional variable xR. If we treat xR as a parameter, then the equal flow

problem becomes a minimum cost flow problem. Setting xR equal to X gives the

following minimum cost flow problem, which we refer to as P(X):

Minimize z(X) = cx + cR) (9;

subject to

x = b - dX,

0 < x < u.

The problem P(X) can be solved by any minimum cost flow algorithm.

a)

(9b)

(9c)

We

assume without any loss of generality that P(X) possesses a feasible flow for every

value of X in the range 0 < X < uR. Let x* (X) denote the optimal solution P(X) with

the objective function value as z* (). It is well known from linear programming

that z* () as a function of X is a piecewise linear convex function. The following

property is an immediate consequence of this result.

Property 3. Let z*(A*) = mintz*(l): O < A < uR} denote the minimum point on the

curve z*(A). Letx =A*.R Then the pair (X*R, x*(A*)) is an optimal solution of the

equal flow problem.

As an example, Figure 7 describes three possibilities for the function z* (X). In

Figures 7(a), (b) and (c), the function z* (X) achieves the minimum at the points X =

0, X = km, and X = ux, respectively.

i �II___

18

I
2TQ)

2 4 6 8 10=ul 1_

I
) 2

_ ~. ' 4 ' 6=u1

I \

(a) (b)

z*)

=U

(c)

Figure 7. Three possibilities for the function z*(X).

Property 3 implies the following general scheme to solve the equal flow

problem. Identify the minimum point k* of the curve (z(). Set x*R = *. Next

solve the minimum cost flow problem (9) with X = X* and determine the optimal

flow x (*). The pair (*, x (X,)) is an optimal solution of the equal flow problem.

In the following discussion, we describe four specific implementations of this

general scheme. They use different methods to identify the minimum point AL* of

the curve z* (). Whereas the parametric simplex algorithm described in Section 3.1

uses an adaptation of the parametric linear programming method to enumerate the

cost curve z* (), the combinatorial parametric algorithm described in Section 3.2

solves a sequence of shortest path problems to enumerate the curve z (X). Whereas

the binary search algorithm described in Section 3.3 uses binary search to locate the

minimum point of the curve z* (X), the capacity scaling algorithm uses the scaling of

arc capacities to locate the minimum point. We next describe these algorithms in

greater detail.

Iq . -

19

3.1 PARAMETRIC SIMPLEX ALGORITHM

The parametric simplex algorithm, whose detailed description can be found

in Srinivasan and Thompson [1972] and Ahuja, Batra and Gupta [1983], maintains

an optimal basic feasible solution of the minimum cost flow problem P(X). A basic

feasible solution of the minimum cost flow problem is denoted by a basis structure

(B, L, U), where B constitutes a spanning tree, L and U respectively denote the sets

of nonbasic arcs at their lower and upper bounds. Let XB, XL, and xU respectively

denote the partition of x with respect to the sets B, L, and U; and B, L, and U denote

the corresponding submatrices of the constraint matrix N The basic solution

associated with (B, L, U) for the problem P(X) is obtained by setting xL = 0, xu = uU

and solving

BxB= b -d - UxU. (10)

The parametric simplex algorithm determines an optimal basis structure of

P(X) at X = 0 by solving a minimum cost flow problem. It next determines the

largest interval (,) for the values of X for which this basis structure continues

to remain optimal; this interval is called the characteristic interval and the points X

and X are called the breakpoints. Let (B, L, U) be an optimal basis structure of

P(X) for all X e [,)X]. Let XB be the solution satisfying BXB = b - UuU and YB be

the solution satisfying BYB = -d. Observe that x* (X) = XB + X yB is the unique basic

feasible solution associated with the basis structure (B, L, U) for every X [, X].

The characteristic interval consists of all values of X satisfying the following

inequalities:

O < XB + YB < UB. (11)

At X = , one of the basic arcs, say arc (p, q), will have flow equal to its lower

bound or its upper bound. If flow equals arc's upper bound then xij + X Yij = ij or X

__s__al____s_________1___1__11___

20

= (uij - xij)/Yij, and if flow equals arc's lower bound then X = - xij/Yij. We next

perform a dual pivot operation which drops (p, q) from the basis, enters a nonbasic

arc into the basis, and obtains a new basis structure.

Observe that if b and u are integer, then XB and YB, as described above, are

also integer. Also observe that IYijl K for each arc (i, j) e B. It follows from these

observations that is a K-fractional number.

We now describe how to perform the dual pivot. Dropping the arc (p, q)

from B forms two subtrees and arcs in A with their endpoints in two different

subtrees constitute a cut. We define the orientation of the cut along arc (p, q) if arc

(p, q) is at its upper bound, and opposite to arc (p, q) otherwise. Let Q and Q ,

respectively, denote the sets of forward and backward arcs in the cut. For each arc (i,

j) in the cut, we define a number aij in the following manner: (i) aij = cij if (i, j) e

Q r L; (ii) xij = -Cij if (i, j) e Q nU; and (iii) aij = oo otherwise. Let akl =

max{aij: (i, j) e Q n Q }. We select arc (k,) as the entering pivot and perform a

dual pivot operation. We update the potentials nr. Let (B', L', U') denote the

updated basis structure. We call an iteration of the parametric simplex algorithm a

nondegenerate iteration if X <):, and a degenerate iteration if X = X.. We next

obtain the characteristic interval of (B', L', U'). We repeat this process until we

obtain an optimal solution of the equal flow problem.

We have observed earlier that each interval point of P(X) is a K-fractional

number. It is easy to observe that two distinct K-fractional number will differ by at

least 1/K2. This observation yields a bound of K 2uX on the number of interval

points, or the number of non-degenerate iterations performed by the parametric

simplex algorithm. However, due to the degenerate pivots, the total number of

pivots performed by the algorithm may be substantially more than K 2 u?. One can,

21

however, use linear programming cycle prevention techniques to ensure finite

convergence of the parametric simplex algorithm.

3.2 DETERMINING SLOPE OF P(X)

Using the fact that the interval points of P(X) are K-fractional numbers, one

can develop faster algorithms for the equal flow problem. Some of these algorithms

require determining the slope of the curve P(X) at specified values of X (that is, the

rate of change in P(X) as X changes). W e denote the slope of P(X) at point X by z+(X)

for increasing values of X, and denote the slope of P(X) at point X by z-(X) for

decreasing values of X. W e describe now how we can determine z+(X) (or, z'(X)) by

solving K shortest path problems. Recall that we denote by x*(X) an optimal of P(X)

and by z*(X) its objective function value. Let y denotes the rate of change in optimal

arc flows as X increases by an infinitesimal amount e. Observe that y is a solution of

the following linear programming problem:

Minimize cy (12a)

subject to

A= - d, (12b)

0 X*(X) + y E< u. (12c)

Now notice that since is an infinitesimally small quantity, any strict

inequality in (12c), will always be satisfied for finite values of y. In view of this

observation, solving (12) is equivalent to the following minimum cost flow

problem. With respect to the flow x*(X), define the network G* (X) as follows: (i) if x*

ij (X) = 0, then G* (X) contains the arc (i, j); (ii) if x*ij(X) = uij, then G* (X) contains the

arc (j, i), and (iii) if 0 < x*ij(X) < uij, then G* (X) contains both the arcs (i, j) and (j, i).

Each arc in the network G* (X) has infinite capacity. W e set the supply/demand of

each node i equal to -d(i). The optimal flow y in the network G* () gives the

22

optimal rate of change in arc flows as X increases and cy gives the slope z+(X) of the

curve z*(X). In case we need to determine the slope of G* (X) as X decreases, that is, z ~

(X), we solve (12) with Ny = d.

The minimum cost flow problem in G* (X) has integer supplies/demands,

and the sum of the node supplies is at most K (from Property l(d)). If we use the

successive shortest path algorithm (see Ahuja, Magnanti and Orlin [1993]) to solve

this minimum cost flow problem, then it will solve it in at most K applications of

Dijkstra's algorithm, because each augmentation will carry integer flow from a

supply node to a demand node. Using Fredman and Tarjan's [1984]

implementation of Dijkstra's algorithm, the successive shortest path algorithm will

take O(K(m + n log n)) time. Consequently, we can determine the slope z+(X) (or, z-

(X)) by solving at most K shortest path problems in O(K(m + n log n)) time. We

may point out that in the optimal flow y to (12), Yij is integer and its value is at most

K.

A byproduct of the above discussion is that we can determine by solving O(K)

shortest path problems whether a given value of X, say X0, is an optimal solution of

the equal flow problem. To do so, we determine z+(X) and z-(X0). If both of these

quantities are negative, then X0 is the optimal value of the parameter.

3.3 COMBINATORIAL PARAMETRIC ALGORITHM

The parametric simplex algorithm solves the minimum cost flow problem

z*(X) for increasing values of X, but due to the degeneracy it is not possible to obtain

a worst-case time bound on the running time of the algorithm. We now describe

an alternate algorithm that solves the equal flow problem in a pseudopolynomial

time.

Consider the optimal solution x*() of P(k) for some value of X . Let y(X

) denote the rate of change of flow vector as X increases and z'() denote the cost

23

of flow of this change. Then x*(k) + (X - X)y() will be an optimal solution of

P(X) with the objective function value z*() + (- X) z'(k) for all values of X for

which the following inequalities remain satisfied:

o < x*(X) + (X- X y() u.

(13)

Let [_, X] denote the interval for X for which all the inequalities in (13) are

satisfied. Observe that X > X), because the manner in which y(k) has been

computed allows X to be strictly increased. We next set X = X , and again

determine the rate of flow change y(k). We repeat this process until we obtain an

optimal solution of the equal flow problem.

Thus the above algorithm, which we call the combinatorial parametric

algorithm, can enumerate the cost curve z*(X) by determining the slopes of the
curve z*(X) at finitely many values of X. It is easy to observe that each point X

where z'(k) is enumerated is a K-fractional number, because both x*(k) and y(k

) are integer and each component of y(X) is at most K. Since there are at most O(K2

uX) K-fractional solutions in the interval [0, u, the combinatorial parametric

algorithm will perform at most O(K 2 u?) = O(K 2 U) iterations. Since each iteration

involves solving K shortest path problems and a shortest path computation

requires O(m + n log n) time, the algorithm will run in O(K3 U (m + n log n)) time.

3.4 BINARY SEARCH ALGORITHM

We can use the binary search technique to obtain a polynomial-time

algorithm for the equal flow problem. Figure 8 gives a description of the binary

search algorithm which determines the value of X for which the minimum cost

flow problem attains the minimum value. The algorithm uses a minimum cost

flow algorithm as a subroutine. The algorithm computes the optimal value of X,

�____Ls__l_·_______saj__l______^·_____

24

say ,*, for which z*(X) is minimum by performing binary search over the initial

interval [0, uj, which is halved in every iteration by solving a single minimum

cost flow problem. When the length of the interval is smaller than 1/K2 , then it

contains a unique K-fractional value of X and this is the desired value. We can then

solve a minimum cost flow problem to determine the optimal solution of the equal

flow problem. It is easy to see that this algorithm would solve O(K2 u) =

O(log(nU)) minimum cost flow problems.

algorithm binary-search;
begin

solve P(0) and compute z+(0);
if z+(0) > 0 then set)X: = 0 and STOP;
solve P(ux) and compute z-(ux);

if z(u.) 0 then set ,%: = 0 and STOP;

A: = 0 and XU: = ux;
while (u- k) > 1/K 2 do
begin

Xm: = (u+ ,1)/2 ;

solve P(X,) and compute z+(Xn) and z-(X;

if z+(X) < 0 then), := m

else if z(X < 0 then ku: = m

else set)*: = Xm and STOP;
end;
determine the unique K-fractional number

in the range [u - At] and set X* to this number;
end;

Figure 8. The binary search algorithm for the equal flow problem.

We summarize the discussion in this section as the following theorem.

Theorem 1. The binary search algorithm can solve the equalflow problem in O(m

log U) applications of any minimum cost flow algorithm.

�'�cn�LLl�ilDsePlieSsPslBBII�

25

3.5. CAPACITY SCALING ALGORITHM

We have shown in the last section that the equal flow problem can be solved

in O(log(nU)) applications of the minimum cost flow algorithm. This gives the best

time complexity to solve the equal flow problem for most classes of network

densities. We will next show that using a scaling technique, the equal flow problem

can be solved in O(m log(nU)) applications of any shortest path algorithm for

nonnegative arc lengths. Since this technique uses scaling of arc capacities, we call it

the capacity scaling algorithm. For some classes of network densities, the capacity

scaling algorithm obtains the best time complexity to solve the equal flow problem.

For convenience in exposition, we shall henceforth assume that in the

formulation (9), b = 0. This condition can be satisfied by converting the minimum

cost flow problem with nonzero supply/demand vector into a circulation problem

(which by definition has a zero supply/demand vector). This is accomplished using

the following well known transformation: we (i) introduce a new node s with b(s) =

0; (ii) add an arc (s, i) for each node i e N satisfying b(i) > 0 with usi = b(i) and csi = 0;

and (iii) add an arc (i, s) for each i e N having b(i) < 0 with uis = -b(i) and cis = 0.

The equal flow problem is to determine the value of for which the

associated minimum cost flow problem stated in (9) attains the minimum objective

function value. The capacity scaling algorithm determines this value of the

parameter by solving a sequence of approximate problems for different values of the

parameter , called -scaled problems. The -scaled problem solves the minimum

cost flow problem stated in (9) subject to the following two additional constraints: (i)

each arc capacity uij is replaced by uij() which is the greatest multiple of less than

or equal to uij (that is, uij() = Lu ij/ ; and (ii) the flow on each arc (including equal

flow arcs) is also an integral multiple of . Let z () denote the optimal objective

function value of the minimum cost flow problem for a specific value of X which

we require to be an integral multiple of . In other words, z (X) = Min cx, subject to

riBs�l��

26

Ax = d, 0 < xij < uij() and Xij = k for some nonnegative integer k. Figure 9 gives

examples of the curves z for two values of the parameter = 4 and 2. The -scaled

problem is to determine the value of X, say L , for which z (X) attains its lowest

value.

,*taM

A
100

Z

0

Figure 9. Illustrating the scaling technique.

The capacity scaling algorithm solves a sequence of -scaled problems. In the

first scaling phase, = 2[1og Ul; at this value of each arc capacity is zero and,

therefore, zero flow is an optimal flow with L = 0. In the next scaling phase, the

value of is decreased by a factor of 2, and the previous flow is reoptimized to

obtain an optimal solution of the modified problem. This process is repeated until

is less than 1/2K2.

Observe that when is less than or equal to one, then the capacity scaling

algorithm works with original arc capacities; and the approximation is only in the

choice of the parameter X which is restricted to take values which are integral

multiples of . At this point, the convexity of the curve z implies that the optimal

value of the parameter X lies in the interval [L - , L +]. Consequently, each

subsequent scaling phase obtains a tighter bound on the feasible values of the value

X. Finally, when drops below 1/2K2 , the interval [L - , L +] contains a unique

K-fractional number and this is the desired value of the parameter.

" BiIBO~~~~--- -- ^~ - - - · - - -~ -

27

To show that how we can reoptimize the solution of a scaling phase to obtain

the solution of the next scaling phase, we need the following result.

Property4. L eL 2 - ,L 2, L2 + }.

Proof. This property implies that there exists an optimal solution of the -scaled

problem which is either L2 - or L2 or L2 + . This property is easy to observe

using the convexity of the functions z and z2 ; and (ii) that the two functions have

common points for all X = k(2) for all nonnegative integer k.

This property implies that when the value of is halved, we need to

consider only three values of the parameter X to identify the lowest point of the

curve z (X). The curves z () and z2 () coincide at the point = L 2 ; thus we need

not evaluate the function value of z () at this point since we already know it. W e

will now explain how to evaluate z () for X = L 2 + . To do this, we use the ideas

contained in the capacity scaling algorithm for the minimum cost flow problem

whose description can be found in Ahuja, Magnanti and Orlin [1983]. Let x ° denote

the optimal flow corresponding to z () for X = L2 . When we increase X by

units, and try to resolve (14), then the solution x continues to satisfy the

optimality conditions, but might violate the mass balance constraints because the

new right-hand side vector changes from L2 d to L2 d + d. With respect to the

modified right-hand side vector, the flow x° will have excesses or deficits at nodes.

Property 1 implies that the node excesses/deficits will be multiples of and the

total excess (or, total deficit) is bounded by m . The mass balance constraints can be

satisfied again by sending flow from excess nodes to deficit nodes along shortest

paths. Each such augmentation carries flow which is a multiple of , and after at

most m augmentations, we restore mass balance constraints and the resulting flow

is an optimal solution of (9) with X = L2 + . The method for evaluating z (X) for

X = L2 - is similar; the difference is that the new right-hand side vector changes

from L2 d to L2 d - d. Finally, we take the minimum of z (X) for the three values

i�i�IC�sslr^^a�-------------------------

28

X = L2 - , L 2 , and L2 + , and L is set to the value for which the minimum is

attained.

W e can now determine the worst-case complexity of the capacity scaling

algorithm for the equal flow problem. The previous discussion shows that we can

perform a scaling phase by solving at most m shortest path augmentations. Each

such augmentation can be done in O(m + n log n) time using Fredman and

Tarjan's [1984] implementation of Dijkstra's algorithm. In the first scaling phase,

= 21og Ul, and after O(log KU) = O(m log U) scaling phases becomes less than

1/2K2 and the algorithm terminates. The overall running time of the algorithm is

O(m(m + n log n) log U). We state this result as a theorem.

Theorem 2. The capacity scaling obtains an optimal solution of the equal flow

problem in O(m(m + n log n) log U) time.

4. INTEGER FLOW PROBLEMS

So far in this paper we have allowed the optimal solution of the equal flow

problem to be non-integral. In some situations, however, we may like to obtain an

integer optimal solution of the equal flow problem. W e will refer to this problem

as the integer equal flow problem. In this section, we will describe methods to

solve the integer equal flow problem.

In the integer equal flow problem, we want to determine an integer value of

X for which P(X) defined by (9) attains the lowest value. Suppose that X* denotes

the optimal value of the parameter X for which the (real-valued) equal flow

problem attains the lowest value. It follows from the convexity of the curve P(X)

that if X* is non-integral, then either L*J or [x*] is an optimal value of the

parameter for the equal flow problem, depending upon whether z* (L) z ([* l)

or vice-versa. Consequently, if we know the optimal solution of the equal flow

'�·r�---------�II---------�

29

problem, then we can determine the optimal solution of the integer equal flow

problem by solving two minimum cost flow problems.

An alternate way to solve the equal flow problem would be to slightly

modify the algorithms for the equal flow problem described in Sections 3 and 4, so

that we directly get a solution of the integer equal flow problem without any need

to solve two minimum cost flow problems. The parametric simplex algorithm and

the combinatorial simplex algorithm enumerate the entire cost curve z(X) for

increasing values of X until the slope of the curve z(X) goes from non-positive to

non-negative. Suppose that it happens at X = X*. To solve the integer equal flow

problem, we go a little further upto [x* 1. Comparing z* ([L* J) with z* (R[* 1) will

give us the optimal solution of the integer equal flow problem.

Next consider the modifications in the binary search algorithm. While

applying the binary search algorithm, we restrict attention to integer interval

points only (which we can accomplish by setting Xm : = L(X + X)/2J and

terminating the algorithm when the length of the search interval becomes less

than one. To adapt the capacity scaling algorithm for the equal flow problem, we

apply it until 1/2, at which point the interval [L - , L +] contains a unique

integer which must the optimal value of the parameter X. Finally, let us consider

the modifications needed for the primal simplex algorithm for the equal flow

problem. We first solve the real-valued equal flow problem by the primal simplex

algorithm. Let X"* denotes the optimal flow on the equal flow arcs. We can then

perform the sensitivity analysis on X to decrease it first to [L*] and then increase it

to [X*], and choose the solution with the smaller objective function value.

5. PROPORTIONATE FLOW PROBLEMS

We have so far assumed that the flow on every arc in the set S must be the

same. In some situations, however, we may allow the flow on arcs not to be exactly

�I� ��I��_

30

equal but proportionate to one-another. For example, we may specify that xij = aijX

for each arc (i, j) e S, where aij is a prespecified constant for every arc and X is a

decision variable. We refer to this problem as the proportionate flow problem.

All of our algorithms for the equal flow problem can be easily modified to solve

the proportionate flow problem if aij are constants. Let [= (i, j)eR ij We state

without proof that there exists an optimal solution of the proportionate flow

problem which is -fractional. Using this result, it can be shown that the binary

search algorithm can solve the proportionate flow problem by solving O(log(f3U))

minimum cost flow problems, and the capacity scaling algorithm can solve the

proportionate flow problem by solving O(m log(PU)) shortest path problems.

ACKNOWLEDGEMENTS

This research was partially supported by the Office of Naval Research under

Contract No. N00014-96-1-0051, as well as a grant from the United Parcel Service.

REFERENCES

Ahuja, R. K., J. L. Batra, and S. K. Gupta. 1983. The parametric network feasibility

problem. Cahiers du Centre d'Etudes de Recherche Operationnelle25, 13-22.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, 1993. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, Inc., NJ.

Ali, A. I., J. L. Kennington, and B. Shetti. 1988. The equal flow problem. European

Journal of Operational Research 36,107-115.

Beck, P., L. Lasdon, and M. Engquist. 1983. A reduced gradient algorithm for

nonlinear network problems. ACM Transactions o n Mathematical Software

9, 57-70.

~~~~~~I~~~~~~~~~~_~~~~~~~~~~~~~~~ __ __ __ _ ~ ~ ~ ~ ~ ~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~--- 



31

Carraresi, P., and G. Gallo. 1984. Network models for vehicle and crew scheduling.

European Journal of Operational Research 16,139-151.

Fredman, M. L., and R. E. Tarjan. 1984. Fibonacci heaps and their uses in improved

network optimization algorithms, Proceedings of the 25th Annual

Symposium on Foundations of Computer Science, pp. 338-346. Fullpaper in

Journal of ACM 34(1987) 596-615.

Grigoriadis, M. D. 1986. An efficient implementation of the network simplex

method. Mathematical Programming Study 26, 83-111.

Kennington, J. L., and R. V. Helgason. 1980. Algorithms for Network

Programming. Wiley-Interscience, New York.

Sechi, G. M., and P. Zuddas. 1987. Data management for extended multi-period

analysis of water resource systems. Presented at 11th International

Federation of Operations Research Societies Conference (IFORS'87), Buenos

Aires, Argentina.

Sechi, G. M., and P. Zuddas. 1995. A large scale water resources network

optimization algorithm. Proceedings of the International Conference on

Optimization ICOTA'95, Chengdu, China.

Shepardson, F., and R. Marsten. 1980. A Lagrangian relaxation algorithm for the

two-duty period scheduling problem. Management Science 26, 2274-2281.

Simeone, B. 1974. A network flow model for water resources management.

Annual AIRO Meeting, Rome, Italy.

Srinivason, V., and G. L. Thompson. 1972. An operator theory of parametric

programming for the transportation problem. Naval Research Logistics

Quarterly 19, 205-252.

_ �r�l� _ P___________II______CII__________II__�__



32

Turnquist, M., and C. Malandraki. 1984. Estimating driver cost for transit

operations planning. Joint National Meeting of ORSA/FIMS, Dallas.


