A Methodology for Demand Learning
with An Application to the Optimal
Pricing of Seasonal Products

by

Gabriel R. Bitran
Hitendra K. Wadhwa

WP #3898-96 April 1996



A Methodology For Demand Learning
With An Application To The Optimal Pricing Of Seasonal Products

Gabriel R. Bitran®
Hitendra K. Wadhwa**

MIT Sloan School of Management

April, 1996

Abstract

Retailers who sell seasonal products often suffer substantial losses due to the mismatch between
supply and demand caused by demand uncertainty, supply inflexibility and the short sale season.
A major source of the retailer’s demand uncertainty is often the lack of information about how
attractive the product will be to customers, and in such cases the sales observed over the course
of the season help to provide this crucial information. In this paper, we describe a modeling
approach for using observed sales data to update demand information over time, and show how
this can be embedded in an optimal dynamic pricing model for seasonal products. Our technique
utilizes the Bayesian approach commonly employed in dynamic learning models such as inventory
models that incorporate demand learning. It is distinguished from existing approaches, however,
by its ability to address important sources of non-stationarity in the demand distribution, such as
price changes and changes in customers' values for the product over time. We present results from
some preliminary computational tests which indicate that the methodology is effective in
estimating demand under a range of conditions. They also suggest that the incorporation of
demand learning can lead to swift price corrections early in the season, and that this can
substantially improve revenues in the seasonal product pricing context. In addition, the
computational results provide insights into the nature of optimal dynamic pricing strategies in
situations of over- or under-estimation of demand.
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1. INTRODUCTION

Pricing Of Seasonal Products

Retailers who carry seasonal merchandise, such as summer wear or ski equipment, often have to
place orders for these items much in advance of the sale season. Once the initial order is placed,
they often have limited, if any, flexibility in placing reorders. In addition, such merchandise is only
in demand at the stores during the season, and is therefore liquidated by the retailers at highly
discounted prices at the end of the season through clearance sales, sales in outlet stores and bulk
sales to discount merchandisers. Since the demand for the merchandise is not predictable at the
order time, retailers may be left with an excess or shortage of merchandise as the sale season
progresses. These mismatches between supply and demand can be very costly to retailers due to
the forced markdowns and stockouts that result from them.

The U.S. apparel industry provides a good example for our discussion. According to one study
(Frazier, 1986), the cost to retailers for forced markdowns and stockouts equal about 8% and 6%
of net retail apparel sales. A retail industry journal (Stores, Dec. 1994) reported that the costs to
apparel retailers in the U.S. for mismatches between supply and demand amounted to $25 billion
in 1993. A number of efforts have been made by apparel manufacturers and retailers under a
movement called Quick Response to address this problem. These efforts have primarily focussed
on improving the timely flow of information and goods between different nodes in the apparel
supply chain, leading to shorter production and distribution leadtimes that allow production and
procurement decisions to be made closer to the start of the sales season. This facilitates more
informed decision making and thereby reduces the risk of demand misestimation. Hammond
(1990) provides an overview of the Quick Response movement. Related to Quick Response is an
approach for demand estimation and production planning called Accurate Response (Fisher and
Raman, 1994, Fisher et al, 1994).

One area of retail merchandise management that complements Quick Response strategies is the
dynamic pricing of the product by the retailer over the course of the season. Often a substantial
amount of demand uncertainty is still present once the final ordering decision has been made for
the season, and so the pricing decision provides the retailer with an important mechanism through
which to ultimately minimize the supply-demand imbalance over the course of the season.

Gallego and Van Ryzin (1994) and Bitran and Mondschein (1993, 1995) have recently formulated
analytical models of this problem and studied the behavior of optimal pricing policies over time.

Demand Learning

The demand uncertainty faced by the retailer can be separated into two components. One source
of the uncertainty is often the lack of information about how attractive the product will be to
customers. This lack of information often constitutes a major source of uncertainty, particularly
in the case of products such as fashion goods, where styles change every season. Sales observed
during the course of the season can in such cases provide valuable information about market
conditions. This sales-driven demand learning allows retailers to refine their demand forecasts
and alter prices accordingly over time. In some situations where Quick Response strategies have
helped to reduce production lead times substantially, retailers may also be in a position to use



early sales information to place a second, and final, order for the product. For instance, two
leading retailers, The Limited and Benetton, test market products in a few representative outlets
in their chains early in the season and use the resulting demand information to determine the right
quantities to order for the rest of the season (Hammond, 1992).

The second component of the uncertainty consists of unpredictable factors, such as the weather,
and store traffic. Note that while the first component of uncertainty (related to the lack of
information on product attractiveness) is resolvable through sales observations, the second one is
not.

A realistic dynamic pricing model for seasonal products needs to incorporate a mechanism for
demand learning in order to allow sales observations to be used to resolve the first component of
demand uncertainty identified above. Existing dynamic pricing models (such as those developed
by Gallego & Van Ryzin and Bitran & Mondschein) have not considered the possible correlation
in demand over time, and therefore could not be used to explore the potential for demand
learning. In this paper, we describe a modeling approach for using observed sales data to update
demand information over time, and show how this can be embedded in an optimal dynamic pricing
model. Our technique utilizes the Bayesian approach commonly employed in dynamic learning
models such as inventory models that incorporate demand learning. It is distinguished from
existing approaches, however, by its ability to address important sources of non-stationarity in the
demand distribution, such as price changes and changes in customers' values for the product over
time.

In addition to a description of the methodology, we present results from some preliminary
computational tests based on representative data. These results indicate that the methodology is
effective in estimating demand under a range of conditions. They also suggest that the
incorporation of demand learning can lead to swift price corrections early in the season, and that
this can substantially improve revenues in the seasonal product pricing context. In addition, the
computational results provide insights into the nature of optimal dynamic pricing strategies in
situations of over- or under-estimation of demand and in situations where prices are required to
be non-increasing over time.

The remainder of this section discusses the demand model on which our demand learning
methodology is based and the optimal pricing model within which we have embedded it, and
comments on the other sections in this paper.

Demand Model

We use the demand model developed by Bitran and Mondschein (1993, 1995). The entire sales
season is divided into T discrete periods. We assume that for each period there is a reservation
price distribution associated with the customer population. Customers in each period arrive at the
store in the form of a Poisson process with an arrival rate that is known to the planner, and that is
independent of price. (These assumptions are based on the following observations. While demand
for individual products may be highly unpredictable, the volume of customer arrivals in retail
outlets such as department stores follows a much more stable pattern. There are, however,
random variations in the number of store arrivals in any period, and these variations are modeled



through the Poisson arrival process. This arrival process may have different rates in different time
periods to reflect periods of high and low store traffic. Also, with the exception of a few
advertised products, arriving customers are usually un-informed about specific product prices).
Each store arrival is drawn randomly from the reservation price distribution. A store arrival is
assumed to purchase the product if the price of the product is not larger than its reservation price.
As observed by Bitran and Mondschein, for any given price p and any period t, the resulting
distribution of the number of purchases in period t at price p is itself a Poisson distribution. This
result will be stated in more technical terms later in this paper. A more substantive discussion of
this demand model can be found in Bitran and Mondschein (1995).

The demand model described above incorporates two sources of uncertainty - the number of store
arrivals in any period (which is a Poisson process) and the "maximum willingness to pay" of the
arriving customers (which are random samples from the reservation price distribution). These
sources relate to the second (unresolvable) component of demand uncertainty discussed above. In
this paper, we extend the demand model by introducing a third source of uncertainty related to the
retailer’s lack of information about how attractive the product is to the customer population. This
source relates to the first (resolvable) component of demand uncertainty discussed above. We
assume that there is some parameter of the reservation price distribution that is unknown to the
retailer at the beginning of the season. This parameter is revised at the end of each period based
on observed sales in that period.

Optimal Pricing Model

We utilize and extend the discrete-time optimal pricing model developed by Bitran and
Mondschein (1993). (We will term this the basic optimal pricing model, to distinguish it from the
extended model that we develop in this paper to incorporate demand learning.) There are T
discrete periods in the season, and the retailer has a fixed stock of the product at the beginning of
the season. Price revisions are allowed only at the beginning of each period. Product value at the
end of the planning horizon is taken to be zero. (Our methodology is also applicable when there
is a salvage value function at the end of the last period, and our results and conclusions should
remain valid as long as this function is concave.) The retailer’s objective is to maximize the
expected revenues over the planning horizon. Product cost is assumed to be a sunk cost, and is
therefore not incorporated in the model. The resulting optimal pricing problem is formulated as a
stochastic dynamic program, with the stages corresponding to the different time periods and the
state in each period being the inventory level of the product at the start of the period.

To incorporate demand learning in the above model, we include two additional variables in the
state space that allow us to transfer demand information from one period to the next. The
resulting increase in the state space of the dynamic program can in certain cases effect the
computational time in a significant manner, and we have developed a heuristic solution approach
to the dynamic program that runs very efficiently. This heuristic has performed very well in the
computational tests performed by us, as reported later in this paper.

The rest of this paper is organized as follows. Section 2 provides a review of the literature related
to our work, and Section 3 describes our demand learning methodology under various demand
conditions. Section 4 defines the basic optimal pricing model and shows how the demand learning



technique can be embedded in the model. Section S presents computational results and draws
certain conclusions and insights from them. Finally, in Section 6, we summarize the key
contributions made by our research and present further research issues arising from it.

2. LITERATURE REVIEW

Our research relates to the literature on dynamic demand learning in the context of inventory
management. We present a brief review of this research below, and then comment on two recent
contributions to the topic of seasonal product pricing that were cited in Section 1.

Demand learning models

The issue of dynamic demand learning has been studied by many researchers in inventory control
contexts. A number of them involve the application of a Bayesian approach to incorporate
demand learning in a periodic review stochastic inventory model. We describe this Bayesian
learning approach - in the inventory control context - below and then briefly discuss some specific
work in this area. We then cite some addition work on modeling demand learning that is not
based on the Bayesian approach.

The periodic review stochastic inventory problem with demand learning is typically formulated as
a dynamic program. Demand in any period is assumed to be a random variable with a distribution
function that has an unknown parameter, say a. The planner is expected to specify a prior
distribution on o.. After each time period, the observed demand is used to revise the prior into a
posterior distribution through the application of Bayes' rule. The prior is required to be conjugate
to the demand distribution, thus allowing the posterior to be calculated in a simple manner. A
parameter that summarizes the posterior distribution is included in the state space of the dynamic
program so that the updated demand information is passed on from one period to the next. A
second variable in the state space is the current inventory level.

Some researchers (Scarf, 1959, 1960, Azoury, 1979, 1985) have identified conditions under
which the Bayesian model can be reformulated as a dynamic program with a single state variable
that incorporates information both on the current inventory level as well as on the observed
demand from past periods.

Murray and Silver (1966) present an inventory model for style goods where the number of
potential buyers in each period is known. Each of these buyers purchases the product with
probability p, and this probability is unknown at the start of the season. The authors assume a
beta prior on p, which is revised over time as demand is observed. The price of the product is
assumed to be fixed throughout the season. The paper contains an interesting discussion of a
‘state aggregation’ procedure to help decrease the computational requirements of the resulting
model.

Popovic (1987) presents an inventory control model with demand learning where the demand
distribution is non-stationary. He uses a Bayesian approach with demand modeled as a Poisson
distribution whose arrival rate is unknown and changing over time. The arrival rate A; at time t is



modeled as A, = A(k+1)t", for some known positive integer k and some unknown A . By assuming
a gamma prior distribution on A, the author shows how the Bayesian approach could be applied to
the problem.

An alternative Bayesian learning model has been proposed by Chang and Fyffe (1971). The
authors consider demand over a season consisting of T periods. Aggregate demand for the
season is represented through a random variable, D, which is assumed to be normally distributed
with an unknown mean p and variance v. The demand in any period t is assumed to be of the
form d, = D s, + X;, where v, is the estimated proportion of the aggregate season demand that falls

T
in period t (so that %'s, = 1), and X, is a noise term that is independent of D and the other Xj's and
t=1

is distributed normally with zero mean and variance v,. Both s; and v, are constants that may be
computed using historical data. As demand is observed, the distribution of D is updated through
an application of Bayes’ rule, leading to revised forecasts for sales in each time period through the
above equation. This model of demand has been used by Crowston, Hausman and Kampe (1973)
in a multistage production planning context.

Iyer and Eppen (1995a, 1995b) describe a methodology in which demand in each period is
assumed to be based on one of a set of 'pure demand processes'. The actual underlying demand
process is unknown to the user, and a (discrete) prior distribution is defined over the set of
demand processes. This prior is updated after each demand observation using Bayes rule. The
demand processes are required to satisfy certain conditions that allow the demand learning
process to be embedded in a dynamic optimization model in an analytically convenient fashion.
Among the demand processes that meet these conditions are the normal, negative binomial and
Poisson.

Hausman (1969) shows that under certain circumstances, the ratios of successive demand
forecasts can, as a first approximation, be treated as independent random variables distributed
according to the lognormal distribution. Based on his observations, some researchers have
studied the problem of demand forecasting for style goods by making a markovian assumption on
demand under which the demand D in period t is related to past demand only through the demand
D in the last period. Hausman and Peterson (1972) use this approach in studying a multiproduct
problem.

All the models discussed above suffer from one key limitation that prevents us from utilizing their
approaches in our setting - they assume that there is no price change affecting demand over time.
Incorporating this non-stationary price behavior in a Bayesian learning framework is a key
contribution of this paper to the literature on demand learning.

Recently, Smith et al (1994) have presented a two-stage sales forecasting methodology that
models demand as a function of price and a combination of other marketing and environmental
factors. The parameters of the model are first estimated through regression analysis using
historical data. In stage 2, the key parameters of this model are updated through a discounted
least squares procedure.



Dynamic pricing models

Gallego and Van Ryzin (1994) and Bitran and Mondschein (1993,1995) have recently developed
and analyzed models for dynamic pricing of seasonal products. While-Gallego and Van Ryzin
have developed a continuous-time model, Bitran and Mondschein have used both discrete- and
continuous-time frameworks. The models by Gallego and Van Ryzin and Bitran and Mondschein
(1993) allow for prices to be altered freely (both upwards and downwards) over time. These
models assume that the merchandise can only be ordered once before the start of the sales season,
with no reordering capability during the season. Gallego and Van Ryzin model demand as a
Poisson process where the arrival (more appropriately, 'purchase’) rate at time t depends on the
price at time t. Bitran and Mondschein model price in a two-phased manner. They consider a
Poisson process based store arrival distribution, which is independent of the product price, and a
reservation price distribution for the product that determines the fraction of arrivals that will
purchase the product at any given price. This demand model appears to be a more behaviorally
appealing representation of the store purchase process. The authors show, however, that this
model is actually equivalent to one with a price-dependent Poisson purchase process.

We have chosen to base our optimal pricing model on the model that was formulated by Bitran
and Mondschein (1993), and we will term this as the basic pricing model in this paper. This
model will be presented in technical terms in Section 4. We have chosen a discrete time
framework since we believe it is more representatiive of actual retail pricing contexts. In their
1995 paper, Bitran and Mondschein focus on a version of the basic pricing model where the price
is required to be non-increasing over time. While we do not discuss this issue specifically when
describing our demand learning methodology, our approach can be extended to this context in a
straightforward manner, and in the computational results section, we present some test results
based on this version of the model.

Gallego and Van Ryzin present two single-price heuristics for their model and show that these
heuristics provide asymptotically optimal price policies (as the level of initial inventory or the
length of the time horizon approaches infinity). They present results of computational tests that
suggest that these heuristics provide near-optimal solutions. The test problems, however, are
based on the following assumptions:

1. The purchase arrival distribution at any given price is stationary

2. The retailer knows the purchase arrival rate at any given price accurately

In actual retail environments, these assumptions are likely to be violated. The purchase arrival
distribution at a given price may change over time due to changes in the customer mix and
changes in customers’ values for the product, and the retailer may have very limited information
about how attractive the product is to customers’ at the beginning of the season. Wadhwa (1996,
Chapter 3) shows that if the first assumption is violated, a single-price heuristic may not be
expected to perform well, and provides an alternative heuristic that can be efficiently implemented
and that provides near-optimal solutions. In this paper, we show that if the second assumption is
violated, a single-price heuristic may again not perform well. By incorporating our demand
learning technique in Bitran and Mondschein’s (1993) pricing model and applying the heuristic
solution technique developed in Wadhwa (1996, Chapter 3), we develop a fast heuristic solution
scheme that provides substantially improved performance.



3. DEMAND LEARNING

In this section, we describe our demand learning methodology in the context of the demand model
discussed in Section 1. We assume that the store arrival rate in each period is known, and that the
reservation price distributions are all functions of an unknown parameter 8. For instance, such a
distribution may be exponential, with cumulative distribution function given by F(r) =1 - €7,
where the mean of the distribution is 1/8 and § is the unknown parameter.

Our goal is to utilize observed sales data to update the value of this parameter 6 from one period
to the next. Our methodology is an extension of the standard Bayesian learning technique. The
Bayesian approach applies to a context where we get observations from the same distribution
over time and use these to update our information (represented in the form of a prior distribution)
on some unknown parameter of that distribution. We have found it necessary to seek an
extension to this approach since in our case the demand distribution (from which the demand data
is observed) changes from one period to the next, due, primarily, to changes in price. The
Bayesian approach utilizes both the planner’s initial estimate of demand and the observed sales
data to revise the demand forecast. This is in contrast to alternative statistical estimation
approaches such as MLE (maximum likelihood estimation), where only the observed sales data is
utilized. As the volume of sales data grows, however, the planner’s initial estimate has a
progressively smaller impact on the demand estimate calculated using the Bayesian approach, and
the Bayesian estimate becomes very similar to the maximum likelihood estimate (Hines and
Montgomery, 1980, pg. 579). We have chosen to utilize the basesian approach since we believe
that in actual applications it would be important to capture both the planners’ initial judgement as
well as the initial sales data in arriving at an accurate and robust estimate of demand during the
early part of the season.

The discussion below is organized as follows. We first describe the Bayesian approach to demand
learning under the assumption that the price, the store arrival rate, and the length of time periods
stay constant (Case 0). The stationarity assumptions are then pealed away one by one. We
describe how the methodology can be extended to allow for price changes from one time period
to the next (Case 1), and then show how non-stationary store arrivals can be incorporated (Case
2). Finally, we describe a way of incorporating changes in the reservation price distribution over
time (Case 3). At various points in the discussion, we illustrate our approach by using the
example of the exponential reservation price distribution mentioned above. Examples of more
general reservation price distributions to which our approach can be applied are provided at the
end of this section.

We assume for now that:
e The Poisson store arrival rate A, is constant (= A) across all time periods
o The reservation price distribution Fy(.|3) is constant (= F(.|3)) across all time periods.

As discussed earlier, and stated later in Lemma 4.1, the purchase distribution at price p in time
period t can be shown to be a Poisson distribution with the arrival rate A(p|d). Thus the purchase
arrival rate A(p|6)=A«(1-F(p|8)) may be written simply as A(p|d) for all time periods under the



above assumptions. Note that A(p|3)=A(1-F(p|3)). We have explicitly shown the dependence of
F, F, A, Ay on 8. Due to its dependence on the unknown parameter 5, the purchase arrival rate
(for each price level p) is not known to the planner a priori. Instead, this rate is a random
variable, which we will denote by A(p). Utilizing the Bayesian approach, we assume that the
planner initially has a family of prior distributions on A(p), one for each price p, which will be
updated at the end of every period (t=1, 2, ...T) through the incorporation of observed demand
data. Note that the prior distribution is not on &, the unknown parameter, but on A(p), the
unknown arrival rate at price p (in fact, there is one such distribution for each price p). The priors
are illustrated in Figure 3.1.

No uncertainty about res. price dist. Uncertain res. price dist.

Purchase -l Gamma priors on A(p)
Arrival
Rate Purchase
Mp) A I:> Arrival +

Rate

Mp)

Price P P2 ;’3
Price -
Figure 3.1

It would be more natural to consider a prior distribution on the unknown parameter & directly.
However, such an approach does not allow for a computationally and analytically convenient way
to perform Bayesian updates on the prior distribution over time, primarily since the observed data
does not consist of samples from the reservation price distribution.

We assume that the following condition holds:
Condition 3.1: The function F(p|) is invertible in & for each price p.

This condition implies that for any given value A of A(p), the equation A = A(1-F(p|d)) has a
unique solution in 3. Note that the exponential distribution ( with § = 1/mean) satisfies Condition
3.1.

Case 1. Constant price
If the price p were held constant over time, this Bayesian updating of the prior distribution would
follow by a straightforward application of Bayes’ rule, as described below:

Suppose we enter period t with a prior distribution f,(A) on A(p), and we observe a demand of n
units in this period at price p. The posterior distribution on A, f,(A| n), can then be calculated by
using Bayes’ rule as follows:

P[Demand = n|A]- £, (1) A )
£,(Mn) = M = ol
[ PDemand = n|x]-£,(x)dx  [£ nj‘ £,(x)dx
0 o U



The last equation follows from the fact that the demand distribution is Poisson, as mentioned in
Section 1 and discussed further in Section 4. The revised distribution f;(.|n) will now represent
the prior distribution for demand in period t+1, and the updating process will repeat itself. _

For the updating process to be computationally feasible, one would need to devise a way of
efficiently computing the posterior distribution. This can be achieved by starting the process with
a prior that belongs to the family of conjugate distributions for the Poisson. One such conjugate
for the Poisson is the two-parameter gamma distribution. The gamma includes a wide range of

a

a-1 —bx
X e where a
I'(a) ’

> 1 and b > 0 are the parameters of the distribution. When the prior f;(.) is gamma with
parameters (a,, by), the posterior can be shown (DeGroot, pg. 323) to be given by

( bp + 1)a,,+n
r(ap + n)
calculation of the posterior distribution is reduced to simple parameter updates for a, and b,.

distribution forms over [0, ), and its density function is given by g(x) =

fo(AMn) = x#*1 e b*)x  which is gamma with parameters a, +n, b, +1. Hence the

Case 2. Varying prices

Our discussion above has assumed that the price remains fixed from one period to the next. We
now need to include a mechanism that will allow us to use observed demand data at price p to
learn about demand at any other price p*.

As in the above discussion, we will require that, for each price p, the prior distribution on A(p) is
gamma with parameters (a,,b,). In order to use demand observations at a certain price p to
update the prior distribution for the purchase rate at another price p*, we will connect together
the parameters (a,,b,) of the gamma priors on A(p) across different prices p. This will facilitate
the updating of the parameters (a,+, by+) whenever we update the parameters (a,,bp). Since there
are two parameters (a,,b,) for each price p, we need two equations to link them together across p.
We will derive these two equations by defining two desirable properties that should be satisfied by
these parameters.

The first property is the expected purchase rate E[A(p)] (under the prior distribution for
AM(p)) should have the same form across p as the true underlying value of A(p), i.e,

E[Mp)]=A(1-F(p|3)), for some § that is independent of p

Since the mean of a gamma (a,,b,) distribution is given by a/b, this implies that
a/b, = A(l- F(p|8)), for some & that is independent of p (P1)

The second property is that the coefficient of variation of the gamma (a,,b,) distributions
should be independent of p, i.e.,

1/a, = S for some S that is independent of p P2)

We now discuss the motivation that underlies properties (P1) and (P2). These properties limit the
families of prior distributions {gamma((a,,b,) for all prices p} on A(p) that we are allowed to

10



consider. For instance, consider the set of means {ay/b, for all prices p} for one such family of
prior distributions. The mean value a,/b, could in principle vary as a function of p in an almost
arbitrary manner. Property (P1) requires that this value in fact should vary as a function of pin a
specific way. Let the actual underlying value of the unknown parameter be & =8;. Then we have
M(plSo) = A(L-F(pl,)) for all p.
In the current situation, where & is unknown, it is reasonable to take the mean a,/b, of the
purchase rate distribution as an estimate of the purchase rate at each price p. Then, motivated by
the previous equation, we require that there exists a 8 value such that

ay/b, = E[M(p)] =A(1 - F(p|3)) for all p.
This is property (P1). The associated § value itself may be taken to represent our present estimate
of 8o. Property (P2) is based on the following motivation: for any price level p, the coefficient of
variation of the gamma (a,,b,) distribution reflects the level of uncertainty of the planner with
respect to the arrival rate A(p). Property (P2) states that this level of uncertainty does not vary
with price. Alternative versions for this property could also be used. For instance, if the planner's
level of uncertainty about demand was much greater for some 'medium’ range of prices, but much
lower for some extreme (low or high) range of prices, property P2 could instead be defined as
1/a, =S/ (p-m)” for some constants S, m.

These equations allow us to link together the (a,, b,) parameters across p. If we know the values
of a,, b, for some price p, we can calculate the values of a,, by« for some other price p* using
equations (P1) and (P2) as follows. First, we use (P1) and (P2) with price p to calculate the
values for 8 and S. Then we use these values of § and S, along with price p*, to calculate (a,»,
by+). Note that equation (P1) will yield a unique value for & because of Condition 3.1.

To illustrate, suppose the reservation price distribution was exponential, as described
above. Properties (P1) and (P2) can be written in this case as:

a/b, = Ae™ (P1 - Exp)
1/a, =S (P2 - Exp)

Suppose, at any time, we had the parameters (a,, by) and wanted to determine the parameters (a,»,
by). First, we would calculate § and S from the above equations, as follows:

& = -(1/p)log(ay/Aby), S=1/a,

We would then use equations (P1-Exp) and (P2-Exp) to calculate (a,+, by+) using these values of S
and d, as follows:

ar=1/S,  be =1/SAe*

We observe that, given properties (P1) and (P2), information about the prior distributions for all
price levels p is completely contained in the pair of parameters (5,S). We therefore term these the
‘linking’ parameters, and it is these parameters that will get revised from one time period to the
next. They would also need to be initialized by the model user, and these initial values would
reflect the initial state of knowledge of the planner. Thus, in the exponential reservation price
distribution case, 8y (the initial value of 8) would reflect the best estimate of the inverse of the

11



distribution mean, and S, (the initial value of S) would reflect the initial degree of uncertainty
associated with this estimate. They would then get revised over time in the following manner:
Suppose we are in period t, and the current values of the linking parameters are 8 and S. Suppose
the price in period t is p, and we observe a demand of n units in period t. We would first calculate
the parameters (a,, bp) for the prior on A(p) based on equations (P1) and (P2) using the values §
and S for the linking parameters. Next, this prior distribution would be updated in the standard
Bayesian manner on observing the demand. This would yield a posterior distribution on A(p) with
parameters (a, +n, b, +1). The revised values for § and S would then be recalculated from
equations (P1) and (P2) using these updated values for (a;, b,). This process is outlined in Figure
3.2.

Bayesian updating process under varying prices
Initialize
* 8, (unknown parameter)
* S, (sq. coeff. of var. for priors)

Given a price p

» Determine (a,,b,) using properties (P1), (P2)

» Observe demand =n

* Revise parameters: 8, =a,+n, b, =b, + 1

» Determine revised values of  and S using the properties (P1), (P2)

Move to next time period

Figure 3.2

Case 3. Non-stationary store arrivals

We now consider the case where store arrival rates are not constant across time periods. The
purchase rate now depends on the period under consideration in addition to the price, and so we
denote it as A(p|0). Note that A(p|d) = A«(1-F(p|5)), where A, is the store arrival rate in period t.
The gamma priors also depends on the time period, and so we denote the parameters of the
gamma prior on A«(p) as (ay,b,) for each price p and time period t. As before, we will assume
that the planner knows the value of A, for each time period t, but that the planner still does not
know the value of A(p) since d is not known.

A property of the gamma distribution that is useful in this case is the following:

Lemma3.1: IfXis arandom variable with a gamma (a,b) distribution, and Y = kX for some
constant k, then Y has a gamma (a,b/k) distribution.
O
Lemma 3.1 states a fairly standard result about the gamma distribution, and so we do not provide
a proof for it here. We seek to modify the approach described in the previous case to allow for
different values of A/'s across time periods. The change we make will allow us to translate a
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family of prior distributions on {A\(p)}, for period t to a family of prior distributions on {As1(p)},.
We explain the nature of the change required below.

Suppose we have an updated gamma (a,b,) prior on A(p) at the end of period t, and this yields
the updated values of 6 and S from equations (P1) and (P2). In the previous case, a gamma
(@pt,bpt) prior on A(p) translated into a similar gamma (ay,bye) prior on Awi(p) since the two
random variables M(p) and A++1(p) had the same prior distribution. In the present case, however,
M+1(p) = (Aui/A)M(p). Hence, Lemma 3.1 tells us that a gamma (ay,by) distribution on M(p)
converts to a gamma ( ay, (A/Aw1)by: ) distribution on Awi(p). Thus, the parameters of the prior
distribution for A1(p) satisfy the equations:

a t4- + a t+
met A 2 Aul g (1-F(pl8)) = A (1-F(pl5)), and  Lawa = S

by, A b, A
These equations yield
ap+1= 1/S and b, = SAn( _1_ FoI))
Case 4. Non-stationary reservation price distributions

We are now ready to address the final stationarity assumption made earlier - that the reservation
price distribution is stationary (i.e., constant over time). This distribution may change over time,
for instance, because customers value the product less over time, or because the high reservation
price customers leave the market early in the season. The former may be true in the case of
seasonal apparel such as coats, and the latter in the case of new books or fashionwear. To
address this problem, we would need to know how the reservation price distribution changes over
time. We assume that this change occurs in the following manner:

Condition 3.2: There exist constants Ry, ...., Rr such that fi(r) = fy(Rr) for all r and t > 1, where
fi(.) is the density function for the reservation price distribution in period t.

Thus, under condition 3.2, the reservation price distribution in any period t > 1 could be
considered a ‘re-scaled’ version of the distribution in period 1. We assume that reservation prices
stay constant within any period, a reasonable assumption when the period lengths are of size, say,
one day or a week. We also assume that the planner knows the trend in reservation prices as
represented by the parameters (Ry, ....Rt). These may have been derived, for instance, through an
examination of historical sales records for similar products.

We now describe how our demand learning methodology, as described for Case 2, can be adapted
to the above situation. We describe this modification for the case of the exponential reservation
price distribution below. We use Case 2 only for convenience of exposition, and our approach is
equally applicable to the setting in Case 3.

The variable § that is kept track of now represents the updated value of the parameter for the

exponential reservation price distribution corresponding only to period 1. 1t is appropriately
scaled in each period to derive the corresponding parameter for the reservation price distribution
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for that period. Suppose we are at the beginning of period t. Suppose the current values of the
linking parameters are § and S, and that the price in period t is p. We describe below how we
calculate the revised values of 6 and S at the end of period t, given a demand observation of n in
period t. First, the values (ay,bj) of the gamma prior on A(p) need to be calculated. Given the
relationship in condition 3.2 between the reservation price distributions in periods 1 and t, the
prior distribution on A(p) is the same as the prior distribution (at the beginning of period t) on
M(p/R:). The parameters for this distribution can be calculated using equations (P1-Exp) and
(P2-Exp) with p/R; instead of p, to yield:

a, =1/8 and b =—1

SAer?

Next, these parameters are revised in the usual Bayesian fashion upon observing a demand level n,

giving us the updated values (a, +n, b, +1). Now we need to calculate the revised values of  and
S in terms of these updated values. As in the equations above, we get:

ap+n=l/S and b, +1= 5
SAeR?

a1 J and  S=1/(a+n)

R
which vields: 8 =——logl —/——
b g( A(b,, + l)

p

Alternative reservation price distributions
We have been illustrating our methodology through an exponential reservation price distribution.
Here, we show how some alternative distributions could be used in its place.

Weibull, with unknown location parameter: The Weibull is a three parameter family of
distributions that allows us to model a fairly wide variety of unimodal reservation price
distributions on [8, «) for any & € R. Its density and distribution functions are given by:

£(p) =ap*(p-3)* "¢ PC F(p)=1-eP " p>§

where & € R is the Jocation parameter, § > 0 is the scale parameter, and ot > 0 is the shape
parameter. By assuming that the location parameter § <0, we can circumvent the case where we
may have p <8 . Even if  were allowed to be positive, it can be shown in a straightforward
manner that the price will never we less than § in the optimal pricing model that we will discuss in
the next section. Also, a comment is in order about the case where 8<0, since the fact that this
leads to 'negative' values for the reservation price distribution may appear counter-intuitive.
Actually, a Weibull distribution with density function f{.) for which the location parameter & is
negative can be replaced by a distribution with the same density function f{x) for x>0, and with a

probability j‘f(x)dx of being equal to zero. Since the price will never be negative, these two
3

distributions will be effectively equivalent in the demand behavior they model. This new
distribution can be viewed as corresponding to a population of customers with a segment that has
zero value for the product and the rest having values distributed as f{x) for x>0.
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The exponential distribution is a special case of the Weibull, derived by setting a=1 and 6=0.

In this case, the location parameter may be taken as unknown while the shape and the scale of the
distribution are taken as known to the planner. This means that the parameters 8 and o will
remain fixed at some prespecified levels, while the location parameter & will be revised over the
course of time. This can alternatively be viewed as revising the mean of the distribution over time
while maintaining the same shape and scale, since the mean of the Weibull distribution is of the
form & + M(a.,B), where M is a function of o and B. This distribution can be shown to satisfy
Conditions 3.1 and 3.2 as well.

In this case, we may write A(p) as:  A(p)= Ae P for p>5

Property (P1) becomes: a/b, = Ae PrCG-3) ,p=6.
As before, this equation, along with (P2), provides straightforward solutions for 8 and S in terms
of (ap, by), and vice versa.

We have used this case of a Weibull reservation price distribution with an unknown location
parameter in our computational tests, discussed in Section 5.

Weibull, with unknown scale parameter: An alternative to the above would be to use just the two
parameter family of Weibull distributions (with & = 0) and assume that § was the unknown

parameter. In this case, we have f(p) = o p*p*'e?*", p>0 F(p)=1-¢eP* p>0

In this case too Conditions 3.1 and 3.3 are satisfied. Property (P1) can now be expressed as:
a/b, = Ae P?"

This equation, along with (P2), provides straightforward solutions for  and S in terms of (a,, by),

and vice versa. We have done some additional computational tests with this case.

The two cases of the Weibull distribution discussed above are illustrated in Figure 3.5.

Weibull reservation price distribution ibul
f(p) = K(a,B) eP“>-3" (o) Weil : (,B.8)

F(p)=1-eb ap g Waeibuil .ga,ﬁlsz)

Mp) = AeBw-5%

. 'l
O Sisunknown — eeemeeseert
(0 = location parameter) 84 8, P
Weibul (,B1,8)
f(p) : Weibull (,8,,8)
T 4 :
O Busunknown — se-eeeceectttt
(B = spread parameter)
[}
Figure 3.5

Gamma distribution with unknown mean: A third alternative would be to use the gamma
distribution. We can express the density function f and the distribution function F of a gamma
distribution with mean p and variance o as:
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fp) = ( ) poz“‘ P, F(p) = j' ( ) x;"e'—xdx

This distribution could be used in the following manner: It could be assumed that the planner
knows how spread out the reservation price distribution is across the population of customers,
though he or she may not know where this distribution is located. This means that the variance of
the distribution would be fixed at some prespecified level 6°, and the mean p would be unknown.
Using the gamma instead of the exponential would entail making certain straightforward
modifications in our demand learning process. Property (P1) will become:

a/b, = AI(__) rg“e 5Tdr  for some n>0,c6>>0 (P1-Gamma)

The one comphcatmg issue that arises now is in the calculation of i in terms of p, a, and b,. The
above equation does not allow us to solve for . analytically. This problem may be addressed in
2
p

—-1

the following manner. Let us denote by I(p, 1) the integral I( ) ro2 e-_r dr. The values of

I(p, ) could be precalculated for a range of different values of p and p (both p and p would need
to be discretized), and this matrix of values could then be used to find the appropriate value of p
for given values of o, By, p and A to solve the above equation. It can be shown that I(p, p) is
increasing in p, and so a simple binary search process could be employed in searching for the right
value of .

4. OPTIMAL DYNAMIC PRICING WITH DEMAND LEARNING

In this section, we describe how the demand learning technique described in Section 3 can be
embedded in the discrete time optimal dynamic pricing model developed by Bitran and
Mondschein (1993). We begin with a description of the basic pricing model developed by these
authors. We then show how it can be extended to incorporate the demand learning mechanism,
and how the resulting model may be solved computationally. We also describe a heuristic
solution approach for the model with demand learning that allows for substantial run-time savings.

Basic Pricing Model
We present below the discrete-time dynamic programming model for the optimal dynamic pricing
problem as developed by Bitran and Mondschein (1993).

Basic Pricing Model
Notation
N = Number of customer arrivals in period t (a Poisson random variable)
A = Customers' arrival rate in period t
D(p) = Number of purchases in period t at price p (a random variable)
I = Total inventory at beginning of planning horizon
T = Number of time periods in planning horizon
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fi () probability density function for the reservation price distribution in time period t
F() = cumulative distribution function for the reservation price distribution in time period t

Vi@ = Maximum expected revenue from period t onwards when the initial inventory is L.
The indices for the time periods increase with time, i.e., the sequence of time periods is given by
1,2...T.
Backward recursion
Vi) = maxpz0 E[p min{Dy(p), I} + Viuy(I- min{Dy(p), I})]
I-1
= maxy.o " P(D, (p) = n)(pd + Ve (I- d)) +P(p. (p) = I)pI
d=0
Boundary conditions
Vi) = 0 forall I
Vi) = 0 forallt

The distribution for Dy(p) is given by:
P(D:(p) = d) = 3" P(N, = n)(1- F.(p)) ‘Fe(p) " @1

n=d

The following result is from Bitran and Mondschein (1993):

Lemma4.1: Dy(p) is a Poisson process with arrival rate rate M(p)=A«(1-Fi(p)).
Proof: Follows by performing some straightforward algebraic manipulations on
equation 4.1.

0
Note that in the above model we are ignoring inventory holding costs and the time value of money
- these entail straightforward modifications and do not affect the results in this paper, and so, for
expositional simplicity, have not been modeled. In addition, we are assuming that there is no
shortage cost aside from the lost opportunity to generate more revenues through additional sales.

Model solution

The dynamic program can be solved backwards in time. For each stage t and state variable I, we
need to solve a unidimensional non-linear optimization problem where the decision variable is the
price p. This basic model is not computationally demanding.

Incorporation of demand learning

The demand learning technique developed in Section 3 requires that the parameters (3,S) be
transferred from one period to the next. We therefore need to include these parameters in the
state space of the dynamic program. As mentioned in Section 3, these parameters are initialized
by the model user, and they are then updated and transferred from one period to the next in the
dynamic program. We provide below a formal description of how the demand learning process is
incorporated within the dynamic programming model. To simplify the description, we assume
that there are only two periods in the model, that the store arrival rate and reservation price
distribution are stationary, and that the reservation price distribution is exponential with an
unknown mean. The extensions to the more general cases of nonstationary store arrivals,
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nonstationary reservation price distributions and alternative reservation price distribution forms,
are straightforward.

Extension of Basic Pricing Model To Incorporate Demand Learning
Initialization
The user specifies the following parameters:
Oo = Initial value of the parameter &
So = Initial value of the parameter S
I, = Initial level of inventory
A = Store arrival rate

State space:
The state space at the beginning of period t (t=1,2) is given by (I, 8, S), where L is the
level of inventory, and (,S) the updated values of the parameters, at the beginning of
period t (or, equivalently, at the end of period t-1).

Solution process
The backward recursion approach is employed to solve the dynamic program. We

therefore begin from period 2 (the last period), and calculate the value function for each
state of the system, going then to period 1 and doing the same for the starting state (Io, &
0,S0).

Period 2:
In period 2, we solve the following optimization problem:

V,(1,8,8) = max E[p min{L,D(p)}3,S]

for each possible state (I,5,S). For a given state (I,,S), this problem is solved by
performing a line search on p. We describe below how the expectation in the above
equation is computed for a given state (I,5,S) and a given value of p.

First, the values for a, and b, are calculated using equations (P1 - Exp) and (P2 - Exp):
a, = 1/S and b, =1/SAe™®

Now

E[p min{T, D(p)}{3,S]=" pnP[D(p) = n|3,S] + pIP[D(p) 2 13,S]

I-
n=1

= }: pnP[D(p) =n|3,S]+ pl(l - Z P[D(p) =nl3, s])

n=1
The above term would be calculable in a straightforward manner once we knew
P[D(p) = 1|9, S] for each n from 1 to I-1. For a given n, this probability can be calculated

as follows:
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P[D(p) = n|6,S] = TP[D(p) =n| kkamma(klap, b, )dA

T?‘_ -n a,—] -b,A bP da
o

I'(a,)

b,
J'I"(a
b,* T(n+a,)

P

n!l'(a,) (bp +l)j+u

I xn%—a ~1 -(b +A d)\'

Period 1
In period 1, we need to solve the following optimization problem:

V1$,,8,,5)
= rgng{P min{Io, D(p)} + VR2(10 - min{Io, D(p)},g,g)ISO,SO]

5,S here are the updated values of § and S that are to be passed to the next period, and
they are functions of 6 g, Sy, n and p. Here, n is the number of purchases observed in
period 1. We show how these are calculated below.

The above problem is solved, again, by performing a line search on p. We describe below
how the expectation in the above equation is computed for a given value of p.

As before, the values for a, and b, are calculated using equations (P1 - Exp) and (P2 -
Exp): a,= 1/ S and b, =1/SeAe™® (4.1)

Now
E[p min{IO,D(p)}+V (I —min{Io,D(p)},E,g)lﬁo,So]

_Z(pnw( ~n,5,5))P[D(p) = nl5,,S, ]+ PL,P[D(p) 2 L[5S, ]

n=1
-1
= Z(pn +V. ( -n,8 S)) [D(p)=n[5,,S,]+ plo(l - > P[D(p) = nlﬁo,So]j
n=l
Here, (3, S ) are the revised values of § and S got by observing demand n at price p. The
above term could be computed in a straightforward manner once we have calculated g,g ,
Valo-n, 5,S) and P[D(p) =n|9, S] for each n from 1 to I-1. We show below how, for a
given value of n, the quantities 5,S and P[D(p) =nld, S] are calculated. The function

value V,(Io-n, 8, S ) is then known from the period 2 calculations done at the previous step
of the algorithm.
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P[D(p) =n|J, S] is calculated just as in the previous step, with the values of the parameters
ap and b, now coming from equation (4.1). We are now left with the task of computing
(8,S). This observed demand first results in a revision of the parameter values of the

gamma prior on A(p) from (a,,b,) to (a,+n, by+1). This updating process is based on a
direct application of Bayes' rule, as described in the previous section. Let us denote these

revised parameter values by (Ep ,Bp ), so that ap = a, +n,and by = b, +1. The

parameters (g,g) are derived by solving equations (P1) and (P2) with (Ep ,bp)in place of
(ap,bp). This yields:

5 = —~log(-2-) and S=-,
P Ab, 2
= 1 a +n —
that is, §=——log ———— and S= 1
P \A(b, +1) a,+n

For this demand learning methodology to be effective, we expect to observe the following trends:
- S should decrease over time, since it represents the amount of uncertainty that is left in
the planner's knowledge about the demand function
- 8 should converge to its true underlying value over time (on average).

These expectations are supported by the results of the computational tests we have performed, as
discussed in the next section.

Model Solution

The variables § and S need to be discretized since they are in the state space of the dynamic
program. The variable d can be assumed to lie in some interval of reasonable length around the
initial estimate 8. S can be assumed to lie in some interval [0,W] where W is an upper bound on
S. Once these intervals are identified, the variables can be discretized appropriately to balance
solution accuracy with computational efficiency.

The increase in state space caused by the introduction of 6 and V has a significant effect on the
computation time for solving the program. Depending on other model characteristics, the
dynamic program may or may not have a satisfactory solution time.

A different way to reduce the computational time requirement is by adapting to the above
problem the expected value heuristic described in Chapter 3 of Wadhwa (1996). We provide a
brief description of this heuristic here, refering the reader to the above dissertation for a more
complete discussion. The heuristic is based on a fairly common technique for solving large scale
stochastic dynamic programming problems, involving the replacement of all the random variables
in the model (Dy(p)'s) by their expected values (A(p)=A«(1-F«(p))). This reduces the optimal
pricing model to a deterministic optimization problem. As shown in Wadhwa (1996), this problem
can be formulated as a concave maximization problem and solved through an efficient line-search
technique. The heuristic is based on formulating and solving such an approximation to the model
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on a rolling horizon basis. Thus, at the beginning of period t, we solve the deterministic problem
from period t onwards and utilize the optimal price p, that it determines. Then we observe the
demand Dy(p), revise the state variables (I, 5, S) appropriately, and repeat the process in the next
period. This heuristic has performed quite well in our computational tests, and we report on its
performance in the next section.

5. COMPUTATIONAL TEST RESULTS

In this section, we present summary results from some of the computational tests we have
performed and draw some conclusions and insights from them. The test results provide evidence
about the capability of our demand learning methodology to converge to the correct underlying
reservation price distribution and about the strong performance of the heuristic solution approach.
These results also yield some interesting insights into pricing behavior, sales patterns, and the
supply-demand imbalance under different conditions.

We begin by describing our computational testing plan.

Test plan
Our objective in performing the computational tests was to study the following issues:

1. How well does the demand learning technique perform? Does & converge to the correct
underlying value, and does S converge to zero?

2. What is the impact of over- or under-estimation in demand on the retailer's pricing behavior,
on optimal revenues, and on the balance between supply and demand over the season?

3. Under situations of demand over- and under-estimation, what is the impact of demand
learning on the retailer's pricing behavior, on optimal revenues, and on the balance between
supply and demand over the season?

4. What is the impact of a non-increasing price constraint on the retailer's pricing behavior?
How does the demand learning approach compare with the no demand learning.approach
when a non-increasing price constraint is imposed?

5. How well does the heuristic solution approach (described in Section 4) perform in relation to
the more computationally demanding optimal solution approach?

To examine these issues, we developed a a pair of base case problems with the following
characteristics. There were four time periods, and the initial inventory was set at 50. The Poisson
store arrival rate was set at 500 for each time period. The values of the parameters for the
Weibull reservation price distribution were taken so as to get a mean reservation price of $100
along with a reasonable spread around this mean value. These parameter values were 2.0, .007
and -30 for o, B and & respectively. The base case consisted of two versions - in the
overestimation version, § was overestimated by 30 (i.e., 8, was set at 0), which resulted in an
overestimation of the mean reservation price by $30. In the underestimation version, this mean
was underestimated by $30 by setting 8o = -60. The initial value for the coefficient of variation, S,
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was taken to be 0.5 in both cases. The parameters 8 and S were discretized by using 7 and 5
point grids for them respectively.

In addition to the pair of base case problems themselves, several modifications of this pair -
involving changes in one or more variables - were utilized to examine the impact of those changes
on the solution. These problems were solved separately using the following different approaches:

1. NODL: The basic optimal pricing model (with no demand learning)

2. DL: The optimal pricing model with demand learning

3. DL-HEUR: The optimal pricing model with demand learning, using the heuristic
solution technique.

4. PERF INFO: The basic optimal pricing model under perfect information, i.e., with the
correct initial value of 8.
PERF INFO and NO DL are based on the basic pricing model of Bitran and Mondschein (1993).
They differ in that PERF INFO is based on perfect demand information, and NO DL is not. DL
and DL-HEUR are both based on the demand learning model we have described in this paper.
They differ only in solution technique, as described above. The PERF INFO run was done in
order to provide a baseline against which to compare the results from the other models - the
solution under the PERF INFO model represented the ideal pricing behavior (and level of
revenues) that would be evidenced if the reservation price distribution had been correctly
estimated.

To analyze the solutions from these approaches for each test problem, we simulated the price
policies recommended by each approach under the true demand conditions (i.e., using the true
value of §). The simulations allowed us to calculate the expected values under these pricing
strategies of a number of quantities of interest, such as the overall revenues, the price level and
sales in each time period, and the values of the parameters S and § at the end of each time period.

Both the basic pricing model and the model with demand learning, in the forms they were
described in the previous section, assume that price can be set at any value - i.e., prices are not
restricted to some discrete set of allowable levels. This may constitute a small departure from
realism, for retailers would typically have a list of feasible price levels that they would select from
instead of allowing price to be set at any (continuous) level. We have performed a number of runs
using discrete price sets (for instance, the set {$20, $25,$30,...,$95, $100}). These results are
similar to those described in this section under continuous prices, and we therefore have not
separately discussed the discrete-price context here. See Gallego and Van Ryzin (1994) and
Bitran and Mondschein (1993, 1995) for additional discussions on using continuous versus
discrete price levels in the seasonal product pricing context.

We now turn to a discussion of the results of the computational tests.

Convergence of parameters
Table 5.1 shows the values of the parameters S and d at the end of time periodst=1, 2 and 3

under different initial inventory levels. (Note that we have not shown the values of § directly but
instead have shown the values of the mean reservation price, a more meaningful quantity). The
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rest of the data for these problems was taken from the base case with demand overestimation.
The results for the base case with demand underestimation were similar in nature.

Average value of mean (3 + 130)
Inventory
Endoftime 25 S50 75 100

period 1 | 106511045 |103 1025

INITIAL VALUE = $130
2 | 103 |102 101.5 | 101 TRUE VALUE = $100

3 | 102 }101.5 | 101 | 101

Table 5.1

Average value of Sq. Coeff. of Var. (S)

Inventory
End of time 25 50 75 100

period 1 022 {0.17 |0.11 |o.10

INITIAL VALUE =0.5
2 {009 {005 | 004 | 0.03

3 {005 {003 002 |0.01

Table 5.2

These results indicate that, over time, the parameter S converges to zero and the mean reservation
price (and the parameter §) converges to its true underlying value. The convergence is faster
when there are more sales observations in each time period (which happens when the initial
inventory is higher), which is intuitive. These results indicate that the demand learning procedure
does an effective job of recovering the true underlying reservation price distribution. This
suggestion is corroborated by a number of additional computational tests we have done using
different problem data.

Performance of models under different conditions

Table 5.3 shows the optimality gaps between the optimal expected revenues under PERF INFO
and the expected revenues under the approaches NO DL, DL and DL- HEUR under different
initial inventory levels. The optimality gap (or % suboptimality) for NO DL is defined as the
following quantity:

100 * Optimal exp. revs. (under PERFINFO) - Exp. revs. (Under NO DL)
Optimal exp. revs. (under PERFINFO)

and it is defined similarly for DL and DL-HEUR.

Table 5.4 shows the same data under different levels of demand misestimation. It is striking to
observe how poorly the NO DL method performs in many cases. In contrast, the DL model
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performs consistently well, even when the level of demand misestimation is very high. This
suggests that demand learning can lead to a substantial improvement in revenue. We also note
that DL-HEUR performs almost as well as DL in most cases. This provides further evidence of
the effectivenss of the expected value heuristic described in Wadhwa (1996), and suggests that a
viable heuristic solution option exists for situations where the DL model may be too
computationally demanding.

Different Levels of Initial Inventory
% Suboptimality of Revenues (Compared to PERF INFO)

Overestimation (Mean = $130, i.e., d = 0) Underestimation (Mean = $70, i.e., d = -30)
Ih= 25 50 75 100 25 50 75 100
No DL 19.9 20.2 19.3 18.8 6.5 6.8 7.0 73
DL 1.9 2.4 23 2.7 4.5 1.5 2.0 1.5
DL - Heur 29 2.3 2.1 2.1 3.6 3.2 3.2 3.1
Table 5.3

Different Levels of Demand Misestimation
% Suboptimality of Revenues (Compared to PERF INFO)

Overestimation Underestimation
Initial Mean (5,+130) =] $160  $130 $115 | $40 $70  $85
No DL 52.5 202 49 22 6.8 2.2
DL 4.6 24 11 | 103 11 038
DL - Heur 4.5 23 13 | 207 32 09
Table 5.4

We note from table 5.3 that, in the demand overestimation case, the basic model under imperfect
information appears to perform progressively better with increasing levels of initial inventory, and
that this behavior is reversed in the demand underestimation case. At present, we do not have
strong intuition or analytical support for these observations. We can, however, determine the
optimality gap between the basic model with imperfect demand information (the NO DL model)
and the same model with perfect information (the PERF INFO model) as the level of inventory
approaches infinity, and this result is formally stated below.

Lemma 5.1: Let § be the initial estimate of the unknown parameter § and let 3, be its true
underlying value. Let VN°PY(I) be the expected revenues derived from the price
strategy recommended by NO DL, and V*=X"FO(T) be the expected revenues from
the price strategy recommended by PERF INFO, when the initial inventory level is
1. For each period t, let p,(d) be the price that maximizes the function pA«(1-
Fy(p|d)). Then
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VIR (1) 2P 6 A(1-F(p.6.13.))

Proof: As I— oo, the dynamic program for the basic pricing problem separates into T
independent pricing problems, one for each period t, since the inventory constraint
for the season is effectively removed. The optimal price in period t is then given
by the price that maximizes the expected period t revenue, pA«(1-Fi(p|d)) (see the
proof of Proposition 2 in Bitran and Mondschein, 1995). This price is pi(3o) in the
NO DL case and p¢(6,) in the PERF INFO case, and the result then follows.

as o> o

g
It is straightforward to show that in the case where the reservation price distributions F; are of the
exponential type, the above ratio can be arbitrarily bad (i.e., can be arbitrarily close to zero).

Impact of initial level of demand uncertainty

Table 5.5 shows the 'optimality gaps' between the optimal expected revenues under PERF INFO
and the expected revenues under the approachesNO DL, DL and DL- HEUR under different
values of So. This data suggests that the DL and DL-HEUR models both perform fairly robustly
with respect to Sy as long as Sy is not too small. This is a very desirable result since Sy is probably
the most unintuitive of all the parameters that needs to be specified by the user, and would
therefore require the most judgement on the user's part. The poor performance by DL and DL-
HEUR for the case where S, is very small is not surprising - a small S, implies that the user is very
certain about the initial estimate 8o, and the Bayesian updating approach would then continue to
give a large weight to this initial estimate instead of responding more to the observed sales, thus
making the demand learning model behave very similar to the basic (no-demand learning) model.

Different Levels of Initial Demand Uncertainty
% Suboptimality of Revenues (Compared to PERF INFO)
Overestimation ( Mean = $130,i.e.,,8=0) Underestimation (Mean = $70, i.e., = -30)
So=| 001 03 05 1 2 001 03 0.5 1 2

NoDL | 202 202 202 202 202 68 638 6.8 6.8 6.8
DL 125 19 24 24 29| 68 22 1.5 1.1 1
DL-Heur| 139 26 23 23 22 | 52 34 32 34 4.5

Table 5.5
Expected Price and Sales Trends
We now discuss the expected price and sales trends observed for the base case runs. This analysis

sheds some valuable insights into dynamic pricing behavior under misestimated demand; and the
effect of demand learning on this behavior.

Figure 5.1 shows the expected prices in periods 1-4 under PERF INFO, NO DL and DL for the
base case, and Figure 5.2 shows the cumulative expected sales at the end of periods 1-4 for the
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same cases. The NO DL and DL runs were performed under the demand overestimation version
of the base case.

Base Case with Overestimation

Expected Price Trends

8 260
% 250
£ 50 —o—No DL
g 230 —x—DL
w50 —0O—Perf. Info.
210
200
1 2 3 4
Time Periods
Figure 5.1
Base Case with Overestimation
Expected Cumulative Sales
50
45
W
235
» 30
E2s
o 20
215
" 10
5 —0—No DL
0 —x—DL
1 2 3 4 | —— Perf. info.
Time Periods
Figure 5.2

Under perfect information, the ideal pricing strategy is to maintain a fairly level price and sales
trend throughout the season (with a slight dip in the last period). When demand is overestimated,
both NO DL and DL start the season with higher-than-ideal prices, as we would expect. The NO
DL approach leads to gradual markdowns over time since the model finds an unexpectedly high
level of unsold inventory after each period. This occurs since it always expects demand at the
price it sets to be higher than what occurs on average, since it has overestimated the reservation
price distribution. As seen in Figure 5.2, the NO DL approach leads to slow initial sales, and
while the successive markdowns do help to accelarate sales, they do not have an adequate enough
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impact because the model continues to expect higher sales than what will actually occur on the
average. When the season ends, there is therefore a significant amount of unsold stock left.
Under the DL approach, the initial price is again higher (and sales again slower) than the ideal
levels. However, the slow sales in period 1 lead this model to learn that it has overestimated
demand, and it responds by dropping the price significantly in order to affect a price correction.
This price is even lower than that from PERF INFO since in the DL case the period 1 sales have
been very low, and so it needs to compensate for it by accelarating sales in the subsequent
periods. Notice that DL does a very good job of balancing supply and demand by the end of the
season by correcting its price path early in the season. Figures 5.3 and 5.4 show the same output
as Figures 5.1 and 5.2 for the demand underestimation version of the base case.

Base Case with Underestimation
Expected Price Trends

N
&

—0—No DL
—x—DL
—— Perf. Info.

RE388I

Expected Price

Time Periods

Figure 5.3

Base Case with Underestimation
Expected Cumulative Sales

—0—No DL
—x—DL
0 1 2 3 4 | Pert. info.
Time Perlods
Figure 5.4
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The ideal pricing policy under perfect information is exactly the same as previously seen, since this
assumes perfect demand estimation (and is therefore not affected by the demand over or under
estimation). When demand is underestimated, both NO DL and DL start the season with lower
prices. The NO DL approach leads to gradual markups over time as the model finds an
unexpectedly high level of sales in each period. This is so since it always expects demand at the
price it sets to be lower than what occurs on average, since it has underestimated the reservation
price distribution. As seen in Figure 5.2, the NO DL approach leads to higher-than-ideal levels of
initial sales, and while the successive markups do help to slow down sales, they do not have an
adequate enough impact because the model continues to expect lower sales than what will
actually occur on the average. On the average, therefore, the inventory is exhausted much before
the season ends, leading to a stockout. Under the DL approach, the initial price is again lower
(and sales again higher) than the ideal levels. However, the high sales level in period 1 leads this
model to learn that it has underestimated demand, and it responds by raising the price significantly
in order to affect a price correction. This price is even higher than that from PERF INFO since in
the DL case the period 1 sales have been very high, and so it is left with fewer units to sell in the
subsequent periods. DL again does a very good job of balancing supply and demand by the end
of the season by correcting its price path early in the season.

The increase in prices recommended by the DL and NO DL models above may be infeasible in
many retail contexts, for retail practice (based, say, on consumer expectations) may require that
the price of the merchandise not be marked up within a season. While the above analysis may still
provide useful insights about optimal pricing behavior under freer pricing conditions, it is also
interesting to study the performance of different approaches under such a non-increasing price
requirement.

Impact of non-increasing price constraint

In order to impose this requirement, the basic pricing model and the model with demand learning
are modified in the following manner. The price variable is discretized (so that price can only
assume one of a limited set of values). The state space for both models is augmented by a new
variable that stands for the price determined for the previous period. This price variable acts as an
upper bound on price in the current period. The dynamic programming formulation of this
problem can be found in Bitran and Mondschein (1995). These authors also present a number of
computational test results for this model. The formulation for the demand learning case can be
derived in a simple manner as an extension to the one considered in this paper, and so we do not
provide a technical description here. The heuristic solution approach we described in Section 4
does not transfer over to this non-increasing price context.

Figure 5.5 shows the expected price trends from a series of runs of the different models with and
without the non-increasing price constraint. These runs were made using the base case data
presented earlier - in particular, the initial inventory level is 50, and the initial coefficient of
variation S is 0.5 for the DL runs. Under price overestimation, the impact of the non-increasing
constraint on the price trends under DL and NO DL is minimal, since the price tends to be revised
downwards over time. Therefore, the DL and NO DL runs shown in Figure 5.5 correspond to the
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base case of demand underestimation (5o = -$60). All runs were done using a discrete set of
prices based on $5 increments.
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Figure 5.5

The following observations can be made about the price trends shown in the above figure:

For each model (PERF INFO, NO DL, and DL), the imposition of the non-increasing price
constraint leads to an increase in the initial (period 1) price. This is intuitive - since there will
not be any recourse to revising the price upwards in the future, the retailer starts with a higher
period 1 price in order to have more pricing flexibility (i.e., a greater range of feasible prices)
in the future, and this flexibility is important because of the uncertainty in demand. (Note that,
for the DL and NO DL models, this increase is not influenced by the fact that demand has
been initially underestimated, since the first period price is determined by these models before
any sales have been observed. We would therefore expect to see the same period 1 price even
for the case of demand overestimation.)

Since the DL and NO DL runs are based on demand underestimation, the initial prices under
these runs are lower than the price under PERF INFO.

For the non-increasing price case, the period 1 price under the DL model is higher than that
under the NO DL model. In the DL case, the model recognizes that demand may have been
significantly over or underestimated, and sets the initial price in a manner that will allow it to
revise price appropriately as demand learning occurs over time. This initial price is therefore
set at a higher value than for the NO DL model, since the DL model wants to gives itself more
flexibility in the range of prices it can adopt in future periods in response to demand learning.
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6. CONCLUSIONS AND FUTURE RESEARCH ISSUES

In this paper, we have presented a methodology for dynamic demand learning in an environment
where the demand distribution changes over time due to changes in price, customer arrival rate
and customers’ values for the product. We have shown how this methodology can be
incorporated in a model of dynamic pricing for seasonal products. In addition, we have
performed a series of computational tests to evaluate our demand learning scheme and to study
the performance of dynamic pricing strategies with and without demand learning. Some key
conclusions and insights that we have derived from these computational tests are the following:

Under the demand learning methodology presented in this paper, the estimated reservation
price distribution converges to the actual reservation price distribution and the variances of
the priors converge to zero as more observations are gathered. The methodology is therefore
successfull in utilizing sales data to move from the planners’ initial estimate of customers’
values for the product to their true underlying values.
When there is a significant misestimation of demand , the optimal pricing strategy under no
demand learning will result in large revenue losses due to:

- Overpricing and high levels of unsold stock (under demand overestimation), or

- Underpricing and early stockouts (under demand underestimation)
Under conditions of demand misestimation, dynamic demand learning can help to limit the
revenue losses to relatively nominal levels.
Under the demand learning approach, there is a swift price correction early in the season with
not much learning thereafter. Thus, it is important to have good pricing flexibility early in the
season.
When a non-increasing price constraint is imposed, both the NO DL and DL approaches start
with a higher initial price in order to maintain more pricing flexibility in future periods.
However, the DL approach starts with a substantially higher initial price than the NO DL
approach since it recognizes that, in addition to the residual uncertainty, demand may have
been significantly over or underestimated initially.

While it has addressed a key limitation of existing models of seasonal product pricing, our
research has also identified a number of methodological and empirical issues on which further
work would be useful. These are discussed below.

Increased demand variability: At any given price p and time period t, we assume that the
underlying demand distribution is Poisson. Since the variance of a Poisson distribution is
equal to its mean, the use of this distribution strictly limits the variance of the underlying
demand distribution. Alternative distribution forms such as the negative binomial and the
normal allow for higher variances, and an extension of the demand learning approach to one
of these cases may therefore be useful.

Test marketing, reorders and channel arrangements: In some situations, retailers may have
the flexibility to place a second order for the product early in the sales season after gaining
some limited demand information through observed sales at some stores or through consumer
interviews. An appealing extension of the model in this paper would be one that incorporates
a reordering decision after the first period. Certain aspects of manufacturer-retailer contracts,
such as a limit on the reorder quantity, end-of-season returns to the manufacturer, and backup
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agreements (such as those considered by Eppen and Iyer, 1995) may also be investigated
through extensions of the model in this paper. An analysis of such models may provide useful
insights about the retailer's market testing, pricing and ordering strategy.

Multiparameter (or non-parametric) estimation: Our demand learning method assumes that
the retailer’s lack of information can be captured via a reservation price distribution in which a
single parameter is unknown to the planner. Thus, for instance, in our computational tests, we
have assumed that the planner knows the shape and scale of the (Weibull) reservation price
distribution and does not know the location (or equivalently, the mean) of the distribution. A
more powerful demand learning model would allow for even less of prior knowledge on the
retailer’s front by determining the true reservation price distribution with more limited prior
information. Alternatively, one could use the “Weibull with unknown location parameter”-
based context of our computational study and perform additional tests to evaluate the
performance of the demand learning scheme in situations where the planner has misjudged the
shape and scale of the reservation price distribution.

Non-stationary reservation price distribution: Another useful extension may be in contexts
where the reservation price distribution changes with time. Our approach assumes that this
change follows a certain pattern which is known to the planner, and this may in certain
contexts be a limiting assumption. An alternative technique might apply differential weights to
the sales data from past periods to capture the trend in customers’ values for the product in
addition to revising the retailer’s initial estimate of this distribution.

Empirical study: The discussion in the last section has highlighted the importance of demand
learning and of correcting prices swiftly in response to such learning. This analysis leads to a
number of questions on industry practice that merit empirical investigation, such as the
following: How effective are retail organizations in learning about demand early in the season
and to what extent do they react through early price corrections? How does our methodology
perform in comparison with the decisions made by merchandise managers at these
organizations?
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